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Abstract
The discoveries that cerebrospinal fluid participates in metabolic perivascular exchange with the brain and further drains 
solutes to meningeal lymphatic vessels have sparked a tremendous interest in translating these seminal findings from animals 
to humans. A potential two-way coupling between the brain extra-vascular compartment and the peripheral immune system 
has implications that exceed those concerning neurodegenerative diseases, but also imply that the central nervous system has 
pushed its immunological borders toward the periphery, where cross-talk mediated by cerebrospinal fluid may play a role in a 
range of neoplastic and immunological diseases. Due to its non-invasive approach, magnetic resonance imaging has typically 
been the preferred methodology in attempts to image the glymphatic system and meningeal lymphatics in humans. Even if 
flourishing, the research field is still in its cradle, and interpretations of imaging findings that topographically associate with 
reports from animals have yet seemed to downplay the presence of previously described anatomical constituents, particularly 
in the dura. In this brief review, we illuminate these challenges and assess the evidence for a glymphatic-lymphatic coupling. 
Finally, we provide a new perspective on how human brain and meningeal clearance function may possibly be measured in 
future.
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Background

The study of lymphatic vessels in dura mater has a long 
history, but in recent time, this was facilitated by the 
introduction of specific markers for lymphatic endothelial 
cells [1]. In 2015, animal studies unveiled for the first time 
that tracer in cerebrospinal fluid (CSF) drains directly into 
lymphatic vessels within the dura, primarily alongside the 
dural venous sinuses [2, 3]. It was furthermore demonstrated 
that meningeal lymphatic drainage assumes a pivotal role 
not only in eliminating solutes from the subarachnoid space 

(SAS), but also from the brain itself, implying that brain 
solute clearance along perivascular pathways is dependent 
on meningeal lymphatic vasculature. As such, later studies 
showed that experimental ablation of meningeal lymphatic 
drainage was followed by delayed clearance of both tau [4] 
and amyloid-beta [5] from the animal brain.

In this review, we provide as background a short summary 
of current, co-existing concepts for brain perivascular 
clearance, including the glymphatic system, which currently 
seems to have the largest momentum. Furthermore, we 
describe shortly main elements of the breakthrough research 
findings of dural lymphatic anatomy and function in rodents. 
In humans, we identify previous anatomical research on 
dura, particularly the parasagittal dura and its constituents. 
From this, we critically illuminate translational magnetic 
resonance imaging (MRI) investigations in humans that 
have endeavored to image the intricate interplay between 
brain perivascular drainage and lymphatic drainage from 
the craniospinal compartment. We particularly scrutinize 
potential pitfalls in the interpretation of applied MRI studies 
within this emerging research field. Finally, we recommend 
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a new method to assess meningeal CSF clearance capacity 
in research and the clinic.

The glymphatic system and competing models

The initial elucidation of the glymphatic system in rodents 
[6] has significantly influenced imaging of human brain 
clearance along perivascular pathways over the past decade, 
fostering a burgeoning realm of translational research [7]. 
One of the main breakthrough observations in humans was 
that exchange between cerebrospinal fluid (CSF) and brain 
tissue is extensive and profound, and clearance from both 
CSF and brain differs between individuals as well as between 
patient groups, including those with idiopathic normal 
pressure hydrocephalus (iNPH)-associated dementia [8, 9]. 
Nevertheless, some unresolved inquiries remain. Presently, 
the extent to which perivascular solute clearance contributes 
to overall brain clearance remains ambiguous when 
juxtaposed with other well-established pathways, including 
solute excretion across the blood–brain-barrier (BBB), local 
proteolytic cleavage, and microglial resorption [10]. The 
role of impaired glymphatic function has been postulated 
as a causal factor and consequence within a spectrum of 
neurological disorders [11, 12]. However, the glymphatic 
paradigm faces direct contradictions from researchers 
attempting to reproduce the experimental framework [13] 
and is challenged by alternative hypotheses for perivascular 
clearance, such as intramural periarterial drainage (IPAD) 
and periarterial mixing [10, 14] (Fig. 1). Despite these 
variances, all competing frameworks now seem to converge 
on the consensus that the influx of cerebrospinal fluid (CSF) 
from the brain surface serves as the principal propellant 
within these pseudo-lymphatic clearance systems. In 
previous reports of the IPAD system, CSF influx along 
arteries was not supported, based on the belief that cortex 
lacked perivascular spaces [15], but this view seem now 
to have been abandoned. A shared characteristic is further 
the scarcity of evidence for a direct anatomical connection 
between the brain and lymphatic vessels at the meninges 
and, ultimately, the bloodstream.

