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Abstract
Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesen-
chymal cells with molecular alterations can occur during epithelial–mesenchymal transition (EMT). The EMT mechanism 
accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, 
Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the 
function of GSK-3β that destructs β-catenin, while ligand–receptor interaction impairs GSK-3β function to increase β-catenin 
stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in 
human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt 
ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon 
nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological 
tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resist-
ance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. 
Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.

Cellular and Molecular Life Sciences

Wenhua Xue and Lin Yang have contributed equally to this work.

 * Milad Ashrafizadeh 
 dvm.milad1994@gmail.com

 * Yu Tian 
 Tian_Yu@ben.edu

 * Ranran Sun 
 fccsunrr@zzu.edu.cn

1 Department of Pharmacy, The First Affiliated Hospital 
of Zhengzhou University, Zhengzhou 450052, Henan, 
People’s Republic of China

2 Department of Hepatobiliary Surgery, Xianyang Central 
Hospital, Xianyang 712000, Shaanxi, China

3 Shanghai Institute of Cardiovascular Diseases, Zhongshan 
Hospital, Fudan University, Shanghai 200032, China

4 School of Public Health, Benedictine University, Lisle, USA
5 Precision Medicine Center, The First Affiliated Hospital 

of Zhengzhou University, Zhengzhou, Henan, China

http://orcid.org/0000-0001-6605-822X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-023-05099-7&domain=pdf


 W. Xue et al.   79  Page 2 of 19

Graphical abstract

Keywords EMT · Cancer metastasis · Wnt/β-catenin · Chemoresistance · Phytochemicals

Introduction

Wnt/β-catenin is an evolutionary conserved pathway essen-
tial for embryonic development and regulation of adult stem 
cell, homeostasis and tissue regeneration [1–5]. Pre-clini-
cal and clinical evidences have confirmed the vital role of 
Wnt in the initiation and development of human diseases, 
particularly cancer [6]. Up to date, 19 glycoproteins have 
been identified in Wnt ligand family to function in a par-
acrine or autocrine manner and demonstrate various spati-
otemporal expression. Upon their synthesis, Wnt proteins 
are transferred to lumen of endoplasmic reticulum (ER) to 
undergo palmitoylation by PORCN in ER. Then, Wnt ligand 
interacts with Wntless (WLS) to accelerate release of Wnt 
proteins [4]. Passive diffusion or secretion in membrane-
enclosed vesicles or traveling by cytonemes are responsible 
for cell–cell transfer of Wnt ligands [5, 7]. Wnt has two path-
ways including canonical and non-canonical. The canonical 
pathway occurs in self-renewing and undifferentiated state 
triggered by addition of Wnt3a to cell culture [8–11], while 
in the non-canonical pathway, Wnt5 ligand is capable of pro-
moting differentiation and migration, curtailing proliferation 

[12, 13]. The interaction of Wnt receptor with ligands is 
responsible for its stimulation accounting for transmission 
of cell signaling information from extracellular environment 
to intracellular compartments and downstream targets [14]. 
Wnt is tightly controlled in cells and is an important par-
ticipant in physiological processes including organism axis 
differentiation, tissue formation, brain formation and stem 
cell maintenance [15, 16]. Accumulating data has shown 
association of Wnt dysregulation with the development of 
pathological events [17, 18]. On the cell surface, there are 
receptors including LRP5/6 and FZD that can interact with 
Wnt ligands to induce Dishevelled protein, a member of 
complex with other proteins including GSK-3β, Axin2 and 
APC. Then, accumulated β-catenin transfers to nucleus to 
stimulate TCF and LEF family members in further modula-
tion of gene targets [19]. However, there is non-canonical 
and β-catenin-independent pathway including Wnt/Ca2+ 
signaling, mTOR signaling, Ras homolog gene family, 
RhoA/ROCK and JNK signaling cascades [20]. The Wnt 
inhibitory factor (WIF) or SFRPs can bind to Wnt ligands 
or interaction of DKK1 or SOST with LRP5/6 receptor can 
occur to suppress Wnt signaling [21].
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Figure 1 represents Wnt and related molecular inter-
actions. Wnt has been associated with the development 
of various human cancers. Wnt/β-catenin overexpression 
occurs in thyroid cancer due to KDM1A upregulation to 
increase cancer malignancy and promote stemness [22]. 
Upregulation of Wnt can lead to resistance of tumor cells 
to cell death. For instance, overexpression of Wnt/β-
catenin promotes GPX4 expression to induce ferrop-
tosis resistance in gastric cancer cells. Silencing GPX4 
enhances sensitivity to ferroptosis [23]. LINC01606 also 
adopts a similar manner in the regulation of cell death in 
colon cancer. By promoting SCD1 expression, LINC01606 
induces Wnt to prevent ferroptosis in tumor cells [24]. 
Interestingly, metabolism of tumor cells can be controlled 
by Wnt. NME7 as a protein kinase is able to induce Wnt/β-
catenin to enhance one-carbon metabolism in hepatocel-
lular carcinoma [25]. A synergy between Wnt/β-catenin 
and PI3K/Akt is able to enhance HIF-1α expression in 
glycolysis induction and stimulation of 5-flourouracil 
resistance in colorectal tumor [26]. The interactions of 

upstream mediators can determine progression of tumor 
cells via Wnt/β-catenin control. Circ-EIF6 is capable of 
encoding EIF6-224aa in enhancing tumor progression. The 
downstream signaling is unique and by stabilizing MYH9, 
circ-EIF6 participates in the induction of Wnt/β-catenin 
and elevation of breast cancer progression [27]. Both car-
cinogenesis and drug resistance can be modulated by Wnt/
β-catenin in cancers.  N7-methylguanosine tRNA modifica-
tion stimulates Wnt/β-catenin in inducing drug resistance 
and increasing progression in nasopharyngeal cancer 
[28]. Upon deficiency of TET, Wnt is reprogrammed to 
impair its promoter demethylation and enhance lung can-
cer malignancy [29]. Based on these findings, interaction 
of Wnt with other molecular pathways determines cancer 
progression and its targeting is of importance in cancer 
therapy [30–33]. Table 1 summarizes the recent findings 
of Wnt dysregulation in human cancers. In the current 
review, we will focus on revealing function of Wnt in regu-
lating tumor metastasis by affecting a well-known mecha-
nism, epithelial–mesenchymal transition (EMT).

