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Abstract
Down syndrome (DS) arises from a genetic anomaly characterized by an extra copy of chromosome 21 (exCh21). Despite 
high incidence of congenital diseases among DS patients, direct impacts of exCh21 remain elusive. Here, we established 
a robust DS model harnessing human-induced pluripotent stem cells (hiPSCs) from mosaic DS patient. These hiPSC lines 
encompassed both those with standard karyotype and those carrying an extra copy of exCh21, allowing to generate isogenic 
cell lines with a consistent genetic background. We unraveled that exCh21 inflicted disruption upon the cellular transcriptome, 
ushering in alterations in metabolic processes and triggering DNA damage. The impact of exCh21 was also manifested in 
profound modifications in chromatin accessibility patterns. Moreover, we identified two signature metabolites, 5-oxo-ETE 
and Calcitriol, whose biosynthesis is affected by exCh21. Notably, supplementation with 5-oxo-ETE promoted DNA damage, 
in stark contrast to the protective effect elicited by Calcitriol against such damage. We also found that exCh21 disrupted car-
diogenesis, and that this impairment could be mitigated through supplementation with Calcitriol. Specifically, the deleterious 
effects of 5-oxo-ETE unfolded in the form of DNA damage induction and the repression of cardiogenesis. On the other hand, 
Calcitriol emerged as a potent activator of its nuclear receptor VDR, fostering amplified binding to chromatin and subsequent 
facilitation of gene transcription. Our findings provide a comprehensive understanding of exCh21’s metabolic implications 
within the context of Down syndrome, offering potential avenues for therapeutic interventions for Down syndrome treatment.
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Introduction

Down syndrome or Down’s syndrome (DS), which is 
also called trisomy 21, is a genetic disorder caused by 
the presence of extra copy of chromosome 21 (exCh21). 
Trisomy 21 is the most common viable human aneuploidy 
[1]. Individuals with DS exhibit various abnormal health 
conditions, including congenital heart disease (CHD) and 
neurological complications [2–4].

Although the fundamental chromosomal basis of DS 
has been well understood for an extended period [5], the 
precise mechanisms through which the surplus exCh21 
precipitates congenital disorders in humans have remained 
enigmatic [6]. This ambiguity might partly stem from the 
challenges in sourcing appropriate patient materials and 
the limitations inherent in animal models that struggle to 
fully replicate the complex phenotypes seen in human tri-
somy 21 [7, 8]. As a result, human-induced pluripotent 
stem cells (hiPSCs) that are derived from DS patients offer 
a promising avenue for creating an in vitro model of DS, 
thereby enabling the exploration of its underlying molecu-
lar mechanisms [7, 9]. Indeed, accumulating evidence sug-
gests that hiPSC models are instrumental in delineating the 
pathogenesis of DS [9]. Furthermore, the differentiation 
of hiPSCs obtained from DS patients proves especially 
valuable for scrutinizing congenital maladies in human 
development. However, the precise mechanisms governing 
hiPSCs and their developmental processes remain inad-
equately understood.

The direct influence of exCh21 on the human cardiac 
system remains elusive, despite much higher incidence of 
congenital heart diseases (CHDs) among DS patients [2, 
10, 11]. CHD occurs in approximately 50% of newborns 
identified with DS, making it a prevalent condition among 
individuals with DS [12]. Consequently, cardiac issues are 
highly frequent in this population, encompassing a range 
of CHD like atrial septal defect (ASD) and ventricular 
septal defect (VSD) [12]. While there is a comprehensive 
description of cardiovascular conditions related to DS, 
there is a notable absence of in-depth, DS-specific expert 
perspectives concerning the recognition, diagnosis, and 
management of cardiovascular diseases [12]. This gap 
arises from the intricate mechanisms underlying DS that 
are not yet fully understood.

Our research objectives encompassed delving into the 
pathogenesis of DS through an in vitro approach using 
human-induced pluripotent stem cells (hiPSCs). The 
hiPSC lines were established from mosaic DS patient, 
yielding both cell lines with a regular karyotype and those 
harboring an extra of chromosome 21 (exCh21). This 
model allowed for the generation of isogenic cell lines with 
a consistent genetic background, effectively isolating the 

impact of the extra chromosome 21 (exCh21) on cellular 
processes. To unravel the intricate molecular mechanisms 
underpinning DS, we undertook multi-omics analyses to 
ascertain whether the presence of exCh21 directly triggers 
disorders within hiPSCs and hiPSC-derived cardiac line-
ages. These analyses unveiled abnormal metabolic patterns 
instigated by the additional copy of chromosome 21 in DS. 
Through our study, we not only identified potential bio-
markers but also characterized the atypical metabolic traits 
associated with DS. Our findings offer significant insights 
into the origins of DS and present prospective avenues for 
treating both DS itself and the congenital heart disease 
(CHD) that stems from it.

Materials and methods

Human‑induced pluripotent stem cells

The Institutional Review Board (IRB) at Guangdong Pro-
vincial People’s Hospital and Guangdong Academy of 
Medical Sciences (Guangzhou, China) approved the proto-
cols utilized in this research. Consent in written form was 
acquired from the donors participating in the study. For the 
reprogramming of human-induced pluripotent stem cells 
(hiPSCs), fresh urine was collected from a mosaic Down’s 
syndrome patient. The urine was used to isolate live cells 
following a previously published protocol [13]. The obtained 
human urine-derived cells were then reprogrammed into 
iPSC lines. Individual clones were selected, and these clones 
were thoroughly validated using the protocol established by 
the South China Institute for Stem Cell Biology and Regen-
erative Medicine, Chinese Academy of Sciences (Guang-
zhou, China), which was detailed in the published protocol 
[13]. To ensure consistency and minimize genetic variability, 
three P hiPSC lines and three paired isogenic N hiPSC lines 
were chosen, expanded, and employed in the study. This 
selection aimed to avoid discrepancies stemming from dif-
fering genetic backgrounds.

Human hESCs and iPSCs culture

The H9 cell line of human embryonic stem cells (hESCs) 
and the N and P hiPSC lines derived from mosaic Down’s 
syndrome patient was regularly nurtured in mTesR1 
medium. These cells were cultured on 6-well plates coated 
with Matrigel. When the hiPSCs reached confluency, they 
were passaged using the ReLeSR Human PSC Selection 
and Passaging Reagent. The process involved initial wash-
ing of the confluently grown hiPSCs with 1 × phosphate-
buffered saline (PBS). Subsequently, the cells were exposed 
to ReLeSR at room temperature (RT) for 1 minute and then 
placed in a 37 °C incubator for 7 min. After this, the cells 
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were resuspended in mTesR1 medium and expanded into 
6-well plates at a 1:10 ratio. To enhance cell viability dur-
ing passaging, a ROCK inhibitor called Y27632 was added 
to the mTesR1 medium. The concentration of Y27632 in 
the mTesR1 medium was maintained at 10 μM. Following 
a 24-h incubation period, the medium containing Y27632 
was replaced with fresh mTesR1 medium devoid of Y27632. 
This medium renewal process was repeated daily until the 
subsequent passaging of the cells.