In the primary conceptualization of the glymphatic 
system, the question of additional drainage routes from 
brain, whether directly into the subarachnoid space (SAS) 
or traversing cortical veins to eventual lymphatic vessels 
remained open. In the IPAD model [16], meningeal 
lymphatic vessels are by-passed, as solute drainage 
within the arterial wall muscle layer is supposed to persist 
uninterrupted and travel opposite of the blood stream 
within the carotid artery wall directly to cervical lymph 
nodes, albeit without direct evidence of such connections. 
Conversely, periarterial mixing entails solutes diffusing from 
the brain interstitium along their concentration gradient 

Fig. 1  Competing model frameworks for understanding perivascular 
clearance. All models currently accept CSF influx along penetrating 
arteries and mixing with the interstitial fluid, but drainage routes 
from brain differ substantially. In the glymphatic system (A), 
interstitial solutes are cleared along veins into CSF or directly to 
meningeal lymphatic vessels, in the IPAD model (B) drainage is 
within the artery wall, and in the mixing model  (C), solutes diffuse 
along a concentration gradient along periarterial spaces back into 
CSF, facilitated by mixing from physiological motion. Illustration 
from Zhao et  al. (Physiology) [14] (reuse by permission from CCC 
RightsLink® service)
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directly into periarterial spaces, where pulsations facilitate 
the retrograde pumping of solutes back into the SAS.

Curiously, if the influx of CSF into the brain is of 
paramount importance, the notion that brain waste is 
cleared back into CSF at the surface as to a common sink, 
and potentially recirculated into the brain, might appear 
counterintuitive. Therefore, the anticipation that brain 
perivascular drainage connects directly with meningeal 
lymphatic vessels has supposedly influenced interpretation 
of imaging findings from the human setting.

Imaging of meningeal lymphatic structures 
and their functional characteristics in rodents

In their seminal study from 2015, Louveau and coworkers 
detected that fluorescent CSF tracer drained into vessels 
adjacent to the sagittal and transverse dural sinuses (dorsal 
regions) that were positive for several lymphatic endothelial 
cell markers [2]. These vessels were considered to represent 
initial lymphatic vessels, covering less of the tissue and 
forming a less complex network composed of narrow vessels 
compared to other body regions. Diameter of the vessels was 
shown to be at micrometer scale, and it was hypothesized 
that the vessels may add to CSF filtration via arachnoid 
granulations, which are prominent in the perisinous region. 
Finally, it was proposed that meningeal lymphatic vessels 
may represent the second step in the drainage of interstitial 
fluid from the brain parenchyma after primary drainage 
into CSF. In the same year, Aspelund et al. [3] in another 
seminal study observed that the dye they injected into brain 
parenchyma drained into CSF along paravenous routes and 
entered the CSF space before drainage to deep cervical 
lymph nodes, primarily via lymphatic vessels that were 
exiting through foramina at the skull base. In later studies, 
lymphatic vessels were reported to be the major outflow 
pathway for CSF [17] and that ventral meningeal lymphatic 
vessels at the skull base were the hotspots for lymphatic 
drainage of CSF, not those in the dorsal perisinus region 
[18]. It was more recently demonstrated that the parasagittal 
dural stroma is rather an important hub for brain-immune 
cross-talk, where circulating immune cells can enter 
its stroma directly from the venous sinuses and here be 
presented to brain specific antigens by local dendritic cells 
[19]. Moreover, arachnoid granulations have been shown to 
communicate with this stroma and also to harbor immune 
cells, suggesting these trans-arachnoid passage ways may 
also represent lymphatic conduits with a neuroimmune role 
[20].

The human parasagittal dura

Rodent and human brain differ in many aspects, not only 
in the most obvious ways concerning size and gyration 

patterns; but also clearance of tracer from CSF occurs 
of a time scale of days in humans [8], compared to a few 
hours in rats [21], with the pig brain comparing closer to 
the human [22]. Functionally, it has also been provided 
evidence that CSF lymphatic efflux routes may differ; while 
nasal lymphatic efflux is consistently shown to be of major 
importance in rodents [23], an in vivo CSF tracer study in 
humans detected no efflux through the cribriform plate to 
nasal mucosa [24], which contradicts previous non-MRI 
studies [25, 26]. There may also be species differences 
regarding impact of sleep and circadian rhythms on 
meningeal clearance function. Hence, lymphatic efflux of 
CSF tracer examined by near-infrared fluorescence imaging, 
was faster in awake than anesthetized mice [27]. In humans, 
on the other hand, there was in one patient cohort no effect 
of one night`s sleep deprivation on efflux of CSF tracer to 
parasagittal dura [28]. In the brain, however, CSF tracer 
dynamics was affected by both acute sleep deprivation [29] 
and chronic sleep impairment [30]. Further translational 
research in humans therefore seem mandated.