Fig. 1  The presence of Wnt ligand mediates the function of Frizzled 
and LRP5/6 receptors to suppress GSK-3β, Dishevelled, CK1α and 
Axin. Then, it enhances the intracellular accumulation of β-catenin to 

transfer into nucleus and enhance gene transcription. However, lack 
of Wnt ligand mediates the phosphorylation of β-catenin to enhance 
its proteasomal degradation
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EMT mechanism: general aspects 
and carcinogenic function

Complexity in metastasis process has been intriguing 
to researchers and the mechanism of metastasis can be 
observed in various human cancers to disseminate in other 
tissues and increase their population. Moreover, metastasis 
has reverse relationship with prognosis and overall survival 
of patients. The metastasis program can be simply defined 
as detachment of some tumor populations from their colony 
to enter into bloodstream and then, exit from circulation to 
a new tissue and establishing a new colony. In contrast to 
simple definition of metastasis, molecular interactions par-
ticipating in metastasis are rather complicated. Despite the 
recent advances in metastasis research, there are still many 
unidentified aspects of cancer metastasis at molecular and 
cellular levels. In order to better understand metastasis, key 
molecular processes have come into attention, among which 
epithelial–mesenchymal transition (EMT) being an attract-
ing mechanism. Generally, loss of polarity in epithelial cells 
and obtaining mesenchymal-like features are known as EMT 
that there are different categories of EMT based on occur-
ring in embryogenesis, wound healing/tissue fibrosis and 
tumor cells [44, 45]. The tight junctions, desomosomes, gap 
junctions and adheren junctions are responsible for attaching 
epithelial cells to basement membrane [46]. However, during 
maturation in the developmental process, these cells become 
more motile and lose their polarity [47]. A similar process 
can be observed in cancer cells where they are separated 
from basement membrane and enter into bloodstream, result-
ing in increased migration and metastasis [48]. E-cadherin 

down-regulation, and vimentin and N-cadherin upregula-
tion can be observed during loss of polarity in epithelial 
cells. The EMT-inducing transcription factors (EMT-TFs) 
are present and demonstrate high expression in tumor cells 
such as TGF-β, ZEB proteins, Slug and Twist to increase 
cancer metastasis [49, 50].

In the recent years, the factors regulating EMT in cancer 
metastasis have been of interest with new insights and ideas 
being offered towards the EMT modulators. During hypoxia, 
expression level of Nrf2 increases through down-regulation 
of miR-27a. Nrf2 participates in EMT induction and elevat-
ing metastasis of lung tumor cells [51]. Loss of expression 
of iNOS/NO is involved in elevating invasion of colorectal 
tumor cells via EMT induction [52]. The interesting point 
is that EMT is not certain to a tumor type and its regulation 
by various factors can affect carcinogenesis and metasta-
sis. PODNL1 exhibits high levels of expression in bladder 
cancer. By reducing E-cadherin levels, PODNL1 promotes 
EMT in tumor cells [53]. On the other hand, there are fac-
tors that can suppress EMT in cancers. For instance, FOXA2 
has been in favor of decreasing cancer metastasis and it 
suppresses EMT [54]. Since molecular pathways regulat-
ing EMT mechanism have been somewhat well understood 
[55], studies have focused on EMT targeting in cancer ther-
apy [52]. Decrease in N-cadherin and vimentin levels, and 
increase in E-cadherin levels can be observed after adminis-
tration of β-elemene in inhibiting EMT in colorectal tumor 
[56]. As mentioned, hypoxia is involved in EMT induction 
and facilitated cancer invasion which can be overcome by 
β-patchoulene [57]. Moreover, there is a close association 
between EMT induction and drug resistance in human 

Table 1  Dysregulation of Wnt axis in human cancers

Human cancer Molecular profile Highlight Refs.

Laryngeal cancer MAGP1/Wnt MAGP1 stimulates Wnt/β-catenin to enhance MMP-7 levels
Stimulation of angiogenesis

[34]

Gastric cancer Wnt/GPX4 β-catenin/TCF4 transcription binds to the promoter of GPX4 and increases its 
expression to mediate ferroptosis resistance

[23]

Breast cancer WNT The p53 deficiency stimulates WNT-mediated systemic inflammation, aggravat-
ing tumor metastasis

[35]

- WNT The high immunogenic tumor cells use WNT pathway upregulation for mediating 
immune evasion

[36]

Head and neck cancer CMTM6/ENO-1/Akt/GSK-3β CMTM6 stimulates cisplatin resistance through stabilization of ENO-1 and subse-
quent upregulation of Wnt

[37]

Colon cancer Drp1/Wnt The upregulation of Drp1 enhances the fatty acid-mediated metabolic reprogram-
ming to accelerate Wnt activation

[38]

Gastric cancer TNFRSF11B/Wnt TNFRSF11B enhances Wnt/β-catenin expression to accelerate tumorigenesis [39]
Colorectal cancer Wnt The application of MEK inhibitors can stimulate Wnt axis and enhance stem cell 

plasticity
[40]

Breast cancer RCC2/Wnt RCC2 upregulates Wnt to induce EMT-mediated cancer metastasis [41]
Intestinal cancer Wnt PROTAC as a peptide enhances β-catenin degradation to impair Wnt-mediated 

intestinal cancer progression
[42]

Bladder cancer RSPO3/Wnt RSPO3 upregulates Wnt and Hedgehog to increase tumorigenesis [43]
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cancers [58]. Noteworthy, inhibition of Wnt/β-catenin by 
fucoxanthin can suppress EMT in lung cancer, suggesting 
the role of Wnt as a regulator of EMT [59] (will be discussed 
in details in next sections). Table 2 summarizes the role of 
EMT in human cancer invasion.