Cardiac differentiation

The process of cardiac differentiation was conducted using 
the STEMdiff Cardiomyocyte Differentiation Kit (STEM 
CELL Technologies), following the instructions outlined in 
the manual. Initially, hESCs or hiPSCs were dissociated and 
then re-seeded onto Matrigel-coated 12-well plates. Once 
the cells reached full confluence, they were exposed to dif-
ferentiation basal medium supplemented with supplement 
A. After 48 h, the medium was substituted with differentia-
tion basal medium containing supplement B. Moving for-
ward, on day 4, the cells were incubated in differentiation 
basal medium along with supplement C. This medium was 
refreshed every 2 days. Upon reaching day 8, the cells were 
maintained in STEMdiff™ cardiomyocyte maintenance 
medium supplemented with supplement M. Similar to pre-
vious stages, this medium was renewed every 2 days. For 
experiments focused on human cardiac development, cells 
at specific time points in the differentiation process were 
collected as dictated by the experimental designs.

Immunostaining

Cells were fixed using a 4% paraformaldehyde (PFA) solu-
tion for a duration of 10 minutes. Subsequently, they were 
rendered permeable by treating them with 0.1% saponin 
(Sigma-Aldrich) in 1× PBS for a period of 1 h at room tem-
perature. The cells were then subjected to a blocking step 
employing 5% bovine serum albumin (BSA) in 1× PBS, 
spanning an h. This was followed by an overnight incubation 
with the primary antibody in a 4 °C incubator. The subse-
quent day, the cells underwent a triple-wash procedure using 
1× PBS buffer and were subsequently exposed to the second-
ary antibody for a duration of 1 h at room temperature within 
a dark environment. For the terminal deoxynucleotidyl trans-
ferase biotin-dUTP nick end labeling (TUNEL) assay, the 
labeling buffer containing the enzyme was combined with 
the secondary antibody as per the instructions laid out in the 
TUNEL kit manual. Ultimately, the cells were subjected to 
another three rounds of washing using 1× PBS and were 
subsequently mounted using a DAPI solution. The acqui-
sition of fluorescent images was carried out using a Zeiss 

ZEN confocal microscope equipped with an oil immersion 
objective.

RNA extraction

Total RNAs from cells were extracted and purified by 
miRNeasy mini kit or RNeasy Mini Kit (Qiagen) according 
to the manuals. Total RNA concentration was evaluated by 
Nanodrop 2000. Fresh total RNAs were used for RNA-seq 
or RT-qPCR.

RT‑qPCR

CDNAs were synthesized by using 1st strand cDNA Syn-
thesis Kit (Takara Bio), and real-time qPCR was performed 
by using SYBR Premix Ex Taq (Takara Bio) in a Bio-Rad 
Real-Time PCR System according to the manufacturer’s 
instructions. All PCR reactions were performed in at least 
three biological triplicates, normalized to the internal con-
trol genes GAPDH or beta-actin, and analyzed by using the 
comparative 2−ΔΔCt method. Primer sequences are shown in 
Table S1. oligonucleotides.

Flow cytometry

Flow cytometry was carried out according to our protocol 
[14]. Initially, cells were fixed using 4% paraformaldehyde 
(PFA) for 10 min at room temperature and subsequently 
rendered permeable by exposure to 0.1% saponin (Sigma-
Aldrich) in 1× PBS (Gibco) for 1 h at room temperature. 
Following this, cells were subjected to an incubation with 
the primary antibody in a blocking buffer composed of 
5% bovine serum albumin (BSA) and 0.1% saponin in 1× 
PBS buffer, maintained at 37 °C for 1 h. Subsequent to this 
incubation, cells were washed three times with 1× PBS, fol-
lowed by additional incubation with the secondary antibody 
in the same blocking buffer at 37 °C for 1 h. In the case of 
TUNEL assay, the labeling buffer containing the enzyme 
was mixed with the secondary antibody according to the 
instructions provided by the TUNEL kit. Finally, the cells 
underwent another three rounds of washing with 1× PBS. 
The evaluation through flow cytometry was executed uti-
lizing the CytoFLEX Flow Cytometer (Beckman Coulter). 
The acquired data were subsequently analyzed using FlowJo 
software (Treestar).

RNA‑seq

The RNA-seq analysis was conducted by submitting total 
RNAs to Novogene (China). Professionals from the Experi-
mental Department at Novogene (China) were responsible 
for handling library preparation, sequencing, and the data 
analysis. For each sample, 1 μg of total RNA served as 
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input material during RNA sample preparations. NEBNext® 
UltraTM RNA Library Prep Kit for Illumina® (NEB) was 
employed to generate strand-specific libraries, following 
the manufacturer’s guidelines. Index codes were incorpo-
rated to assign sequences to individual samples. The pro-
cess involved depleting ribosomal RNA from total RNA and 
subsequently fragmenting the RNA using divalent cations 
under elevated temperature in NEBNext First-Strand Syn-
thesis Reaction Buffer (5×). The first strand cDNA synthesis 
employed random hexamer primers and M-MuLV Reverse 
Transcriptase (RNase H minus). Subsequent second-strand 
cDNA synthesis utilized DNA Polymerase I and RNase H, 
incorporating dUTP instead of dTTP. The remaining over-
hangs were rendered into blunt ends through exonuclease/
polymerase activities. After adenylation of 3’ ends of DNA 
fragments, NEBNext Adaptors with hairpin loop structures 
were ligated for hybridization. To select cDNA fragments 
of 150–200 bp length preference, library fragments under-
went purification using the AMPure XP system (Beckman 
Coulter). The USER Enzyme (NEB) was employed to 
digest the second strand, involving size-selected, adaptor-
ligated cDNA, at 37 °C for 15 min, followed by 5 min at 
95 °C before PCR. PCR was executed using Phusion High-
Fidelity DNA polymerase, Universal PCR primers, and 
Index Primers. Subsequently, PCR products were purified 
using the AMPure XP system, and the quality of the library 
was assessed using the Agilent Bioanalyzer 2100 system. 
Clustering of the index-coded samples was carried out on 
a cBot Cluster Generation System using TruSeq PE Cluster 
Kit v3-cBot-HS (Illumina), adhering to the manufacturer’s 
instructions. After cluster generation, the library prepara-
tions were subjected to sequencing on a Novaseq 6000 plat-
form, resulting in the generation of 150 bp strand-specific 
paired-end reads.

RNA‑seq data analysis

Technicians within the Experimental Department at Novo-
gene (China) undertook the analysis of the RNA-seq data. 
The initial processing involved the utilization of in-house 
perl scripts to manipulate the raw data, which were in fastq 
format. This step led to the acquisition of clean data (clean 
reads) by removing reads containing adapters, poly-N 
sequences, or those with inadequate quality from the raw 
data. Simultaneously, metrics such as Q20, Q30, and GC 
content were computed for the clean data. All subsequent 
analyses were conducted using the high-quality clean data. 
The reference genome’s index was established using hisat2-
2.0.4, following which paired-end clean reads were aligned 
to this reference genome. To capture junction reads, STAR 
was employed, generating the corresponding mapping out-
comes. Read counts mapped to each gene were determined 
using Stringtie-1.3.3b. Subsequently, the FPKM (fragments 

per kilobase of transcript per million mapped reads) value 
for each gene was computed, taking into account both 
the gene’s length and the mapped read count. Differential 
expression analysis was carried out using the edgeR_3.24.3 
package. For the RNA-seq experiments, a total of three 
biological replicates were conducted. Genes exhibiting an 
adjusted p-value of less than 0.05 were identified as differ-
entially expressed genes (DEGs).