Fox et al. performed in 1996 a detailed anatomical study 
of the parasagittal dura based on formalin-fixed human 
autopsy specimens. In addition to intradural arachnoid 
granulations, they reproduced presence of an extensive 
network of intradural, endothelial-lined channels stemming 
from the superior sagittal sinus along nearly its entire length. 
These channels were first described by Weed in 1917 [31], 
and has later been demonstrated by others [32–34]. Fox 
et al. assessed the dimensions of intradural channels, which 
ranged from 0.02 to 2.0 mm and either connected to the 
superior sagittal sinus or lateral lacunae, which extended up 
to 3 cm from midline. The network of intradural channels 
was unrelated to cortical veins and was proposed to represent 
a pathway for the flow of CSF from arachnoid granulations 
to the superior sagittal sinus. Meningeal veins also appeared 
distinct from the intradural channels, but not branches of 
meningeal veins, which arborized medially and to some 
extent connected there with intradural channels. Intradural 
channels have a superior location to arachnoid granulations 
[32], which may imply their role in trans-dural CSF efflux 
to skull bone marrow [35]. A review by Mack et al. [36] 
also emphasized the extensive venous network within 
dura, as well as the meningeal arteries and accompanying 
meningeal veins, which are superficially located in the 
outer aspect of dura, and finally capillaries, that are present 
throughout the dura and are extremely rich in the parasagittal 
region. Dural lymphatic vessels were identified to be at 
micrometer scale in the parasagittal dura from histological 
analysis of whole-mount human specimens [37]. Recently, 
dural lymphatic vessels were also demonstrated utilizing 
immunohistochemistry in specimens retrieved from patients 
[1, 38]; the lymphatic vessels were seen in specimens from 
patients and obtained about 1.5 cm lateral to the parasagittal 
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dura, and also in more remote locations. Here, lymphatic 
vessels were both localized nearby blood vessels as well 
as in distance to blood vessels. Given the methodological 
challenges with identifying lymphatic vessels using 
formalin-fixed tissues [1], it remains to be determined the 
relationship between intradural channels in parasagittal dura 
and lymphatic vessels.

Attempts to visualize meningeal lymphatics 
in parasagittal dura with MRI

Regarding imaging of human meningeal lymphatics, MRI 
has typically been the preferred methodology due to its non-
invasive nature, and has mainly focused on the parasagittal 
dural region. Various MRI based approaches have been 
performed, by both assessing enhancement patterns of MRI 
contrast agents administered intravenously and intrathecally, 
but also without any use of contrast agent. In any case, 
since blood vessels, intradural arachnoid granulations and 
intradural channels are abundant in the parasagittal dura, 
these need to be accounted for in attempts to visualize 
lymphatic vessels in this region. Accordingly, a commonly 
acknowledged challenge with MRI of lymphatic vessels in 
other body regions (MR lymphangiography) has been to 
separate contrast enhancing blood vessels from lymphatic 
vessels. For superficial body lymphatic vessels, this has 
been accomplished by obtaining MRI after injecting 
contrast agent into the cutis to visualize lymphatic channels 
through a 30 min period, and subsequently, an MRI 2–3 min 
after intravenous contrast to define veins [39]. Lymphatic 
vessels in limbs will typically show progressive contrast 
enhancement with the greatest degree after 30 min and 
appear with a characteristic irregular, beaded pattern. Veins 
have typically a smooth, uniform caliber and are visible 
2–3 min after intravenous injection. MRI contrast agents 
have typically a half-life in blood of approximately two 
hours, are therefore present within the blood circulation and 
thus also in peripheral tissue for several hours [40].

Several reports of MRI studies claim to have directly 
visualized dural lymphatic vessels after administration 
of intravenous contrast [41–47], some with addition of 
the precautious prefix “putative” [47]. Typically, single, 
mm-thick tubular structures are demonstrated in 2D or 
3D and conclusions about their lymphatic origin typically 
rely on a topography fitting with descriptions of dural 
lymphatic networks in rodents or neuropathological 
data. Strikingly, there are to our knowledge no studies 
discussing the possibility that tubular shaped structures 
at MRI might represent veins or derive from other known, 
abundant constituents in the region. There is also broadly 
a lack of considerations that vessels visualized at MRI 
are orders of magnitude larger in diameter than what has 
been described in animal [2, 3, 19] as well as in human 

[1, 38, 48] studies. In one human study, lymphatic vessel 
diameter at various location remote from sinus veins 
varied from approximately 20–40 µm [38] (Fig. 2), and 
in another, meningeal lymphatic vessels adjacent to the 
superior sagittal sinus ranged from 8 to 119 µm [48]. Thus, 
lymphatic vessels at MRI should not be expected to have 
diameter larger than ~ 0.1 mm, and often even less, which 
is far below the typical MR image resolution (~ 1 mm).