Wnt/β‑catenin signaling as a regulator 
of EMT in human cancers

Brain tumors

Glioblastoma (GBM) is a cancer of central nervous system 
[69] with an incidence rate of 7.2/100,000 [70]. GBM causes 
high mortality rate and the survival rate of patients appears 
to be less than 14 months [71]. Surgery, radiotherapy and 
chemotherapy are considered as current treatments for GBM 
[72] and in addition to poor efficacy of current therapies, it 
is quite troublesome to eliminate GBM by surgical resec-
tion [73]. The aggressiveness of GBM cells depends on 
EMT induction and invasion, and STAT1 upregulation is 
essential in this case. STAT1 is capable of evoking Wnt/β-
catenin axis in EMT induction and elevating invasion and 
metastasis of GBM cells [74]. Since stimulation of Wnt 
enhances GBM metastasis, its inhibition will have nega-
tive impact on the aggression of tumor cells. This has been 
evaluated in a recent experiment that LINC-PINT impairs 
Wnt/β-catenin axis to suppress EMT in decreasing metas-
tasis of GBM [75]. More importantly, when transcription 
of FZD7 occurs, it can interact with Wnt ligand to induce 
β-catenin translocation to nucleus. If its transcription is sup-
pressed, there will be little receptor for ligand recognition. 
miR-504 reduces FZD7 expression to suppress β-catenin 
in suppressing EMT and stemness in GBM [76]. In order 

to disrupt progression of GBM cells, studies have focused 
on knock-down of factors responsible for EMT stimulation 
in cancers. For instance, when expression level of GOLM1 
decreases and it is silenced, suppression of Wnt/β-catenin 
axis occurs that is vital for reducing metastasis of GBM 
cells [77]. Therefore, knock-down and upregulation of cer-
tain upstream factors regulating Wnt/EMT axis can help in 
highlighting the mechanisms involved in GBM aggression 
[78]. Interestingly, high expression of CTNND1 is vital for 
the induction of Wnt/β-catenin in GBM and subsequent 
EMT induction [79]. Therefore, studies have highlighted the 
function of Wnt/EMT axis in aggravating GBM progression. 
However, GBM is not the only brain tumor and glioma is 
another one that researchers have also focused on Wnt/EMT 
function in its progression. Upregulation of LGR5 results in 
unfavorable prognosis in glioma. By inducing Wnt/β-catenin 
axis, LGR5 mediates EMT and promotes cancer invasion 
and metastasis [80]. One of the important targets in the treat-
ment of brain tumors is CBX7 that its expression level is 
epigenetically reduced in tumor cells. Moreover, it is able 
to suppress cancer metastasis via inhibiting YAP/TAZ axis 
[81]. Furthermore, CBX7 can be considered as a prognostic 
factor in cancers. By reducing CCNE1 expression, CBX7 
stimulates cell cycle arrest in glioma [82]. Similar to the 
approach that was followed in GBM therapy, for instance, 
silencing TRIM47 impairs Wnt pathway that is in favor 
of reducing vimentin and N-cadherin levels [83]. Hence, 
increasing evidence demonstrates that upregulation of Wnt 
can increase glioma progression via EMT induction [84, 85].

Gastrointestinal tumors

The aim of current section is to evaluate role of Wnt/EMT 
axis in metastasis of gastrointestinal tumors. Gastric cancer 

Table 2  The dysregulation of EMT in human cancers

Human cancer Molecular profile Highlight Refs.

Ovarian cancer Ets1/Drp1/EMT Ets1 increases Drp1 levels to induce EMT for enhancing metastasis [60]
Endometrial cancer Netrin-1 The inhibition of Netrin-1 impairs the proliferation and EMT [61]
Bladder cancer CircPTK2/PABPC1/SETDB1 CircPTK2 increases stability of PABPC1 to upregulate SETDB1, causing 

EMT and accelerating cancer metastasis
Stimulation of gemcitabine resistance

[62]

– RHOJ/EMT RHOJ controls the EMT-induced drug resistance through increasing 
response to replicative stress and stimulation of DNA damage response

[63]

Colorectal cancer DDX21/MCM5/EMT DDX21 increases MCM5 levels to induce EMT-mediated cancer invasion [64]
Pancreatic cancer PYGL PYGL stimulates the reprogramming in glucose metabolism to induce 

EMT and accelerate invasion
[65]

Triple-negative breast cancer TRAIP/EMT TRAIP knock-down impairs the growth and metastasis of tumor cells [66]
Pancreatic cancer STMN2/Wnt STMN2 is able to stimulate EMT and increase cancer progression through 

Wnt upregulation
[67]

Colorectal cancer – Delivery of shikonin by nanoparticles can impair metastasis through EMT 
inhibition

[68]
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is the third most common tumor around the world and the 
most common malignant of gastrointestinal tract in China 
[86–88]. However, metastasis results in recurrence in gastric 
cancer and that is why 5-year survival rate of patients is poor 
[89]. Samples obtained from gastric cancer patients revealed 
that ADMA serves as a potential factor for increased metas-
tasis of tumor cells. By inducing Wnt/β-catenin, ADMA 
mediates EMT-induced metastasis [90]. The intriguing point 
is that factors and molecular pathways can regulate expres-
sion level of Wnt and nuclear translocation of β-catenin. 
However, a recent experiment has shown that Zic1 is a 
suppressor of β-catenin/TCF4 complex and does not affect 
the nuclear translocation of β-catenin. Then, it reduces 
expression levels of c-Myc and cyclin D1 as targets of Wnt 
and suppresses EMT in gastric tumor cells [91]. TIPE1 is 
a member of TNFAIP8 family and despite similarities in 
structure and sequence of TIPE family, their biological func-
tions are distinct. TIPE3 and TNFAIP8 participate in the 
process of tumorigenesis [92, 93]; TIPE2 is a negative mod-
ulator of immune system and it is involved in inflammatory 
disease regulation [94, 95]; TIPE1 is a tumor suppressor-
mediating apoptosis in cancer cells [96]. In gastric tumor, 
TIPE1 is an inhibitor of metastasis and for this purpose, 
it impairs Wnt/β-catenin to reduce levels of MMP-2 and 
MMP-9 in EMT inhibition and reducing malignancy [97]. 
The confirmation for role of Wnt in gastric cancer metastasis 
is that function of TFEB in enhancing invasion of gastric 
cancer and EMT induction is essential based on stimula-
tion of Wnt [98]. Therefore, Wnt/EMT axis is an important 
pathway involved in enhanced invasion and metastasis of 
gastric tumor cells [99].