Assay for transposase‑accessible chromatin 
with high‑throughput sequencing (ATAC‑seq)

Technicians in the Experimental Department at Novogene 
(China) conducted all experiments and data analyses for 
ATAC-seq. ATAC-seq followed established protocols [15, 
16]. Initially, nuclei were isolated from the samples, and 
the nuclei pellet was then suspended in the Tn5 transposase 
reaction mixture. The transposition reaction was incubated 
at 37°C for 30 min. Following transposition, Equimolar 
Adapter1 and Adapter 2 were added, and a PCR amplifi-
cation step was executed to enrich the library. Post-PCR, 
library purification was performed using AMPure beads, and 
the quality of the libraries was assessed using Qubit meas-
urements. To prepare the indexed samples for clustering, 
the cBot Cluster Generation System was employed with the 
TruSeq PE Cluster Kit v3-cBot-HS (Illumina) in accord-
ance with the manufacturer’s instructions. After cluster gen-
eration, the library preparations underwent sequencing on 
an Illumina Hiseq platform, generating 150 bp paired-end 
reads. Subsequently, skewer (0.2.2) was employed to remove 
the initial Nextera adaptor sequences from the reads. These 
processed reads were then aligned to a reference genome 
using BWA with standard parameters. Subsequently, reads 
were filtered to retain high-quality, non-mitochondrial 
chromosome, and properly paired reads (longer than 18 nt) 
with a minimum MAPQ score of 13. Peak calling analysis 
was conducted using macs2 with the following parameters: 
‘macs2 callpeak –nomodel –keepdup all –call-summits’. For 
simulations of peaks called per input read, the aligned and 
de-duplicated BAM files were used without additional fil-
tering. In the case of ATAC-seq, two biological replicates 
were carried out.

Untargeted metabolomics

Technicians within Novogene’s Experimental Department 
(China) conducted all experimental procedures and data 
analysis for untargeted metabolomics. In the initial step, 
live cell samples were placed into EP tubes and resuspended 
using prechilled 80% methanol, employing vortexing. Sub-
sequently, the samples were cooled on ice and agitated for 
30 s. A sonication step of 6 min was applied to the samples, 
followed by centrifugation at 5000 rpm and 4 °C for 1 min. 
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The resulting supernatant underwent freeze-drying and was 
then dissolved with 10% methanol. This solution was even-
tually introduced into the LC-MS/MS system. The LC-MS/
MS analyses were carried out using a Vanquish UHPLC 
system (Thermo Fisher, Germany) coupled with an Orbitrap 
Q Exactive TMHF-X mass spectrometer (Thermo Fisher, 
Germany) at Novogene Co., Ltd. (Beijing, China). Samples 
were injected into a Hypesil Gold column (100×2.1 mm, 
1.9μm) using a 17 min linear gradient at a flow rate of 0.2 
mL per minute. For the positive polarity mode, eluent A 
(0.1% FA in water) and eluent B (in methanol) were used. 
In the negative polarity mode, eluent A (5 mM ammonium 
acetate, pH=9.0) and eluent B (in methanol) were employed. 
The solvent gradient progressed as follows: 2% B, 1.5 mins; 
2–100% B, 3 min; 100% B, 10 min; 100–2% B, 10.1 min; 2% 
B, 12 min. Operating in both positive and negative polarity 
modes, the Q Exactive TM HF-X mass spectrometer fea-
tured a spray voltage of 3.5 kV, capillary temperature of 
320°C, sheath gas flow rate of 35 psi, aux gas flow rate of 
10 L per minute, S-lens RF level of 60, and aux gas heater 
temperature of 350 °C. The UHPLC-MS/MS-generated raw 
data files underwent processing using Compound Discoverer 
3.1 (CD3.1, Thermo Fisher) to execute tasks such as peak 
alignment, peak picking, and quantitation for each metabo-
lite. Parameters included retention time tolerance (0.2 min), 
actual mass tolerance (5 ppm), signal intensity tolerance 
(30%), and signal-to-noise ratio. Following normalization 
of peak intensities to total spectral intensity, the data were 
used to predict molecular formulas based on additive ions, 
molecular ion peaks, and fragment ions. Subsequently, peak 
matching with databases (mzCloud, mzVault, MassList) 
facilitated accurate qualitative and relative quantitative out-
comes. Statistical analyses employed R (version R-3.4.3), 
Python (version 2.7.6), and CentOS (CentOS release 6.6). 
In cases of non-normal distribution, an area normalization 
approach was employed to attempt normalization. The anno-
tated metabolites were referenced against the KEGG data-
base, HMDB database, and LIPIDMaps database. MetaX 
was used for principal components analysis (PCA) and par-
tial least squares discriminant analysis (PLS-DA). Univariate 
analysis (t-test) determined statistical significance (p value). 
Metabolites with VIP > 1, p-value < 0.05, and fold change 
≥ 2 or ≤ 0.5 were deemed differential metabolites. Volcano 
plots, based on log2(Fold Change) and -log10(p value), were 
generated using ggplot2 in R. For clustering heat maps, 
z-scores of intensity areas for differential metabolites were 
employed for normalization and plotted using the heatmap 
package in R. Correlations between differential metabolites 
were analyzed in R, with statistically significant correlations 
calculated via cor.mtest and visualized using the corrplot 
package. Functional and pathway analyses were executed 
using the KEGG database. Metabolic pathway enrichment 
of differential metabolites was performed, considering 

enrichment when the ratio x/n > y/N was met, and statisti-
cal significance when p value of a metabolic pathway was < 
0.05. In the context of untargeted metabolomics of N and P 
hiPSCs, three biological replicates were conducted.

Chromatin immunoprecipitation (ChIP)–qPCR

The ChIP procedure involved utilizing the truChIP® Chro-
matin Shearing Kit (Covaris) and Magna ChIP™ A - Chro-
matin Immunoprecipitation Kit (Sigma-Aldrich), following 
the respective manuals for guidance. To initiate chromatin 
shearing, cells cultured in 10 cm plates were subjected to the 
truChIP® Chromatin Shearing Kit. The process began with 
washing cells using cold 1× PBS, followed by cross-linking 
with formaldehyde at room temperature for 5 min. To halt 
cross-linking, quenching buffer was added for 5 min. Cross-
linked cells were separated using Corning® cell scrapers 
and washed with cold PBS three times. Each wash involved 
centrifugation at 1000 g and 4 °C for 5 min. Subsequently, 
cells were suspended in freshly prepared chromatin shearing 
buffer and sonicated to achieve fragments of approximately 
200 bp length, using a Covaris ME220 Focused-ultrasoni-
cator. The immunoprecipitation (IP) of sonicated samples 
was conducted using the Magna ChIP™ A - Chromatin 
Immunoprecipitation Kit (Millipore), following the instruc-
tions provided in the kit manual. The ChIP–qPCR data were 
obtained from no fewer than three biological replicates. 
Primer sequences used in the experiments are detailed in 
Table S1, which is accessible in the supplementary material.

Functional enrichment analyses

For RNA-seq, ATAC-seq, and scRNA-seq, enrichment 
analyses were implemented by the clusterProfiler R pack-
age or THE GENE ONTOLOGY RESOURCE (http://​geneo​
ntolo​gy.​org/). Terms with p value less than 0.05 were con-
sidered to be significant terms. Signaling pathway analyses 
were performed by large-scale molecular datasets (http://​
www.​genome.​jp/​kegg/), Reactome database (https://​react​
ome.​org/) or Ingenuity Pathway Analysis (QIAGEN). Clus-
terProfiler R package was also used to test the statistical 
enrichment of DEGs in KEGG pathways by Experimental 
Department in Novogene (China).