On the contrary, a human CSF tracer study has 
demonstrated direct efflux from CSF into the parasagittal 
dura through 48  h, but could not depict signs of the 
tracer collecting into any tubular structures whatsoever, 
only diffuse enhancement [28, 49]. Peak enhancement 
in parasagittal dura occurred at 24  h after intrathecal 
tracer injection and was highly correlated with 
enhancement in adjacent CSF (Fig. 3). Another study 
using same methodology, rather interpreted a similar, 
diffuse enhancement pattern as “putative” meningeal 
lymphatic vessels [50], but without providing evidence 
for enhancement in tubular structures per se.

To exclude venous signals at MRI, “black blood” 
techniques have been applied to darken signal from 
slow flow within the venous vasculature [41]. However, 
shine-through of signal from veins with very slow flow, 
or artifacts from slow flowing blood in smaller vessels is 
one major confounding factor in the interpretation of high 
signal in tubular structures [51]. Whereas accompanying 
contrast-enhanced MR venography has further been added 
to subtract signals from veins that were visible at MRI 
[41], venous structures of microscopic size with very 
low flow velocity, or having caliber well below the image 
resolution, may not be depicted. Still, diffuse contrast 
enhancement in parasagittal dural regions was widely 
interpreted as lymph. However, blood vessels in the dura 
lack tight junctions and allow extravasation of solutes as 
large as 43 kDa [52], while for instance gadobutrol has 
molecular weight ~ 0.6 kDa [40]. Therefore, intravenous 
contrast is expected to enhance in the extra-vascular 
stroma of the parasagittal dura through these abundant, 
leaky vessels. Further sources of contrast enhancement 
in the parasagittal dura, whether diffuse or in shape of 
tubular vessels, may be derived from enrichment within 
networks of dural veins and capillaries, and also as 
proposed by Park et al. [32], enrichment within intradural 
channels. Absinta et al. [37] observed that a blood pool 
agent (gadofosveset) did not leak into the parasagittal 
dura, contrary to the enhancement which was observed in 
dura after intravenous administration of gadobutrol. Even 
though the enhancement they observed may be considered 
diffuse and at millimeter scale as revealed by 2D (Fig. 4) 
and not least by 3D representations, and qualitatively 
comparable to the enhancement in the choroid plexuses, 
they interpreted this as lymphatic vessels.



Glymphatic‑lymphatic coupling: assessment of the evidence from magnetic resonance imaging… Page 5 of 14   131 

To this end, it can be argued that imaging of lymph 
by use of intravenous contrast-enhanced MRI therefore 
awaits further validation. Future imaging studies must be 
interpreted with larger care and by acknowledging existence 
of other sorts of tubular structures than lymphatic vessels 
being present in the region. While it should be expected 
that dural lymphatic vessels indeed exist also in the human 
parasagittal dura, it remains unknown whether the recently 
reported lymphatic vessels in human dura were within or 
lateral to the parasagittal dura [1]. In this regard, it should 
be kept in mind that the volume of parasagittal dura varies 
extensively between individuals [53], and the basis for this 
is currently not well understood. As discussed previously, 
meningeal lymphatic vessels within the parasagittal 
dura region may rather be important for immunological 
surveillance of the brain more than in CSF drainage [17, 
19]. This is supported by human CSF tracer studies, showing 
that CSF flux around the upper brain convexities differs 
substantially between individuals [8], and with sometimes 
very minute amounts of CSF tracer entering from the upper 

SAS adjacent into the parasagittal dura [49], suggesting 
this is not a major efflux route. Notwithstanding this, 
exchange between SAS and parasagittal dura as part of 
neuroimmunlogical surveillance may still take place.

A method for a non-contrast approach to visualize 
meningeal lymph has also been suggested, where literally 
any hyperintense FLAIR signal outside the brain at MRI was 
interpreted as lymph [54]. The basis for this understanding 
was that increasing protein content in an external container 
was positively associated with FLAIR signal. Since lymph 
is protein rich, a hyperintense FLAIR signal was therefore 
accepted to derive from lymph only. As outlined above, the 
parasagittal dura contains many elements that can contribute 
to the hyperintense FLAIR signal, including small blood 
vessels, the lateral lacuna, intradural arachnoid granulations, 
and the fibrous stroma of the parasagittal dura. Interpretation 
of a hyperintense FLAIR signal as lymph is therefore highly 
presumptuous. Furthermore, even hyperintense FLAIR 
signals from the CSF spaces near the skull base were 
interpreted as ventral meningeal vessels; however, this has 