Colorectal cancer (CRC) is another important malignancy 
of gastrointestinal tract. Its morbidity and mortality ranked 
the 3rd and 2rd, respectively, among cancers, and is consid-
ered as a main threat to human health [100]. The incidence 
rate of CRC in young patients has demonstrated an increase 
[101] and survival rate of patients at stage I and II of CRC is 
91% and 82%, for stage IV is 12% [102]. Similar to gastric 
tumor, one of the main problems of CRC is metastasis and 
therefore, studies have focused on understanding the role 
of Wnt/EMT axis in its progression and invasion. NCAPG 
may increase metastasis of CRC cells and when its expres-
sion enhances, it induces Wnt/β-catenin to mediate EMT 
in enhancing tumor invasion [103]. When Wnt undergoes 
activation in CRC, it can affect EMT-TFs including ZEB1. 
RHBDD1 upregulation in CRC results in phosphorylation 
of β-catenin to induce Wnt pathway for increasing ZEB1 
expression and mediating EMT [104]. Moreover, Snail 
expression increases by Wnt in CRC cells and CEMIP down-
regulation results in Wnt/β-catenin inhibition to reduce Snail 
expression in EMT inhibition [105].

Hepatocellular carcinoma (HCC) is another malignancy 
with an escalating incidence rate. It is one of the leading 

causes of death in Chinese population [106, 107]. Hepa-
titis B virus (HBV) is a leading cause of HCC around the 
world and up to 50–80% of cases are due to this infection 
[108]. Furthermore, by increase in number of NAFLD, 
incidence rate of HCC also increases [109]. High expres-
sion of Wnt in HCC can increase tumor progression, and 
aquaporin 9 impairs Wnt/β-catenin to suppress invasion 
and EMT in tumor cells [110]. A recent study revealed that 
increased expression of Wnt can be mediated by borealin 
(which induces β-catenin in EMT induction and promotes 
HCC invasion and metastasis) [111]. OCT4 is another factor 
related to stemness, but by activating LEF1/β-catenin axis, it 
mediates EMT in a Wnt-dependent manner [112].

Urological tumors

Prostate cancer (PCa) is the sixth most common tumor in 
men and causes high mortality [113]. The major reason of 
PCa-related death is metastasis and inefficacy of current 
therapeutics [114]. FOXO3a is an inhibitor of metastasis in 
PCa and for this purpose, it suppresses EMT. The FOXO3a 
increases transcription of miR-34b/c in the nucleus and 
then, mature miR-34b/c in cytoplasm suppresses β-catenin 
to reduce ZEB/EMT. Moreover, FOXO3a can directly inhibit 
β-catenin. Therefore, FOXO3a may directly and indirectly 
suppress β-catenin/ZEB/EMT in reducing PCa progression 
[115]. GPX2, another factor mediating recurrence in PCa, 
has important function to promote metastasis of tumor cells 
mediated via β-catenin induction and subsequent increased 
cancer metastasis through EMT stimulation [116]. When 
silencing Wnt/β-catenin occurs, EMT-mediated metasta-
sis in PCa is suppressed [117]. Interestingly, both TGF-β1 
and Wnt can induce EMT in enhancing PCa metastasis. 
CD82/KAI1 functions as tumor suppressor that by inhibit-
ing Wnt and TGF-β1, impairs metastasis in PCa cells and 
EMT mechanism [118]. Seventy percent of BC cases are 
non-muscle-invasive and metastasis is an increasing chal-
lenge in this case. Upregulation of Wnt results in EMT in 
BC, and EFEMP2 is capable of suppressing Wnt/β-catenin 
in reducing metastasis via EMT inhibition [119]. Another 
malignant urological tumor is renal cancer, although only 
one study has evaluated function of Wnt in the modulation 
of metastasis. In this case, Wnt increases levels of ARL4C 
to enhance cyclin D1 and c-Myc levels, leading to EMT 
induction and enactment in progression of tumor cells [120].

Hematological cancers

Leukemia, lymphoma and myeloma are three important 
hematological tumors, but one of the drawbacks of current 
studies is ignorance towards understanding function of Wnt/
EMT axis and only a few experiments have investigated that 
are included here. Since Wnt is an important regulator of 
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tumorigenesis in these cancers, future studies should be 
engaged towards the role of Wnt/EMT axis in hematologi-
cal tumor progression. PLAGL2 shows upregulation in lym-
phoma and by inducing Wnt/β-catenin axis, it mediates EMT 
to enhance invasion and metastasis of tumor cells [121]. 
Moreover, expression level of SOX12 decreases by miR-
744-5p in myeloma and this results in Wnt/β-catenin inhi-
bition in reversing EMT and decreasing invasion of tumor 
cells [122].

Gynecological tumors

Ovarian cancer (OC) is another malignancy of gynecologi-
cal tumors and the second leading cause of death [123]. The 
5-year survival of patients in last 30 years has been less than 
30% and up to 70% of females do not demonstrate symptoms 
in early stages; hence, peritoneal cavity metastasis is one of 
the major complications of OC [124]. The invasion of OC 
cells that can be accelerated by EMT is one of the reasons 
of OC malignancy. Inhibition of Wnt/LRP5 axis results in 
EMT inhibition and subsequent suppression of migration 
in vitro and in vivo [125]. One of the factors involved in 
cancer development is the exposure to chemicals and toxic 
agents such as benzophenone-1 (BP-1) with the ability of 
inducing Wnt/β-catenin and ERα expression to mediate 
EMT biomarkers [126]. Moreover, high levels of IL-8 as an 
inflammatory factor in OC can result in EMT stimulation via 
inducing Wnt/β-catenin [127]. Hence, targeting Wnt/EMT is 
promising in retarding OC progression. Another important 
gynecological malignancy is cervical cancer accounting for 
6.5% of current cancer cases and 7.7% of female mortalities 
[128]. Inhibition of both Wnt and EMT can significantly 
diminish progression of cervical tumor cells [129]. However, 

the important part is related to role of Wnt/EMT as a novel 
axis in regulating cervical cancer progression. APMAP is 
deemed one of the key factors in cervical cancer metastasis, 
and stimulates EMT through induction of Wnt/β-catenin 
signaling [130]. Hence, both Wnt and EMT play a vital role 
in facilitated progression of cervical cancer cells [131]. The 
aim of “Wnt/β-catenin signaling as a regulator of EMT in 
human cancers” was to discuss the role of Wnt/EMT axis 
in various cancer types (as summarized in Table 3, Fig. 2).