Quantification and statistical analysis

Data were represented as mean ± SD of biological replicate 
experiments; individual data points were also shown. The 
statistical significance was evaluated by using Student’s 
unpaired t-test (two-tailed) (comparison between two 
groups). One-way ANOVA was used for comparisons of 
three or more groups. P value less than 0.05 was considered 
statistically significant.

http://geneontology.org/
http://geneontology.org/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
https://reactome.org/
https://reactome.org/
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Results

Impact of extra copy of chromosome 21 (exCh21) 
on transcriptome disruption and DNA damage

To study the pathogenesis of Down syndrome (DS) in 
human, we generated human-induced pluripotent stem cells 
(hiPSCs) by reprogramming urine live cells isolated from 
DS patient (Fig. 1A–D). Karyotype analyses demonstrated 
mosaic karyotypes among the hiPSC lines, with some dis-
playing normal a karyotype (N hiPSC lines) and others har-
boring an extra copy of chromosome 21 (exCh21) (P hiPSC 
lines) (Fig. 1B). This approach established an in vitro iso-
genic DS model with a consistent genetic background.

To assess the impact of exCh21 on hiPSCs, RNA-seq 
was employed on N and P hiPSCs (Fig. 1E, Fig. S1A–C). 
The results unveiled alterations in gene expression patterns 
due to exCh21 (Fig. 1F). Genes activated by exCh21 were 
associated with DNA damage and cell death (Fig. 1G, 
Fig. S1D), while those repressed by exCh21 were linked 
to metabolic processes such as lipid metabolism (Fig. 1H, 
Fig. S1E). Key genes implicated in DNA damage and P53 
signaling were significantly upregulated in P hiPSCs (Fig. 
1I-J, Fig. S1F). Additionally, exCh21 notably affected 
metabolic processes, including eicosanoid and fatty acid 
metabolism (Fig. S1G-H). RT-qPCR confirmed the activa-
tion of genes causing DNA damage by exCh21 (Fig. 1K). 
Immunostaining (Fig. 1L) and flow cytometry (Fig. 1M) 
both affirmed a higher percentage of TUNEL+ cells, which 

is the marker represents DNA damage, in P hiPSCs than 
in N hiPSCs. These findings demonstrated that exCh21 
directly induced DNA damage and cell death in hiPSCs.

Identification of signature genes in lipid 
metabolism driven by exCh21

ATAC-seq, which can define the genome-wide chromatin 
accessibility landscape [15, 17], was applied to P and N 
hiPSCs (Fig. 2A–C, Fig. S2A–E) to investigate whether 
exCh21 affected chromatin accessibilities and thereby 
elucidate the mechanism behind altered gene expres-
sion patterns observed in RNA-seq (Fig. 1). Analysis of 
genes with differential chromatin accessibilities (Fig. 2C) 
unveiled their role in crucial processes, including metabo-
lism (Fig. 2D). Reduced chromatin accessibilities related 
to neural development (Fig. 2E), while increased acces-
sibilities were linked to circulatory development and cell 
death (Fig. 2F). These findings suggested that exCh21 
influenced gene expression within human neural and 
cardiovascular system, potentially through alterations in 
chromatin accessibilities at gene promoters [15]. This led 
to the identification of 27 target genes by overlapping dif-
ferential ATAC-seq peaks on promoters of mRNAs with 
differential expression in RNA-seq (Fig. 2G). These genes 
exhibited either increased accessibilities and upregula-
tion in P hiPSCs (“more opened chromatin on promoter 
& up-regulated mRNAs”) or decreased accessibilities 
and down-regulation in P hiPSCs (“more closed chroma-
tin on promoter & down-regulated mRNAs”) (Fig. 2G). 
Enrichment analysis pinpointed “more closed chromatin 
on promoter & down-regulated mRNAs” as controlling 
lipid metabolism, specifically the synthesis of impor-
tant bioactive metabolites (Fig. 2H-J), all known to have 
significant roles in human cells [18, 19]. Among these 
processes, two signature genes, CYP4F2 and CYP4F11, 
members of the cytochrome P450 monooxygenase fam-
ily, were identified (Fig. 2J). Further ATAC-seq analysis 
showed a substantial decrease in chromatin accessibilities 
around CYP4F2 and CYP4F11 in P hiPSCs compared to 
N hiPSCs (Fig. 2K-L, Fig. S2E). Both RNA-seq (Fig. 2M) 
and RT-qPCR (Fig. 2N) validated the decreased RNA 
expression levels of CYP4F2 and CYP4F11 in P hiPSCs 
compared to N hiPSCs. This implicated exCh21-driven 
chromatin alterations in the transcriptional inactivation of 
CYP4F2 and CYP4F11 in P hiPSCs, possibly contributing 
to the observed lipid metabolism abnormalities.

Fig. 1   Impact of extra chromosome 21 (exCh21) on transcriptome 
disruption and DNA damage. A Outline of sample collection and hiP-
SCs reprogramming. Three normal hiPSC lines (isogenic controls) 
and three trisomy 21 hiPSC lines were generated and used in this 
study. B Karyotype analyses of hiPSC lines generated from mosaic 
DS patient. Red arrows show chromosome 21. P were hiPSCs with 
three copies of chromosome 21. N were hiPSCs with normal karyo-
type, as the isogenic control pairs with same genetic background. 
C Immunostaining of N and P hiPSCs. Red showed OCT4 stain-
ing. Blue (DAPI) showed nuclei staining. Scale bar, 20 µm. D RT-
qPCR showing mRNA expression levels of pluripotency markers 
(OCT-4, NANOG, SOX2) in N and P hiPSCs. p*<0.05 (P vs. N). E 
Bulk RNA-seq analysis of N and P hiPSCs. Three biological repli-
cates were performed. DEGs, differentially expressed genes. F Vol-
cano plot showing differentially expressed genes (P vs. N). G Gene 
Ontology (GO) enrichment analysis of upregulated genes (P vs. N). 
H GO enrichment analysis of downregulated genes (P vs. N). I Heat-
map showing expression levels of genes inducing DNA damage. FC, 
fold change (P vs. N). J Heatmap showing expression levels of genes 
inducing p53 apoptotic signaling. FC, fold change (P vs. N). K RT-
qPCR showing expression levels of genes inducing DNA damage. 
p*<0.05 (P vs. N). L Immunostaining of TUNEL in N and P hiP-
SCs. Red showed OCT4 staining. Blue (DAPI) showed nuclei. Green 
showed TUNEL signals. Arrows showed representative TUNEL sig-
nals. Scale bar, 20 µm. Percentage (%) of TUNEL positive (TUNEL+) 
hiPSCs was quantified.p*<0.05. M Flow cytometry analysis of 
TUNEL positive (TUNEL+) cells in N and P hiPSCs. Percentage (%) 
of TUNEL+ hiPSCs was quantified. p*<0.05
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Untargeted metabolomics unveils exCh21‑driven 
metabolome changes and potential biomarkers

The indications that exCh21 significantly impacted meta-
bolic processes (Fig. 2G–I) prompted the application of 
untargeted metabolomics to investigate how exCh21 led to 
metabolome changes (Fig. 3A–E, Fig. S3A-B). Many dif-
ferential metabolites belong to the categories of lipids, lipid-
like molecules, or organic acids and derivatives (Fig. 3F-
G). Enrichment analysis emphasized the effect of exCh21 
on lipid metabolism (Fig. 3H, Fig. S3C-D). The findings 
underscored lipids metabolism as a key event, likely stem-
ming from the exCh21-driven downregulation of CYP4F2 
and CYP4F11 (Fig. 2). Notably, the variable importance in 
projection (VIP) index values identified metabolite features 
influenced by exCh21 in hiPSCs (Fig. 3I–L). This analysis 
led to the identification of numerous differential metabolites 
and potential biomarkers (Fig. 4A–D, Fig. S4A).