Fig. 2  Human dural lymphatic vessel from the upper frontal 
convexity. Co-localization of the lymphatic markers lymphatic vessel 
endothelial hyaluronan receptor 1 (LYVE-1) and podoplanin (PDPN) 
confirms the presence of meningeal lymphatic vessels in dura mater 
of patients (panels J–L are magnification of panels G–I). The vessels 

have a diameter at micrometer scale and would not be expected 
to be delineated at mm-scale MRI. Courtesy of Fig.  7 G–L from 
Quesada et al. FBCNS) [1], reprinted under the terms of the Creative 
Commons Attribution License (CC BY)
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later been dismissed as CSF flow artifacts [55]. Finally, the 
authors interpreted a continuous, high FLAIR signal in the 
walls of neck blood vessels as lymph, too, and the continuity 
with similar signals at the skull base was considered to 
represent connections between cervical lymph nodes and 
the intracranial meningeal lymphatic system. A similar 
interpretation was reproduced in another study from the 
same group [56]. Again, lymph is not an exclusive source 
of a high FLAIR signal, and for instance connective tissue 
and vasa vasorum in neck vessel walls are least as likely 
sources. Ultimately, the reasoning behind accepting any 
structure with high FLAIR signal outside brain as lymph 
was heavily contested by two independent commentaries 
[55, 57]. Examples of contrast and non-contrast based 
interpretations of lymph at MRI are given in Fig. 4.

It remains to be determined how abundant lymphatic 
vessels are in human dura. Given the recent observations 

that fixation method extensively affects the ability to 
visualize lymphatic vessels in human dura [1], care should 
be taken when interpreting findings from formalin-fixed dura 
of cadavers. Accordingly, a recent study failed to identify 
lymphatic structures in the perisinus region, but rather 
tubular intradural vascular channels which stained positively 
with markers of lymphatic vessels that connected lateral 
interdural arachnoid granulations with the venous circulation 
[58]. In another work, it was concluded that arachnoid 
granulations that traverse the dura-arachnoid stroma not 
only serve as CSF reservoirs, but are also enriched with 
immune cells, supporting that perisinus tissues can represent 
important immune hubs at the brain surface [20]. Kutomi 
and Takeda also found that arachnoid granulations in pigs 
were lined by lymphatic endothelial cells, while dura mater 
in mouse was devoid of arachnoid granulations and “totally 
underdeveloped” compared to pig or human [59].

Fig. 3  The parasagittal dura (PSD) is visible as hyperintense tissue at 
FLAIR (A and C). PSD (B) volume varies widely between subjects 
for unknown reasons, but has in addition to stroma been shown to 
contain arachnoid granulations, blood vessels, intradural channels, 
lateral lacunae and lymphatic vessels, the latter at micrometer scale. 
After injection of a CSF tracer (MRI contrast agent), PSD enhances 
visibly with tracer after 24 and 48  h in a diffuse fashion, but not 

in the shape of tubular structures. Tracer enhancement in PSD is 
dependent on tracer enhancement in the adjacent cerebrospinal fluid 
(CSF) space and is not visible before tracer has reached the CSF 
compartment (D–F). At 24 h (G) and 48 h (H),   From Eide PK and 
Ringstad (Brain Research) [28], reused with permission under the 
terms of the Creative Commons CC-BY license
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Imaging evidence of glymphatic–lymphatic 
coupling

In humans, MRI was used for the first time to demonstrate 
in  vivo drainage of a CSF tracer (the MRI contrast 
agent gadobutrol) to the lymphatic system, where the 
tracer enhanced subtly in cervical lymph nodes with 
peak after 24 h. Peak enhancement coincided with peak 
tracer enhancement in brain, and the finding was inferred 
to indicate that the tracer was cleared directly from 
perivascular spaces in brain to lymph after its enhancement 
in brain [60]. This tracer is inert, confined outside the 
intact BBB, and should not be expected to be cleared via 
other routes than the perivascular. However, later studies 
using the same methodology demonstrated clearly that 
also levels of tracer in CSF are highly associated with 
levels in brain at all time points through 24–48 h, well into 
clearance phase, suggesting that CSF clearance rate is a 
major determinate for brain tracer clearance. Moreover, 
the same CSF tracer appeared in blood with a peak merely 
a few hours after its intrathecal distribution, preceding 
peak enhancement in cervical lymph nodes by far, and also 
preceding its enhancement at the upper brain convexities. 
This sequential pattern clearly suggests that a substantial 
proportion of tracer was already resorbed form the spinal 
canal and at the skull base via meningeal lymphatic 
vessels. Tracer levels in CSF under the cranial vertex was 
a prerequisite for, and correlated with, enhancement in 
the parasagittal dura, clearly indicating direct efflux from 
CSF directly to dura, not from the brain. These human 
observations of efflux from CSF to meninges also resonate 
well with previous animal findings [2, 3], but do not 

exclude the possibility of an anatomically uninterrupted 
clearance pathway from brain to meningeal lymph.