Wnt/β‑catenin signaling and cancer drug 
resistance via regulation of EMT

Drug resistance is an evolving field and imposes a major 
challenge for physicians around the world. Moreover, hall-
marks of cancer can display association with chemore-
sistance. Since EMT increases metastasis as an important 
hallmark of tumors, the association of this pathway with 
drug resistance development has been evaluated in various 
studies. Moreover, overexpression of ZEB1 results in EMT-
mediated drug resistance in ovarian cancer [145]. Therefore, 
if some factors suppress EMT, sensitivity of tumor cells to 
chemotherapy enhances. Upregulation of Par-4 decreases 
MDM-2 expression to suppress EMT-mediated drug resist-
ance [146]. Moreover, miR-128-3p-mediated suppression of 
c-Met/EMT axis leads to increased temozolomide sensitivity 
in glioblastoma [147]. Therefore, EMT induction leads to 
chemoresistance, and this section focuses on the EMT regu-
lation by Wnt in tumor cells and determines their sensitivity 
to chemotherapy. However, it should be noted that in all 
studies, the role of Wnt/EMT axis in the regulation of drug 
resistance has not been evaluated. For instance, it has been 

Table 3  The role of Wnt/EMT axis in various human cancers

Pathway Cancer type Remark Refs.

TET1/DKK1/EMT Ovarian cancer TET1 suppresses EMT and metastasis via increasing levels of DKK1 as Wnt 
inhibitor

[132]

CRIP1/Wnt/EMT Ovarian cancer CRIP1 stimulates Wnt/EMT axis in enhancing cancer invasion [133]
CEBPA/Wnt/EMT Ovarian cancer CEBPA suppresses EMT via Wnt down-regulation in decreasing invasion [134]
HOXB-AS3/Wnt/EMT Ovarian cancer HOXB-AS3 induces EMT via Wnt pathway [76]
HOXC13-AS/β-catenin/EMT Cervical cancer HOXC13-AS induces EMT via mediating β-catenin [135]
CRIP1/Wnt/EMT Cervical cancer CRIP1 induces EMT via triggering Wnt pathway [136]
MAFE-A3/Wnt/EMT Cervical cancer MAGE-A3 stimulates Wnt in increasing invasion and mediating EMT [137]
SFRP1/2/Wnt/EMT Cervical cancer SFRP1/2 suppress EMT via Wnt down-regulation [138]
SMYD2/APC2/Wnt/EMT Colorectal cancer SMYD2 increases Wnt expression vi aAPC2 down-regulation to induce EMT [139]
CD55/Smad4/β-catenin/EMT Colorectal cancer CD55/Smad4 suppresses β-catenin/EMT [140]
HYD-PEP06/Wnt/EMT Hepatocellular carcinoma HYD-PEP06 inhibits Wnt/EMT axis in reducing tumor invasion [141]
TNF-α/Wnt/EMT Hepatocellular carcinoma TNF-α secreted by M2 macrophages induces EMT via Wnt upregulation [142]
Cx32/Wnt/EMT Hepatocellular carcinoma Low expression of Cx32 leads to Wnt/EMT [143]
TRIM37/Wnt/EMT Hepatocellular carcinoma TRIM37 stimulates Wnt/EMT axis in promoting tumor progression [144]
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reported that endothelin A receptor/β-arrestin integrates with 
Wnt pathway to induce EMT and drug resistance in ovarian 
tumor [148]. Although previous study evaluated the role of 
Wnt and its correlation with other signaling pathways in 
EMT induction and chemoresistance, it is not certain that 
EMT leads to malignant progression and chemoresistance or 
not. However, since accumulating data has shown potential 
of EMT in increasing cancer aggressiveness, it can be indi-
rectly concluded that EMT induction causes drug resistance. 
A similar approach has been followed in which METTL1 is 
able to induce Wnt/β-catenin in mediating chemoresistance 
and EMT nasopharyngeal cancer, but association of EMT 
and chemoresistance has not been evaluated [28]. However, 
there are studies showing that dysregulation of Wnt/EMT 
axis can lead to chemoresistance in human cancers. In pan-
creatic cancer, EMT and extracellular matrix (ECM) cooper-
ate in the development of resistance to chemotherapy. Using 
an oncolytic adenovirus for expressing both Wnt decoy and 
decorin leads to ECM degradation and EMT suppression 
in suppressing gemcitabine resistance in tumor cells [149]. 
This experiment clearly demonstrates that Wnt inhibition 
can suppress EMT-induced chemoresistance. In fact, when 
onco-suppressor factors display low expression, chance of 
EMT-mediated chemoresistance increases. An interesting 
experiment has evaluated the function of SFRP5 in drug 
resistance in ovarian tumor; based on this experiment, epige-
netic silencing of SFRP5 results in hyperactivation of Wnt to 
mediate EMT via TWIST upregulation and increases AKT2 
levels in favor of drug resistance in ovarian tumor [150]. 
The interesting point is that even pathways related to EMT 
and Wnt can exhibit certain associations with the develop-
ment of chemoresistance. Down-regulation of FILIP1L, an 
inhibitor of WNT, in ovarian tumor leads to SLUG upregu-
lation and subsequent drug resistance development [151]. 
The interesting point is that when activation of Wnt occurs, 

it leads to 5-flourouracil resistance in colorectal tumor. The 
cadherin–catenin complex leads to simulation of β-catenin. 
However, Sanguisorba officinalis L. impairs nuclear trans-
location of β-catenin to diminish N-cadherin, vimentin and 
Snail levels, and enhance E-cadherin levels in increasing 
5-flourouracil sensitivity in colorectal tumor [152]. There-
fore, Wnt/EMT axis can modulate response of tumor cells 
to chemotherapy (Fig. 3).

Pharmacological targeting of Wnt/β‑catenin/
EMT axis

Pharmacological inhibition of Wnt/EMT axis has offered 
new insight for cancer treatment to counter invasion and 
metastasis. Therefore, if molecular pathways related to 
Wnt/EMT are affected by these compounds, it can suppress 
invasion, as a factor mediating death in patients. O2-(2,4-
dinitrophenyl) diazeniumdiolate is a new emerged com-
pound in the treatment of HCC that its anti-tumor activity 
regarding Wnt regulation has been evaluated. O2-(2,4-
dinitrophenyl) diazeniumdiolate suppresses Wnt/β-catenin 
axis to suppress EMT via reducing vimentin, Slug, Snail 
levels and increasing E-cadherin levels [153]. In order to 
increase potential in the modulation of Wnt/EMT axis, 
the combination of pharmacological compounds have been 
utilized in suppressing metastasis. Phytocannabinoid along 
with PARP1 inhibitor are capable of suppressing Wnt/β-
catenin to minimize metastasis and mesenchymal pheno-
type of OC cells and EMT [154]. Cannabidiol (CBD) is 
well known in traditional Chinese medicine and there has 
been focus on its anti-tumor activity [155, 156]. One of the 
interesting points regarding CBD is its ability in the regu-
lation of Wnt pathway. CBD promotes expression level 
of Axin1, suppresses Wnt/β-catenin pathway and reduces 

Fig. 2  The aberrant levels of 
Wnt can cause progression of 
both solid and hematological 
tumors. Wnt interacts with ZEB 
and other EMT-TFs to mediate 
EMT. In each cancer, a number 
of related molecular interaction 
regulating Wnt/EMT axis have 
been identified
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expression level of β-catenin target genes including APC 
and CK1 in EMT suppression in colorectal tumor [157].