Multi‑omics analysis uncovers exCh21‑driven 
aberrant mechanisms in 5‑oxo‑ETE biosynthesis

Among the differential metabolites, 5-oxo-ETE emerged as 
one of the top upregulated metabolites (Fig. 4B-C). Integrat-
ing RNA-seq, ATAC-seq, and metabolomics data revealed 
the synthesis of (16–20)-hydroxyeicosatetraenoic acids 
(HETE), leukotrienes (LT), and eoxins (EX) as the signature 
event (Fig. 4E, Fig 2I), possibly due to the exCh21-driven 
downregulation of CYP4F2 (Fig. 2I-L, Fig. 4E). Within this 
synthesis process, 5-oxo-ETE was found to be a terminal 
metabolite in lipids metabolism (Fig. 4E). 5-oxo-ETE is a 
non-classic eicosanoid metabolite of arachidonic acid and 

the most potent naturally occurring member of the 5-HETE 
family of cell signaling agents. It was reported that 5-oxo-
ETE stimulated various cell types, such as human leuko-
cytes, and contributed to the development of inflammation, 
cancer cell growth, and other pathological and physiological 
events [15, 20], indicating its crucial role in humans. How-
ever, the function of 5-oxo-ETE in Down syndrome (DS) 
remained uncertain.

5-oxo-ETE originated from arachidonic acid 5-hydrop-
eroxide (5S-HpETE) and arachidonic acid (AA), with AA 
stemming from anandamide (AEA) through fatty acid 
amide hydrolase 2 (FAAH2) or from arachidonic acid 
(ARA) via phospholipase A2 Group IVA (PLA2G4A) 
(Fig. 4E). Furthermore, CYP4F2 could catalyze 5S-HpETE 
to 20cooh-LTB4 (Fig. 4E). Mechanistically, the exCh21-
downregulated CYP4F2 (Fig. 2K–N), in conjunction with 
PLA2G4A and FAAH2, jointly controlled 5-oxo-ETE bio-
synthesis. Nonetheless, the mechanism by which exCh21 
led to increased 5-oxo-ETE levels remained unclear. We 
found enhanced chromatin accessibilities on the PLA2G4A 
promoter region (P vs. N) (Fig. 4F), leading to upregulated 
PLA2G4A expression (P vs. N) (Fig. 4F–H). In contrast, 
both chromatin accessibility and RNA expression levels of 
FAAH2 remained unchanged (Fig. 4F–H). Consequently, 
exCh21-driven CYP4F2 downregulation and PLA2G4A 
upregulation could result in AA and 5S-HpETE accumu-
lation, culminating in elevated 5-oxo-ETE levels (Fig. 4I). 
Collectively, multi-omics analyses encompassing RNA-seq, 
ATAC-seq, and metabolomics illuminated exCh21-driven 
aberrant mechanisms contributing to the activation of 5-oxo-
ETE biosynthesis in hiPSCs.

Multi‑omics analyses reveal exCh21‑driven 
potential aberrant mechanism in repressing 
Calcitriol biosynthesis

Calcitriol, identified as one of the top downregulated metab-
olites in P hiPSCs (Fig. 4B, Fig. 4D), acts as the active form 
of vitamin D, influencing gene expression by binding to 
nuclear vitamin D receptors [21–24] (Fig. 4J). In pursuit of 
understanding its role in humans, the chromatin status and 
RNA expression of key genes involved in Calcitriol bio-
synthesis and degradation, namely CYP2R1/CYP27B1 and 
CYP24A1, were examined. While ATAC-seq and RNA-seq 
did not reveal significant changes between P and N hiP-
SCs (Fig. 4K-L, Fig. S4C), RT-qPCR indicated decreased 
RNA expression levels of both CYP2R1 and CYP27B1 in 
P hiPSCs compared to N hiPSCs (Fig. 4M). Conversely, 
CYP24A1 expression remained unchanged (Fig. 4M). Thus, 
the downregulation of both CYP2R1 and CYP27B1 due to 
exCh21 could contribute to the repression of Calcitriol bio-
synthesis (Fig. 4N).

Fig. 2   ATAC-seq reveals alterations in chromatin accessibilities 
induced by exCh21. A Schematic workflow of ATAC-seq on P and 
N hiPSCs. Two biological replicates were performed for ATAC-seq. 
N1 and N2 were two replicates of ATAC-seq on N hiPSCs. P1 and 
P2 were two replicates of ATAC-seq on P hiPSCs. B Feature distribu-
tion of ATAC-seq peaks in P and N hiPSCs. TSS, transcription start 
site. TES, transcription end sites. C Heatmap showing the differential 
ATAC-seq peaks (P vs. N). Scale bar, log2 (peak count). D KEGG 
pathway analyses of differential ATAC-seq peaks (P vs. N). E GO 
analysis of genes with downregulated ATAC-seq peaks (P vs. N). F 
GO analysis of genes with upregulated ATAC-seq peaks (P vs. N). G 
Overlap analysis of ATAC-seq and RNA-seq for protein-coding genes 
(mRNAs). H)GO analysis of overlapped mRNAs from (G). I Path-
way analysis of overlapped mRNAs from (G). J Pathway analysis of 
overlapped mRNAs showing signature genes (CYP4F2, CYP4F11) 
involved in metabolism changes driven by exCh21. K-L Representa-
tive ATAC-seq peaks showing decreased chromatin accessibilities 
(P vs. N) on chromosome 19. Blue shadow boxes marked the large-
scale regions with more closed chromatin accessibilities (P vs. N). 
M Heatmap showing RNA expression levels of cytochrome P450 
monooxygenase family members (CYP4F2, CYP4F11) in RNA-
seq. FC, fold change. N RT-qPCR showing RNA expression levels 
of cytochrome P450 monooxygenase family members (CYP4F2, 
CYP4F11).p*<0.05 (P vs. N)

◂



	 J. Liu et al.  112   Page 10 of 20

5‑oxo‑ETE causes injuries

ExCh21-driven downregulation of CYP4F2 (Fig. 2M-N) 
and upregulation of PLA2G4A facilitated the accumulation 

of AA and 5S-HpETE. This accumulation, in turn, poten-
tially contributed to the buildup of 5-oxo-ETE (Fig. 4I). 
To confirm the role of CYP4F2 in 5-oxo-ETE accumula-
tion, shRNA was used to knock down CYP4F2, followed 
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by untargeted metabolomics analysis on control and 
CYP4F2shRNA hESCs (Fig. 5A-B). The results demonstrated 
elevated 5-oxo-ETE levels in CYP4F2shRNA hESCs com-
pared to control hESCs, along with increased 5S-pHETE 
and AA (Fig. 5C). This provided evidence of the direct influ-
ence of CYP4F2 on 5-oxo-ETE biosynthesis. As 5-oxo-ETE 
exhibited the potential to affect human cells, RNA-seq analy-
sis was conducted on 5-oxo-ETE-treated and control hESCs 
(Fig. 5D). The results indicated altered gene expression pat-
terns (Fig. 5E, Fig. S5A) with an impact on vital molecular 
events, including metabolic pathways (Fig. S5B). Impor-
tantly, 5-oxo-ETE induced cell death (Fig. 5F-G, Fig. S5C), 
inhibited DNA damage repair and the cell cycle (Fig. 5H, 
Fig. S5D-E), and repressed genes involved in DNA dam-
age repair and meiosis (Fig. 5I-J). Experimental validation 
confirmed an increase in the percentage of TUNEL+ cells in 
both hESCs (Fig. 5K) and normal hiPSCs (Fig. 5L-M) fol-
lowing 5-oxo-ETE treatment. Furthermore, RNA-seq dem-
onstrated that 5-oxo-ETE repressed human cardiac devel-
opment and heart morphogenesis within the cardiovascular 
system (Fig. 5N-O). Thus, 5-oxo-ETE emerged as a factor 
inducing injuries, including DNA damage and inhibition of 
mesoderm formation and cardiac development (Fig. 5P).