Indeed, observations from intravenous contrast-enhanced 
MRI have been inferred to support a direct anatomical 
link between brain paravascular pathways and meningeal 
lymphatic vessels. Naganawa et  al. demonstrated age-
dependent leakage of contrast agent around the vein of 
Labbè [61], as well as from cortical veins at the upper 
convexity, into CSF at inversion recovery MRI [62]. Later, 
it was suggested that the contrast leaked into a space 
connecting the glymphatic system and meningeal lymphatics 
[63]. Sennfält and coworkers had a similar interpretation 
of this phenomenon in a recent paper [45], where they 
conclude that their findings suggested that interstitial fluid 
drainage was visible on conventional MRI and drained 
from brain parenchyma via cortical perivenous spaces to 
dural meningeal lymphatics in the parasagittal dura. As 
such, this drainage pathway remained separate from CSF. 
Observations were typically made within 30  min after 
intravenous contrast administration. However, this stands 
in sharp contradistinction to in vivo observations of CSF 
tracer clearance from brain, which occurs for hours and 
days [8]. It seems very likely that this discrepancy can be 
derived from an alternative cause behind the perivenous 
enhancement; a direct leakage of contrast agent through 
the venous wall. Leptomeningeal blood vessels have 
endothelial cells connected by tight junctions, but are not 
ensheathed by astrocytic foot processes, and paracellular 
junctions between these endothelial cells vary in tightness 
and can be up to 2.8 nm large [64]. Even within brain tissue, 
brain vessels are to some degree leaky to contrast agents, 
and previously established leakage constants indicate that 

Fig. 4  Examples of interpretation of lymphatic tissue in parasagittal 
dura. In a intravenous contrast enhancement in parasagittal dura 
is interpreted as lymphatic vessels (red arrows), while blood flow 
in superior sagittal sinus is suppressed (From Absinta et  al. eLife 

2017) [37]. In b all hyperintense FLAIR-signal in parasagittal dura 
(arrowheads) was accepted as lymph (From Albayram et  al. Nature 
Communications, 2022) [54]. Figure elements are reused with 
permission under the Creative Commons International License
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gadolinium concentration in brain tissue after intravenous 
administration can be close to what is reported after 
intrathecal administration [65]. At arterial spin labeling 
MRI with ultra-long echo times, substantial and rapid 
exchanges of water between blood vessels and CSF at the 
brain surface was demonstrated [66]. Furthermore, MRI 
contrast agent has been shown to leak directly into CSF 
and the subarachnoid space at multiple locations [67–69]. 
Perivenous enhancement after intravenous administration 
was also observed in a case series after temporary opening 
of the blood–brain-barrier using focused ultrasound [70]. 
However, the phenomenon was shown to occur in merely 
a fraction of subjects, and it was not discussed whether the 
outskirts of the applied ultrasound energy field might have 
induced increased venous wall permeability. To this end, 
human MRI studies have so far only provided circumstantial 
evidence of an uninterrupted, compartmentalized clearance 
pathway from brain to lymph, and observations appear 
biased by expectations from theoretical frameworks.

Meningeal immunity and CSF-mediated interactions 
with the CNS is a flourishing research field with intense 
ongoing debates. Recently, it was described a previously 
unrecognized, fourth meningeal layer denoted subarachnoid 
lymphatic-like membrane (SLYM) [71]. The SLYM 
layer was shown to contain Prox1 + cells and to encase 
subarachnoid blood vessels. By its impermeability to 
molecules larger than 3 kD, and thereby functionally 
dividing the subarachnoid space into compartments, the 
SLYM layer would also enable for a directionalized CSF 
movement at the brain surface toward brain perivascular 
spaces, possibly linking meningeal immunity with the 
brain more directly. However, two later studies possibly 
contradicted the SLYM by claiming that Prox1 + cells were 
part of the arachnoid mater [72, 73]. While the possible 
existence of SLYM yet seems unresolved, a previous human 
MRI study demonstrated sign of periarterial propagation of 
CSF tracer within the subarachnoid space, as implicated by 
a SLYM layer [9]. Future human MRI studies utilizing CSF 
tracer and high temporal resolution could possibly resolve 
some of these outstanding questions.