In “Wnt/β-catenin signaling as a regulator of EMT in 
human cancers”, it was previously mentioned that increase 
in expression level of Wnt and induction of β-catenin can 
lead to EMT induction in HCC cells. Furthermore, related 
molecular pathways regulating Wnt/EMT axis in HCC 
were evaluated. Paris saponin H suppresses Wnt pathway 
in vitro and in vivo in HCC that changes expression level 
of EMT-related proteins such as vimentin and E-cadherin 
in favor of cancer invasion reduction [158]. However, 
one of the notes that should be considered during evalua-
tion of experiments is that some of the studies have only 
focused on the regulation of EMT and Wnt separately in 
tumor cells and have not mentioned their association. For 
instance, wogonoside and Oldhamianoside II can suppress 
both Wnt/β-catenin and EMT in human cancers [159, 160], 
although future studies should focus on their association 
and modulation by these anti-tumor compounds.

As mentioned, one of the main reasons of drug resist-
ance is the induction of Wnt/EMT. In PCa, high expres-
sion of Wnt can result in malignant behavior and enza-
lutamide resistance. A combination of enzalutamide and 
3,3ʹ-diindolylmethane can inhibit Wnt/β-catenin axis in 
EMT inhibition and suppressing EMT via enhancing E-cad-
herin levels and decreasing vimentin levels [161]. In fact, 
progression of PCa cells mainly depends on EMT and their 
enhanced metastasis relies on changes in phenotype and 
levels of mesenchymal and epithelial markers. 2'-Hydrox-
yflavanone is capable of downregulating level of Wnt/β-
catenin to suppress EMT in reducing progression of PCa 
cells [162]. Thymoquinone (TQ) is isolated from Nigella 
sativa and its pharmacological activities encompass antioxi-
dant, anti-inflammation, immunomodulatory and anti-cancer 
[163–166]. Recently, TQ has been applied in the treatment of 
bladder cancer and by inhibiting Wnt/β-catenin/EMT axis, 
the metastasis of tumor cells significantly reduces [167]. 
Although bladder cancer is a multifactorial disease, tobacco 

Fig. 3  Wnt/EMT axis in cancer drug resistance. The nuclear transfer 
of β-catenin enhances N-cadherin and vimentin levels, while it down-
regulates E-cadherin to mediate EMT in cancer metastasis. Moreover, 

β-catenin can be upregulated by β-arrestin and METTL1 to mediate 
EMT and drug resistance
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smoke (TS), parasitic infection and radiation or chemical 
exposure have been considered as possible factors involved 
in its development. Accumulating evidence has shown an 
association between TS and development of bladder cancer 
[168]. Curcumin has been shown to suppress urocystic EMT 
and prevents acquisition of stemness in tumor cells. Cur-
cumin suppresses Wnt/β-catenin axis to impair EMT, thus 
eliminating the development of TS-mediated bladder cancer 
[169]. Therefore, modulation and inhibition of Wnt/EMT 
axis by pharmacological compounds can greatly help in sup-
pressing cancer invasion and metastasis [170–172] (Fig. 4).

Nanoparticle‑mediated regulation of Wnt/
EMT axis in cancer metastasis: new visions

The introduction of nanostructures into the treatment of 
cancer revolutionized the ability to eradicate tumor cells. 
The pharmacological compounds suffer from poor pharma-
cokinetic profile and in spite of high potential in tumor sup-
pression in vitro, their anti-cancer function reduces in vivo. 
Then, translation of such findings into clinic is a difficulty. 
Therefore, the targeted delivery of therapeutic for improv-
ing their accumulation at the tumor site has been suggested. 
Currently, the several conventional therapies have been 
introduced for cancer including chemotherapy and radio-
therapy. Moreover, immunotherapy has been emerged for 
tumor suppression. However, the cancer cells stimulate the 
alternative molecular pathways to stimulate resistance into 
these therapies. The increasing evidences have shown that 

nanostructures can improve the ability of conventional thera-
pies in cancer suppression, they reverse drug resistance and 
augment immunotherapy [173–176]. Since Wnt has been 
associated with EMT induction, the application of nano-
particles for the regulation of Wnt/EMT axis has been pro-
vided. The sweroside nanostructures have been introduced 
for the treatment of prostate cancer through increasing ROS 
generation and apoptosis. Moreover, these nanoparticles 
impair growth and invasion of tumor cells. They disrupt the 
stem cell features including CD33 and CD44. Moreover, 
sweroside nanoparticles impair TTCF/LEF activity to sup-
press β-catenin resulting down-regulation of c-Myc, cyclin 
D1, survivin and MMP-7. The down-regulation of Wnt/β-
catenin by sweroside nanoparticles can also suppress the 
EMT-related markers in prostate cancer [177].

Noncoding RNAs in regulation of Wnt/
β‑catenin

microRNAs

microRNAs (miRNAs) are short and endogenous noncoding 
RNAs (ncRNAs) with length of 22–24 nucleotides. miRNAs 
are capable of binding to complementary components (3’-
UTR) of mRNAs for degradation or translation suppression. 
This is known as post-transcriptional regulation of gene 
expression [178]. The dysregulation of miRNAs has been 
frequently observed in cancer and it can cause progression 
or suppression, based on function of miRNAs [179]. Since 