Calcitriol attenuates exCh21‑driven injuries

The impaired function of CYP2R1 and CYP27B1, driven 
by ExCh21, was implicated in the diminished biosynthe-
sis of Calcitriol (Fig. 4N). To substantiate this hypothesis, 
we used shRNA to attenuate CYP27B1 expression, fol-
lowed by untargeted metabolomics analysis on control and 
CYP27B1shRNA hESCs (Fig. 6A-B). The results showcased 
a reduction in Calcitriol levels, accompanied by an elevation 
in VD3 (Fig. 6C), thereby underscoring the direct contribu-
tion of CYP27B1 to Calcitriol biosynthesis.

After discovering that an aberrant mechanism driven 
by exCh21 caused downregulation of Calcitriol (Fig. 4N, 
Fig. S4A-B, Fig. 6A-C), we aimed to investigate whether 

supplementing Calcitriol could protect against exCh21-
induced damage. We initially applied RNA-seq on Calci-
triol-treated and control P hiPSCs (Fig. 6D). We observed 
that Calcitriol supplementation altered gene expression pat-
terns (Fig. 6E, Fig. S6A), leading to consequential changes 
in signaling pathways (Fig. S6B). A pivotal outcome was 
the repression of cell death associated pathways by Calci-
triol (Fig. 6F-G, Fig. S6C-D), coupled with the activation 
of DNA repair signaling (Fig. 6G, Fig. S6C). The protective 
role of Calcitriol was validated through experimental con-
firmation, wherein Calcitriol-treated P hiPSCs exhibited a 
markedly reduced proportion of TUNEL+ cells compared to 
control cells (Fig. 6H-I). In contrast, the control substance, 
chenodeoxycholic acid-3-β-D-glucuronide (3β), had no dis-
cernible effect on DNA damage in P hiPSCs (Fig. 6H-I). The 
culmination of evidence unequivocally established Calci-
triol supplementation as a potential mechanism to counteract 
ExCh21-induced injuries (Fig. 6J).

The function of 5‑oxo‑ETE and Calcitriol in human 
cardiac development

The preceding data indicated that 5-oxo-ETE exerted a sup-
pressive influence on genes integral to mesoderm formation, 
heart morphogenesis, and cardiac development (Fig. 5N–P). 
The prevalence of congenital heart disease (CHD) in indi-
viduals with Down syndrome (DS) [25] provided additional 
context to support the proposition that ExCh21-driven 
5-oxo-ETE posed adverse effects on human cardiac devel-
opment. Seeking further validation, we embarked on a study 
that involved differentiating N and P hiPSCs toward meso-
derm, cardiac progenitor cells, and cardiomyocytes, fol-
lowed by bulk RNA-seq analysis at day 7 (T7) (Fig. 7A–C, 
Fig. S7A-B). The upregulated genes in P cells primarily 
pertained to metabolism and cell death pathways, while the 
downregulated genes predominantly governed cardiac devel-
opment and cardiomyocyte function (Fig. 7D-F, Fig. S7C-
D). Particularly, noteworthy was the substantial repression 
of key transcription factors (TFs) associated with cardio-
genesis and cardiomyocyte structure in P cells (Fig. 7G–I). 
RT-qPCR confirmed that exCh21-driven 5-oxo-ETE indeed 
repressed expression levels of mesodermal TFs (TBXT, 
EOMES), cardiogenic TFs (HAND2, GATA4, NKX2-5, 
TBX5), and cardiomyocyte contraction markers (MYH6, 
MYH7) (Fig. 7J). This provided compelling evidence for 
the direct impairment of human cardiac development by 
ExCh21.

The role of Calcitriol in this context yielded distinct 
observations. Calcitriol supplementation in P cells pre-
vented the downregulation of cardiogenic genes (MEF2C, 
TBX5) (Fig. 7K), although the precise underlying mech-
anisms remained enigmatic. Intriguingly, we identified 
a binding motif for the vitamin D receptor (VDR) on the 

Fig. 3   Untargeted metabolomics unveils exCh21-driven metabolome 
changes and potential biomarkers. A Schematic workflow of untar-
geted metabolomics in P and N hiPSCs. Three biological replicates 
were performed. N1, N2, and N3 were three replicates of N hiPSCs. 
P1, P2, and P3 were three replicates of P hiPSCs. B-C Principal com-
ponent analysis (PCA) showing separation of untargeted metabo-
lomics data in positive ion mode (B) and negative ion mode (C). D-E 
Hierarchical cluster analysis (HCA) of heatmaps showing differential 
metabolites (P vs. N) in positive ion mode (D) and negative ion mode 
(E). F-G General component analysis of differential metabolites (P 
vs. N) in positive ion mode (F) and negative ion mode (G). H KEGG 
pathway analysis of differential metabolites (P vs. N). I-J Variable 
importance in projection (VIP) scores of upregulated metabolites (P 
vs. N) (I) and downregulated metabolites (P vs. N) (J) in positive ion 
mode. K-L VIP scores of upregulated metabolites (P vs. N) (K) and 
downregulated metabolites (P vs. N) (L) in negative ion mode
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promoter region of myogenic transcription factor MEF2C 
(Fig. 7L-M). Given previous research suggesting that Cal-
citriol impacts gene expression by binding to its recep-
tor VDR in the nucleus [21–24], this observation gained 
prominence. Additionally, the lower transcription levels of 
MEF2C in P cells (Fig. 7L, Fig. 7N), which correlated with 
diminished Calcitriol levels (Fig. 4B, Fig. 4D), suggested a 
potential mechanism. This mechanism was hypothesized to 
involve the interaction of Calcitriol with its receptor VDR, 
prompting binding to the MEF2C promoter and consequent 
enhancement of MEF2C transcription. This was subse-
quently confirmed through ChIP-qPCR analysis, demonstrat-
ing the promotion of VDR binding to the MEF2C promoter 
by Calcitriol (Fig. 7O), leading to elevated MEF2C tran-
scription (Fig. 7K-L, Fig. 7N, Fig. 7P). Our finding high-
lights Calcitriol’s potential in mitigating the detrimental 
effects of ExCh21 on cardiac development.

Discussion

In this study, we established an isogenic DS model through 
the utilization of human-induced pluripotent stem cells 
(hiPSCs) derived from mosaic DS patient. Employing a 
multi-omics approach, we comprehensively analyzed this 
model, unveiling a global disruption of the transcriptome by 
exCh21. Moreover, alterations in metabolic pathways, shifts 

in chromatin accessibility, and the induction of DNA dam-
age and cell death were identified consequences of exCh21 
presence. Intriguingly, our exploration led to the discovery 
of potential biomarkers and the revelation of exCh21-driven 
aberrant mechanisms governing the biosynthesis of bioac-
tive metabolites, specifically 5-oxo-ETE and Calcitriol. By 
shedding light on the intricate effects of exCh21 and eluci-
dating the underlying mechanisms of DS, our study holds 
the potential to pave the way for the development of targeted 
therapeutic strategies aimed at ameliorating the condition 
for DS patients.