When considering coupling between the glymphatic 
and lymphatic system, MRI investigators further need to 
be aware of a potential CSF-mediated cross-talk between 
the CNS and spinal dural lymphatic vessels. Spinal 
absorption of CSF has for long been well established to 
occur [74], but clearance pathways were more obscure. 
Recently, a continuum of meningeal and epidural lymphatic 
vessels in the vertebral (spinal) canal was described, with 
lateral exits along blood vessels and spinal nerves [75]. 
The spinal lymphatic vasculature was shown to interact 
immunologically with the spinal cord and furthermore 
to be particularly dense compared to the one that covers 
the cranial dura mater, leading to the possible explanation 

that spinal lymphatic vessels strongly contribute to CSF 
absorption [76]. A concurring study revealed that following 
intraventricular tracer injection in mice, tracer propagated 
down the spinal canal and was cleared from the subarachnoid 
space predominantly from the sacral spinal canal to 
lymphatic vessels and further to sacral and iliac lymph nodes 
[77]. Substantial spinal clearance was corroborated by a 
human CSF tracer study, where intrathecally injected MRI 
contrast agent at the lumbar level appeared in blood with 
peak concentration far earlier than peak contrast enrichment 
around the upper brain convexities. This constellation of 
findings suggests that substantial CSF clearance occurs from 
the spinal canal as well as the skull base. A further analysis 
of MRI data suggested that up to 2/3 of injected tracer in 
humans was resorbed via the thecal sac [78].

Imaging evidence of coupling between CNS 
and bone marrow

It is remarkable that direct dural-bone marrow connections 
have been demonstrated physically as well as functionally, 
enabling for mobilization of myeloid cells into meninges and 
CNS parenchyma following injury and neuroinflammation 
[79]. Toward skull bone marrow, CSF efflux was shown for 
the first time in any species at human MRI [35] and was later 
confirmed in mice with meningitis, here also revealing that 
CSF and bacteria exited along perivascular spaces of dural 
blood vessels and through sub-millimeter skull channels 
[80]. The same channels directly provided for backwards 
migration of leukocytes to meninges. Thus, brain-derived 
danger signals in CSF can be sampled by regional marrow. 
It was recently demonstrated that the mouse skull has the 
most distinct transcriptomic profile compared with other 
bones, corroborated by the finding that skull bone marrow 
reflected inflammatory brain responses in patients with 
various neurological disorders, including inflammatory, 
ischemic, and neurodegenerative diseases [81]. These 
compelling observations in humans were accomplished 
by use of positron emission tomography, and it remains to 
be seen whether dedicated MRI could reveal bone marrow 
changes in response to disease.

Two-way interactions between the brain and peripheral 
(meningeal) and central (bone marrow) immune components 
have wide implications for potential mechanisms in, and 
modifying of, neuroinflammation, neoplastic disease and 
neurodegeneration [82]. Furthermore, when central and 
peripheral immune constituents can interact directly with 
the meninges and also be distributed in CSF, new hypotheses 
may emerge about mechanisms behind symptoms associated 
with common viral illnesses, including headache and 
sickness behavior. No human study has yet investigated 
CSF efflux to vertebral bone marrow, neither in the normal 
physiological situation nor in disease, which may eventually 
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be accomplished with MRI contrast agents or a radioactive 
compound utilized as CSF tracer.

CSF clearance as measure of meningeal lymphatic 
function

The acknowledgment that lymphatic vessels are the major 
outflow pathway of small and large CSF tracer substances, 
renders CSF clearance a potentially impactful marker 
of meningeal lymphatic clearance capacity [17]. For 
endogenous solutes with a role in neurodegenerative disease, 
one study demonstrated that impaired functional lymphatics 
was associated with reduced extracellular tau clearance from 
CNS [4]. It was proposed that the glymphatic and lymphatic 
systems work in tandem to clear tau to the periphery, where 
tau first was cleared from ISF to CSF before uptake by the 
dural lymphatic system. Interestingly, despite complete lack 
of lymphatic vessels, tau was still cleared from brain to the 
periphery, suggesting that other, but minor clearance routes 
for tau may exist. Indeed, a tau transporter over the BBB 
has been characterized [83]. In a Parkinson’s disease animal 
model, ligation of cervical lymphatic vessels aggravated 
accumulation of alfa-synuclein [84]. In rodents, amyloid-β 
is to large extent cleared from brain via other pathways than 
the perivascular route, including degradation by microglia 
and via dedicated transporters at the BBB, and merely about 
¼ of amyloid-β is cleared via CSF [85, 86].