Fig. 4  The role of Wnt/EMT 
in cancer drug resistance and 
its suppression by anti-cancer 
drugs. The application of 
oncolytic adenovirus allows to 
suppress the Wnt/EMT axis for 
reversing gemcitabine resist-
ance. When Wnt expression 
increases, it stimulates Twist/
EMT axis in mediating drug 
resistance. Moreover, suppres-
sion of Wnt by thymoquinone 
and other compounds can 
prevent cancer metastasis and 
chemoresistance
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GSK-3β suppresses β-catenin, studies have focused on if 
there is any relationship between miRNAs and GSK-3β in 
EMT modulation in tumors. miR-1246 decreases GSK-3β 
levels by binding to its 3’-UTR in inducing β-catenin/EMT, 
resulting in enhanced cancer metastasis [180]. In KRAS-
mutated colorectal tumor cells, expression level of miR-
139-5p reduces and when poor expression of miR-139-5p 
occurs in cancer cells, their phenotype changes to an aggres-
sive form. Interestingly, β-catenin may reduce miR-139-5p 
expression to induce EMT, resulting in elevated colorectal 
cancer invasion [181].

miR-27a is one of the factors that its exact function in 
cancer is not certain and miR-27a-3p sponging by circ-
BCAR3 results in esophageal tumor progression [182], 
while down-regulation of miR-27a and miR-27b by circ-
0000994 results in pancreatic tumor suppression [183], con-
firming dual function of miR-27a in cancers. miR-135 shows 
a contrast function compared to miR-27a and by decreasing 
SMAD3 expression, miR-135 suppresses TGF-β-mediated 
EMT in breast tumor [184]. Moreover, glycolysis and meta-
bolic reprogramming in pancreatic tumor can be suppressed 
by miR-135 [185]. The EMT-TFs can be regulated by miR-
NAs in affecting progression of tumor cells. miR-519d 
inhibits Wnt/β-catenin and it reduces Twist1 expression to 
suppress EMT in gastric tumor [186]. However, the limita-
tion of previous experiment is that it has not evaluated the 
correlation between Wnt and EMT regulated by miR-519d 
that can be focus of future studies.

In gastric tumor, high expression level of Wnt results in 
angiogenesis and metastasis, and silencing MED27 leads to 
inactivation of Wnt in retarding cancer progression [187]. 
FOXC1 upregulation results in induction of β-catenin in 
enhancing gastric tumor invasion [188]. Hence, metastasis 
of gastric tumor cells can be regulated by Wnt and a recent 
experiment has evaluated function of miR-330-3p in modu-
lating invasion of gastric tumor. miR-330-3p is capable of 
impairing PRRX1-induced Wnt/β-catenin axis in reduc-
ing EMT and invasion of gastric tumor [189]. One of the 
interesting points is regulation of miRNAs by others fac-
tors in cancer cells. SOX17 and PAX8 physically cooper-
ate in increasing ovarian tumor progression that it can be 
suppressed by small molecule inhibitors [190]. Moreover, 
reduced SOX17 expression by miR-200a-3p can result in 
increase in proliferation and invasion of tumor cells [191].

One important feature of miRNAs is their enrichment in 
exosomes, as small extracellular vesicles with 40–120 nm 
in diameter and secreted from many cells into body fluids 
[192–195]. When exosomes were discovered, it was believed 
that these structures contribute to removal of intracellular 
wastes [196], while recent studies have shown that exosomes 
are potential regulators of carcinogenesis [197]. Low expres-
sion level of miR-7-5p in exosomes derived from breast 
tumor cells can result in enhanced metastasis. However, if 

exosomes derived from breast tumor cells have high levels 
of miR-7-5p, it can lead to the regulation of atypical WNT in 
which reducing RYK expression to favor JNK phosphoryla-
tion, resulting in c-Jun protein enhancement and subsequent 
EMT inhibition in decreasing cancer metastasis [198]. The 
catch point is that exosomal miRNAs can regulate TME 
components such as cancer-associated fibroblasts (CAFs). 
miR-146a demonstrates enrichment in exosomes derived 
from breast tumor cells. Through reduction in TXNIP lev-
els, miR-146a induces Wnt/β-catenin axis in the promotion 
of metastasis and EMT-related protein expression such as 
vimentin and N-cadherin [199].

Long noncoding RNAs

Long non-coding RNAs (lncRNAs) are transcribed by 
RNA polymerase II transcripts with length more than 200 
nucleotides [200]. In addition to implication in the modu-
lation of biological processes, their function in cancer is 
also of importance [201, 202]. LncRNAs can exert spong-
ing effect in reducing miRNA expression and modulating 
biological events. Furthermore, various molecular pathways 
are affected by lncRNAs present in cytoplasm and nucleus, 
and function of lncRNAs is different based on the location 
that those in nucleus provide chromatin remodeling and 
cytoplasmic lncRNAs mediate miRNA interaction. Wnt 
regulation by lncRNAs can affect metastasis of tumors. miR-
106a-3p suppresses APC expression in gastric tumor, while 
LINC01133 sponges miR-106a-3p to increase APC expres-
sion. Then, APC suppresses β-catenin in reducing invasion 
and EMT [203]. LINC01089 suppresses EMT and invasion 
in lung tumor and for this purpose, it follows a complicated 
pathway in which LINC01089 sponges miR-27a to increase 
SFRP1. Then, suppression of Wnt/β-catenin axis is observed 
to inhibit EMT in reducing cancer invasion and metastasis 
[204]. In contrast, lncRNAs can promote invasion of tumor 
cells through induction of EMT mechanism. For instance, 
lncRNA NORAD decreases miR-30a-5p expression as a 
way to promote RAB11A levels in the induction of Wnt/β-
catenin, resulting in EMT and enhanced cancer invasion 
[205]. Besides, lncRNA HOXD-AS1 sponges miR-133a-3p 
to induce Wnt/β-catenin for EMT induction and promoting 
metastasis of ovarian tumor [206]. Therefore, lncRNAs are 
important regulators of Wnt/EMT axis in human cancers.