Deciphering the pathogenesis of Down syndrome (DS) 
presents challenges stemming from the lack of comprehen-
sive models capable of fully emulating the intricacies of 
DS. Ethical constraints limit research on DS patients and 
trisomic human tissues. Although animal models have been 
proposed for DS pathogenesis studies [26–29], their utility 
is not without limitations, due to evolutionary disparities and 
distinct arrangements of chromosome 21 [30, 31][32]. These 
limitations in animal models could be overcome by utilizing 
patient-derived iPSCs [33]. For instance, hiPSCs derived 
from DS patients offer a promising avenue to comprehend 
DS pathogenesis [34–36]. However, the utility of hiPSCs 
obtained from diverse patients for investigating genetic dis-
ease mechanisms is hindered by the intricate interplay of 
varying genetic backgrounds across individuals. This limi-
tation underscores the significance of isogenic hiPSC lines 
possessing identical genetic backgrounds, which facilitate 
more precise investigations into DS [37–40]. Therefore, our 
study employed this approach to investigate the molecu-
lar underpinnings of DS by utilizing hiPSCs derived from 
mosaic DS patient. This model allowed for the generation 
of isogenic cell lines with a consistent genetic background, 
effectively isolating the impact of the extra chromosome 21 
(ExCh21) on cellular processes. By revealing the intricate 
interplay between chromatin structure and gene expres-
sion, our findings offer an understanding of the influence of 
exCh21 on the molecular dynamics within hiPSCs, which 
were not reported previously.

Our integrated analyses, combining RNA-seq and ATAC-
seq techniques, unveiled perturbations in metabolic pathways 
governed by the cytochrome P450 monooxygenase, specifi-
cally underscored by the unique signatures of CYP4F2 and 
CYP4F11 genes. These revelations propose the intriguing 
possibility that Down syndrome (DS) is intricately linked 
with metabolic dysregulation. To further investigate this, we 
delved into untargeted metabolomics and discovered distinct 
alterations in metabolite profiles within hiPSCs attributable 
to exCh21 presence. Notably, these altered metabolite pat-
terns could serve as potential biomarkers for diagnosing 
DS-a facet supported by the growing body of research that 
has harnessed human hiPSCs to dissect metabolic aspects 
of DS [41, 42]. For example, mitochondria ATP metabolism 

Fig. 4   Multi-omics analyses reveal aberrant mechanisms control-
ling biosynthesis of 5-oxoETE and Calcitriol driven by exCh21. A-B 
Volcano plots showing differential metabolites (P vs. N) in positive 
ion mode (A) and negative ion mode (B). Metabolites with p value 
less than 0.05 were the differential metabolites. Arrows showed some 
of top differential metabolites. C-D Expression patterns of differen-
tial metabolites showing top 5 of upregulated metabolites (P vs. N) 
(C) and top 5 of downregulated metabolites (P vs. N) (D). p*<0.05. 
E Metabolism pathway analysis showing biosynthesis of HETE, 
LT, and EX, and critical synthase genes. F Representative peaks 
of ATAC-seq and RNA-seq for PLA2G4A and FAAH2 genes in N 
and P hiPSCs. Blue shadow boxes marked the promoter regions of 
PLA2G4A. Arrows showed transcriptional direction of PLA2G4A 
and FAAH2. G RNA-seq showing expression levels of FAAH2 
and PLA2G4A in N and P hiPSCs (P vs. N). p*<0.05. n.s, no sig-
nificance. H RT-qPCR showing expression levels of FAAH2 and 
PLA2G4A in N and P hiPSCs (P vs. N). Data were represented as 
mean ± SD of biological replicates; individual data points were also 
shown. N = 3, p*<0.05 (P vs. N); student t test. n.s, no significance. I 
Working model showing exCh21-driven aberrant mechanism in con-
trolling 5-oxo-ETE biosynthesis. J The metabolic process of Calci-
triol. VD3, vitamin D3. 25(OH)D, 25-hydroxyvitamin D. K Repre-
sentative peaks of ATAC-seq and RNA-seq for CYP2R1 gene in N 
and P hiPSCs. Arrow showed transcriptional direction of CYP2R1 
gene. L RNA-seq showing expression levels of CYP2R1, CYP27B1, 
and CYP24A1 in N and P hiPSCs (P vs. N). n.s, no significance. M 
RT-qPCR showing expression levels of CYP2R1, CYP27B1, and 
CYP24A1 in N and P hiPSCs (P vs. N). p*<0.05. N Working model 
showing exCh21-driven aberrant mechanism controlling Calcitriol 
bio-synthesis. VD3, vitamin D3. 25(OH)D, 25-hydroxyvitamin D
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was altered in trisomic hiPSCs [41]. Energy metabolism and 
intracellular pH were altered in neural spheroids derived 
from DS hiPSCs [43]. However, despite previous reports 
observing altered metabolisms in DS patients [44–48], com-
prehensive investigations into the influence of exCh21 on 
these metabolic aberrations or the roles of exCh21-driven 
differential metabolites have remained elusive. Our research, 
in contrast, discerned differential metabolites elicited by 
exCh21 within isogenic hiPSC pairs, exposing an abnor-
mal metabolism concerning hydroxy eicosatetraenoic acid 
(HETE), leukotrienes (LT), and eoxins (EX). We unraveled a 
disruption in the biosynthesis of 5-oxo-eicosatetraenoic acid 
(5-oxo-ETE) and Calcitriol. In particular, we ascertained 
that exCh21-induced downregulation of CYP4F2 alongside 
upregulation of PLA2G4A culminated in the accumulation 
of arachidonic acid (AA) and 5S-hydroperoxyeicosatetrae-
noic acid (5S-HpETE), ultimately leading to the accumula-
tion of 5-oxo-ETE within hiPSCs. This was the first report 
which links 5-oxo-ETE and DS in human.

While 5-oxo-ETE’s involvement in inflammation, aller-
gic diseases, cancer, and cardiovascular diseases has been 
reported [20], its precise pathophysiological role, particu-
larly in DS, remains enigmatic. Remarkably, our evidence 
reinforced the notion that direct supplementation of 5-oxo-
ETE to hiPSCs or human embryonic stem cells (hESCs) led 
to DNA damage, suggesting a contributory role of 5-oxo-
ETE in DS pathogenesis. Interestingly, previous study has 
linked 5-oxo-ETE to conditions such as myocardial infarc-
tion and stroke [49], with elevated levels detected in the 
serum during acute myocardial infarction (AMI) [50]. These 
associations underscore the potential significance of 5-oxo-
ETE in the human cardiac system. Nonetheless, the role of 
5-oxo-ETE in human cardiac development and cardiogenesis 
within the context of DS has remained elusive. Our novel 
findings illuminated that the supplementation of 5-oxo-ETE 
repressed genes critical for mesoderm formation and cardiac 
development in hPSCs, unmasking a hitherto unrecognized 
function in the human cardiac system. Notably, our data 
provided strong indications that the accumulation of 5-oxo-
ETE driven by exCh21 could detrimentally impact human 
cardiac development and cardiogenesis, thereby potentially 
contributing to congenital heart diseases (CHD) observed 
in DS patients.