It is therefore likely that the ability to measure CSF 
clearance rate would provide a suitable marker of lymphatic 
clearance capacity, but perhaps particularly for tau, which 
is deposited in brain in Alzheimer`s disease and other 
tauopathies. Feasibility of measuring CSF clearance rate 
in humans has been shown for CSF-to-blood clearance of 
intrathecally injected MRI contrast agent gadobutrol [87], 
a gadolinium–based contrast agent. Intrathecal injection 
of gadobutrol is “off-label” use, but the methodology can 
likely be converted to radiopaque contrast agents, that are 
generally approved for intrathecal injection, and have many 
molecular properties similar to gadobutrol. These features 
include molecular size, hydrophilic properties, the lack of 
binding to or reacting with proteins, and being contained 
outside the intact blood–brain-barrier after distribution 
in CSF. Thus, clearance over the blood–brain-barrier is 
negligible and largely anticipated to occur via meningeal 
lymphatic channels, both from the intracranial space and 
the spinal canal. Prospective safety studies of intrathecal 
gadobutrol in amount 0.25–0.50 mmol have shown side 
effects that are comparable to those reported after use of 
intrathecal radiopaque agents, and also after spinal punctures 
alone [88–90]. These observations are corroborated by the 
experiences from clinical use of MRI contrast agents in dose 
1.0 mmol and less [91]. Remarkably, the methodology has 
revealed that CSF clearance not only differs between patient 

groups, but also among individuals within the same patient 
category [92] (Fig. 5). A methodological strength is that it 
measures overall CSF clearance and is thus independent on 
knowledge about particular clearance pathways, a question 
that is still debated [10, 93]. Being a surrogate marker of 
endogenous solutes of much larger size, it has yet not been 
validated against established biomarkers in CSF, but was 
associated with plasma biomarkers of neurodegeneration 
[94], and also with their fluctuations in plasma after sleep 
deprivation [95]. The methodology still lacks validation 
against clinical end points, such as prognostication of 
disease and disease progression, but can already be a 
marker of CSF clearance capacity for tailoring of dosage 
in intrathecal treatment regimens [92], since drugs in CSF 
must also be expected to be mainly removed along lymphatic 
pathways, equally to CSF itself.

Concluding remarks

Pioneering research in animal models has positioned 
glymphatic brain clearance and its interplay with 
meningeal lymphatics at the forefront of CNS research. 
MRI stands out as an attractive tool to image those two 
systems and their coupling. MRI particularly profits 
from the ability to acquire a bigger perspective both 
anatomically and functionally within the craniospinal 
compartment, throughout an extended time span, and 
in vivo. However, both obvious and more subtle species 
differences mandate translation of previous animal 
research findings to humans. In future research, human 
MRI studies should liberate themselves from proposed 
frameworks now seemingly restraining perspectives 
on how imaging findings are interpreted, and better 
appreciate the extreme complexity of these systems. 
So far, interpretations of imaging findings within this 
young research field appear heavily biased by a desire 
to reproduce findings from animal studies, and very few 
negative studies are reported. As discussed in this review, 
MRI findings that have been accepted to represent lymph 
can least as likely be derived from other sources. Likewise, 
no convincing evidence has yet been provided for a direct 
coupling between the glymphatic system and meningeal 
lymphatic function, and currently, CSF is more likely to 
represent the intermediate step between those two systems. 
Meningeal lymphatic clearance function is likely the main 
determinate of CSF clearance rate and thereby glymphatic 
clearance rate along perivascular pathways. Measurements 
of CSF tracer clearance to blood can therefore potentially 
serve as surrogate marker of meningeal lymphatic 
clearance function. Currently, it is yet unclear to what 
degree glymphatic-lymphatic brain clearance contributes 
to total brain clearance, and how this fraction may differ 
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between CNS regions. In this context, MR imaging of 
CSF flow patterns at the CNS surface emerges with new 
relevance, as large inter-individual variations in humans 
have already been revealed. Whether for instance CSF 

flow obstruction at the brain surface is also associated 
with compromise of solute clearance or immunological 
function, should be assessed in future research.

Fig. 5  Pharmakokinetic variability in CSF-to-blood clearance of 
gadobutrol for reference patients (REF)  (A), patients with pineal 
cysts (PC)  (B), arachnoid cysts (AC)  (C), spontaneous intracranial 
hypotension (SIH)  (D), idiopathic intracranial hypertension 
(IIH)  (E), idiopathic normal pressure hydrocephalus (iNPH)  (F), 
communicating hydrocephalus (Comm HC)  (G) and non-

communicating hydrocephalus (Non-comm HC)  (H). Black lines 
provide the mean predicted concentration of intrathecally injected 
gadobutrol in blood over time. From: Hovd MH et  al. (Fluids and 
Barriers CNS) [92], reused with permission under the terms of the 
Creative Commons CC-BY license
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