Circular RNAs

Circular RNAs (circRNAs) are other factors that are consid-
ered as special ncRNAs and they are ubiquitous in human 
cells [207]. CircRNAs are new endogenous ncRNAs that 
were adjusted to be pivotal regulators of various biologi-
cal mechanisms [208] and their unique roles in tumors have 
been interesting. Increasing evidence reveals that circRNAs 
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may modulate EMT in cancers [209]. More importantly, cir-
cRNAs can decrease miRNA expression via sponging [210]. 
The overall aim of current section is to evaluate role of cir-
cRNAs in EMT regulation via targeting Wnt. Circ-0007059 
shows function in suppression of lung tumor growth and 
metastasis, and its ability in decreasing metastasis is due to 
EMT suppression. The hsa-circ-0007059 decreases miR-378 
expression to inhibit Wnt/β-catenin and ERK1/2 in reducing 
vimentin, Twist, and ZEB1 levels to suppress EMT [211]. 
On the other hand, high expression level of circ-000984 
results in enhanced invasion of lung tumor that is related to 
increasing β-catenin levels in mediating EMT [212]. SP1 is a 
transcription factor that modulates intracellular gene expres-
sion, and its dysregulation has resulted in increased carcino-
genesis, especially colorectal cancer [213]. Since colorectal 
tumor is one of the leading causes of death, ample efforts 
have been engaged towards understanding circRNAs in the 
regulation of Wnt and EMT in this malignant tumor. Hsa-
circ-0001666 can diminish malignancy of colorectal tumor 
and mechanistically, circ-0001666 decreases miR-576-5p 
expression to upregulate PCDH10, to induce Wnt pathway 
and to increase EMT [214]. Circ-0067934 is one of the new 
emerging factors in cancer that its upregulation prevents fer-
roptosis in thyroid tumor [215] and by decreasing JNK phos-
phorylation, it can result in cisplatin resistance [216]. More 

than one molecular pathway can be simultaneously regu-
lated by circ-0067934 and notably, this circRNA induces 
Wnt/β-catenin pathway and promotes KLF8 expression via 
miR-1182 down-regulation to induce EMT and metastasis 
in lung tumor [217]. Although each study provides a new 
insight and pathway in which Wnt/EMT axis is regulated by 
circRNAs, many of them share a similar function and that 
is miRNA sponging by circRNAs. Circ-0082182 promotes 
progression and metastasis in colorectal tumor that is medi-
ated by miR-411 and miR-1205 suppression via sponging to 
stimulate Wnt/β-catenin pathway in EMT induction [218]. 
Table 4 and Fig. 5 summarize the role of ncRNAs in Wnt/
EMT axis regulation in human cancers.

Conclusion and remarks

The regulation of molecular pathways in cancer represents 
one of the important aspects of research for biologists to 
track down the interplay among these signaling cascades in 
the regulation of carcinogenesis. A given form of cancer can 
display distinct features and characteristics such as growth, 
invasion and chemoresistance. Each hallmark of cancer may 
intertwin with one another. For instance, increase in prolifer-
ation and invasion of tumor cells promotes their malignancy, 

Table 4  The modulation of Wnt/EMT axis by ncRNAs in human cancers

Non-coding RNA Pathway Action mechanism Refs.

miR-621/Wnt/EMT Colorectal cancer miR-621 suppresses EMT via Wnt down-regulation [219]
LINC01315/Wnt/EMT Colorectal cancer LINC01315 induces EMT via Wnt upregulation [220]
CircZFR/miR-3619-5p/Wnt Hepatocellular carcinoma CircZFR sponges miR-3619-5p and induces Wnt pathway to promote inva-

sion via EMT induction
[221]

miR-194/Wnt/EMT Hepatocellular carcinoma miR-194 suppresses Wnt pathway to reduce progression of tumor cells and 
to inhibit EMT

[222]

CARLo-7/Wnt/EMT Bladder cancer CARLo-7 induces Wnt/EMT axis in increasing metastasis [223]
DLX6-AS1/Wnt/EMT Bladder cancer DLX6-AS1 simulates Wnt/EMT axis [224]
LSINCT5/NCYM/Wnt/EMT Bladder cancer LSINCT5 interacts with NCYM in increasing Wnt expression to mediate 

EMT
[225]

PlncRNA-1/Wnt/EMT Colorectal cancer PlncRNA-1 activates Wnt in increasing cancer invasion and EMT induction [226]
ADAMTS9-AS1/Wnt Colorectal cancer ADAMTS9-AS1 suppresses Wnt/EMT axis in reducing invasion and metas-

tasis of tumor cells
[227]

LncRNA-SRA/Wnt/EMT Endometrial cancer SRA induces Wnt/EMT axis in increasing cancer progression [228]
LINC01225/Wnt/EMT Gastric cancer LINC012225 induces Wnt signaling in increasing cancer progression 

through EMT induction
[229]

Circ_0003789/Wnt/EMT Gastric cancer Circ_0003789 stimulates Wnt/EMT axis [230]
JPX/miR-33a-5p/Twist1 Lung cancer JPX sponges miR-33a-5p to increase Twist1 expression

Twist1 induces Wnt and promotes EMT
[231]

miR-516a-3p/Pygo2/Wnt/EMT Breast cancer miR-516a-3p suppresses Pygo2/Wnt axis in EMT inhibition [232]
miR-15a-3p/Wnt/EMT Prostate cancer miR-15a-3p suppresses Wnt/EMT axis [233]
LncRNA-MIR17HG/miR-17/

miR-18a/Wnt/EMT
Colon cancer LncRNA-MIR17HG promoted miR-17 and miR-18a expression to induce 

Wnt/EMT
[234]

miR-370-3p/Wnt7a/EMT Bladder cancer miR-370-3p suppresses Wnt7a expression to suppress EMT [235]
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resulting in the development of therapeutic resistance. How-
ever, among the different hallmarks, increase in metastasis 
is an important aspect that causes high death among patients 
and can mediate therapy failure. The process of metastasis 
is complicated and one important mechanism facilitating 
tumor invasion is EMT mechanism. Wnt/β-catenin is the 
most well-known one among various regulators of EMT. 
Due to tumor-promoting property of Wnt, it can induce EMT 
in increasing tumor progression. High expression level of 
Wnt occurs during progression of tumor cells and this is in 
favor of cancer invasion. Wnt/β-catenin can mediate EMT 
in various cancers including brain, hematological, urologi-
cal, gynecological and gastrointestinal tumors. Therefore, 
an optimal strategy is to directly suppress Wnt pathway 
or inhibit EMT as another key player in the progression 
of tumor. Since both Wnt and EMT mechanisms result in 
the drug resistance in human cancers, studies demonstrated 
that EMT induction by Wnt can also lead to chemoresist-
ance. Therefore, inhibition of Wnt/EMT axis would be the 
important next step to overcome drug resistance in cancers. 
The modulation of Wnt/EMT axis by non-coding RNAs is 
a hot topic recent year and since Wnt has bindings site for 

non-coding RNAs, Wnt/EMT axis can be modulated by 
these RNA transcripts. Furthermore, pharmacological com-
pounds and nanostructures are capable of Wnt/EMT sup-
pression in reducing invasion and metastasis of tumor cells. 
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