An additional noteworthy observation in our study 
pertains to the downregulation of Calcitriol orchestrated 
by exCh21. Calcitriol, also known as 1,25-dihydroxy-
cholecalciferol [1,25(OH)2D], constitutes one of active 
forms of vitamin D. Vitamin D status in relation to DS 
has garnered attention, with investigations encompassing 
three active vitamin D metabolites, 25-hydroxyvitamin 
D [(25(OH)D], 1,25-dihydroxyvitamin D [1,25(OH)2D] 
and 24,25 dihydroxyvitamin D [24,25(OH)2D], in chil-
dren [51]. In the DS group, the average values of the three 
vitamin D metabolites were comparable to those of an age-
matched group, which indicated that DS children might 
not require vitamin D prescription [51]. However, another 
study showed that DS patients had reduced 25(OH)D lev-
els compared to controls, and hypovitaminosis D was 
very frequent in DS patients, which concluded that DS 
patients might need higher vitamin D supplementation 
[52]. Regrettably, the functional ramifications of vitamin 
D in the context of DS have not been thoroughly investi-
gated within these contradictory findings. In our study, we 
identified that Calcitriol was significantly downregulated 
in P hiPSCs, which is similar with the previous finding in 
DS patients [52]. Mechanistically, in our study, we unrave-
led that exCh21 orchestrates a direct downregulation of 
CYP2R1 and CYP27B1, thereby precipitating a dampened 
biosynthesis of Calcitriol. The potential utility and roles 
of vitamin D metabolites in DS patients, along with their 
implications for human cells like hiPSCs and cardiac cells, 
remain an enigma. Notably, our experiments illuminated 

Fig. 5   5-oxo-ETE causes injuries. A Scheme of untargeted metabo-
lomics on hESCs of control (negative shRNA control) and CYP4F2 
knockdown by CYP4F2 shRNA (CYP4F2shRNA). B RT-qPCR show-
ing the expression level of CYP4F2 after shRNA knockdown. 
p*<0.05. C Untargeted metabolomics showing the expression levels 
of metabolites in 5-oxo-ETE biosynthesis process. D Bulk RNA-seq 
on H9 human embryonic stem cells (hESCs) treated with ethanol 
(Control) or 5-oxo-ETE. Final 5-oxo-ETE concentration were 1600 
nM. 5-oxo-ETE was dissolved in ethanol. Control cells were treated 
with ethanol. Three biological replicates were applied. E Volcano 
plot showing differentially expressed genes (DEGs) (5-oxo-ETE 
vs. Control) in H9 hESCs. Genes with p value less than 0.05 were 
DEGs. F Heatmap showing downregulated genes induced by 5-oxo-
ETE. Genes important for cell viability (anti-apoptosis) were signifi-
cantly enriched. G GO analysis of downregulated genes (5-oxo-ETE 
vs. Control). H Signaling pathway analysis of downregulated genes 
(5-oxo-ETE vs. Control). Yellow color showed significant pathway 
terms with p value less than 0.05. I Heatmap showing downregulated 
genes induced by 5-oxo-ETE. Genes important for DNA damage 
repair were significantly enriched. J Heatmap showing downregu-
lated genes induced by 5-oxo-ETE. Genes important for cell cycle 
and meiosis were significantly enriched. K Flow cytometry showing 
TUNEL+ cells in H9 hESCs with or without 5-oxo-ETE treatment for 
24 h. Data were represented as mean ± SD of biological replicates; 
individual data points were also shown. N = 3, p*<0.05 (vs. Control); 
student t test. nM, nmol/L. Final 5-oxo-ETE concentration were 1600 
nM. 5-oxo-ETE was dissolved in ethanol. Control cells were treated 
with ethanol. L Flow cytometry showing TUNEL+ cells in normal 
hiPSCs with or without 5-oxo-ETE treatment for 24 h. Data were rep-
resented as mean ± SD of biological replicates; individual data points 
were also shown. N = 3, p*<0.05 (vs. Control); student t test. nM, 
nmol/L. Final 5-oxo-ETE concentration were 1600 nM. 5-oxo-ETE 
was dissolved in ethanol. Control cells were treated with ethanol. 
M Immunostaining of N hiPSCs treated with or without 5-oxo-ETE 
treatment for 24 h. White arrows showed representative TUNEL+ sig-
nals. p*<0.05. N GO analysis of downregulated genes (5-oxo-ETE 
vs. Control). O Heatmap showing downregulated genes induced by 
5-oxo-ETE. Genes important for cardiac development were signifi-
cantly enriched. P The effects of 5-oxo-ETE supplement on hiPSCs/
hESCs in vitro
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that supplementation with Calcitriol could avert DNA 
damage in P hiPSCs, hinting at potential benefits of vita-
min D metabolites for DS patients.

Moreover, the potential cardioprotective effects of Cal-
citriol have remained elusive, even though our findings 
suggest its capacity to shield P hiPSCs. Our evidence 

underscores that supplementation with Calcitriol could 
reinvigorate cardiac development within hiPSCs, likely by 
safeguarding cells against DNA damage and death. Thus, 
we substantiate that the exCh21-induced decline in Calci-
triol might contribute to the pathogenesis of DS-associated 
CHD. Through a comprehensive multi-omics approach, we 
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ascertained that Calcitriol could foster gene transcription 
by precipitating VDR binding to cardiogenic gene promot-
ers. These discoveries advocate for the potential therapeu-
tic relevance of Calcitriol supplementation for DS patients.

Conclusions

Overall, our findings illuminate the landscape of aberrant 
metabolic events attributed to the extra copy of chromo-
some 21 in DS. Importantly, this study posits 5-oxo-ETE and 
Calcitriol as potential therapeutic targets for DS patients and 
those afflicted by DS-associated CHD. In summation, our 
multi-omics investigation provides invaluable insights into 
the disrupted metabolic scenarios instigated by exCh21 in 
DS, fostering avenues for potential therapeutic interventions 
in the future.
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Fig. 6   Calcitriol attenuates exCh21-driven injuries. A Scheme 
of untargeted metabolomics on hESCs of control (negative 
shRNA control) and CYP27B1 knockdown by CYP27B1 shRNA 
(CYP27B1shRNA). B RT-qPCR showing the expression level of 
CYP27B1. p*<0.05. C Untargeted metabolomics showing the levels 
of metabolites in Calcitriol biosynthesis process. D Bulk RNA-seq on 
P hiPSCs treated with DMSO (Control) or Calcitriol. Final concen-
tration of Calcitriol was 25 nM. Calcitriol was dissolved in DMSO. 
Treatment time was 24 h. Three biological replicates were applied. E 
Volcano plot showing differentially expressed genes (DEGs) (Calci-
triol vs. DMSO) on P hiPSCs. Genes with p value less than 0.05 were 
DEGs. F GO analysis of upregulated genes (Calcitriol vs. DMSO). 
G Heatmap showing upregulated genes induced by Calcitriol. 
Genes important for cell survival (anti-apoptosis) were significantly 
enriched. H-I Flow cytometry showing TUNEL+ cells in P hiPSCs 
treated with DMSO (Control), Calcitriol (Cal) or Chenodeoxycholic 
acid-3-β-D-glucuronide (3β) for 24 h (H) or 48 h (I). p*<0.05 (Cal 
vs. DMSO; 3β vs. DMSO). nM, nmol/L. Final concentration of Cal-
citriol (Cal) or chenodeoxycholic acid-3-β-D-glucuronide (3β) was 25 
nM or 10 µM, respectively. Both Calcitriol (Cal) and Chenodeoxy-
cholic acid-3-β-D-glucuronide (3β) were dissolved in DMSO. Control 
cells were treated with DMSO. J The effects of Calcitriol in prevent-
ing exCh21-driven injuries
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