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Abstract
Fibrosis is a typical aging-related pathological process involving almost all organs, including the heart, kidney, liver, lung, 
and skin. Fibrogenesis is a highly orchestrated process defined by sequences of cellular response and molecular signals 
mechanisms underlying the disease. In pathophysiologic conditions associated with organ fibrosis, a variety of injurious 
stimuli such as metabolic disorders, epigenetic changes, and aging may induce the progression of fibrosis. Sirtuins protein 
is a kind of deacetylase which can regulate cell metabolism and participate in a variety of cell physiological functions. In 
this review, we outline our current understanding of common principles of fibrogenic mechanisms and the functional role of 
SIRT3/6 in aging-related fibrosis. In addition, sequences of novel protective strategies have been identified directly or indi-
rectly according to these mechanisms. Here, we highlight the role and biological function of SIRT3/6 focus on aging fibrosis, 
as well as their inhibitors and activators as novel preventative or therapeutic interventions for aging-related tissue fibrosis.
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Introduction

Fibrosis is considered to be the outcome of a chronic heal-
ing response marked by excessive deposition and forma-
tion of extracellular matrix (ECM), chronic inflammation, 
and loss of parenchymal cells. Activated pro-fibroblasts 
play a prominent role in this process [37, 55, 68, 114].

Many factors such as age, genetic factors, gender, and 
obesity can contribute to the development of fibrosis [30]. 
Fibrosis eventually affects all tissues and organs, con-
tributing to increased morbidity and mortality from age-
related diseases [111]. A complex cellular cascade induced 
by organ damage may underlie the coagulation disorder 
between ECM synthesis and ECM degradation [32]. 
Although the organ damage may be triggered by organ-
specific ways, the fibrosis process and the involved cas-
cades are conserved across organs [68]. The organ fibrosis 
is regulated by different cascades and signaling pathways 
including Wingless/Int (Wnt) [32] and transforming 
growth factor-β (TGF-β) [80, 116]. There is increasing 
evidence that fibrosis is the main cause of the deterioration 
of various human organ functions during aging.

Cell senescence refers to a permanent arrest of the cell 
cycle, resulting in a steady loss of the cell function to pro-
liferate, with the continuously decreased metabolic states 
such as autophagy function, energy metabolism regula-
tion and anti-stress, despite the remaining cell viability 
and metabolic activity [126]. Aging is accompanied by 
the gradually declining structural integrity of an organ-
ism [19], during which the risk of death increases [5, 22, 
26, 27, 61].

Sirtuins as the niacinamide adenine dinucleotides 
(NAD)+-dependent protein deacetylases are considered 
the primary regulators of cell function. As a key player 
in regulating metabolism and preventing oxidative stress, 
sirtuin 3 (SIRT3) is commonly found in organs and tissues 
with high metabolic rate capacity, including the cardiac. 
Metabolic diseases and cardiac disorders related to its 
activity have been proposed as therapeutic targets. Main-
taining genomic stability and maintaining telomere func-
tion may be accomplished by SIRT6 deacetylating histone 
H3 at lysine 9 and lysine 56 [99].

An important step in tissue fibrosis during chronic dis-
ease and aging is the TGF-β1-mediated fibroblasts into 
myofibroblasts, cells capable of synthesizing ECM. Stud-
ies have demonstrated that inhibiting pro-fibrotic TGF-β1 
signaling by SIRT3 inhibits fibroblast to myofibroblast dif-
ferentiation, suggesting SIRT3 is important for controlling 
age-related tissue fibrosis [91]. Moreover, SIRT6 functions 
as a key anti-aging molecule by controlling multiple cel-
lular processes associated with aging and preventing age-
induced cardiac hypertrophy and fibrosis [76]. This paper 

summarizes the biological structure and function of SIRT3 
and SIRT6, and describes the role of SIRT3 and SIRT6 in 
fibrosis and aging.

SIRT family

A sirtuin is a  NAD+-dependent class III histone deacetylase 
that deacetylates histones with  NAD+. SIRTs can exert a 
regulatory role in a wide range of physiological and patho-
logical processes, including energy production, oxidative 
stress, mitochondrial homeostasis, cell aging and apoptosis, 
DNA damage, playing a prominent role in the pathogenesis 
progression [7, 44, 70, 77, 78].

To date, seven SIRTs subtypes, SIRT1 7, have been iden-
tified in mammalian cells [110]. SIRT1, SIRT6, and SIRT7 
are located in the nucleus, SIRT2 are located in the cyto-
plasm, and SIRT3, SIRT4, and SIRT5 are located in the 
mitochondria. A translocation of SIRT1 to the cytoplasm 
and a relocalization of SIRT3 between mitochondria and 
nuclei can occur under certain conditions [85].

Different SIRTs subtypes exert different functions. 
SIRT1, SIRT2, SIRT3, and SIRT-7 mainly exhibit the 
properties of NADH-dependent deacetylases. SIRT4 and 
SIRT6 may function as deacetylases and ADP-ribosomal 
transferases. SIRT5 has weak deacetylation activity, yet it 
has strong desuccinylation and depropanediylation activity 
[106]. As mitochondrial SIRTs, SIRT3/4/5 play an impor-
tant role in mitochondrial biogenesis and the regulation of 
oxidative stress. SIRT6, a nuclear deacetylase, plays a role in 
ADP-ribosyltransferase activity, inflammation and metabo-
lism [25]. Intriguingly, SIRT6 and SIRT3 maintain each 
other’s levels, SIRT3 inhibits oxidative stress, and SIRT6 
activates SIRT3 transcription by upregulating nuclear fac-
tor erythroid 2 (NF-E2) -related factor 2 (Nrf2) -dependent 
transcription [42].

Structure and function of SIRT3

The SIRT3 gene is located on chromosome 11p15.5, a chro-
mosome region associated with longevity [2]. Two func-
tional domains are present on the human SIRT3 protein: 
a large Rossmann folding and  NAD+ binding site, and a 
small helix complex and zinc binding site [38]. There is a 
crack between the two domains where the acetylated sub-
strate is inserted. While being transported into the mitochon-
dria, SIRT3 is cleaved by mitochondrial matrix processing 
peptidase (MPP), which results in a short, more active form 
28 kDa.

Among the mitochondrial SIRTs, SIRT3 is the only one 
with strong  NAD+-dependent deacetylase activity [46]. 
According to initial reports, SIRT3 is primarily respon-
sible for regulating acetyl bodies in mitochondria. In the 
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mitochondrial electron transport chain (ETC), SIRT3 
directly binds to succinate dehydrogenase A and ATP 
synthase (Complex V) of complex I and II and regulates 
them, thereby vigorously raising ATP levels [60]. In energy-
demanding cells, SIRT3 plays an important role in mito-
chondrial function and cell metabolism, such as fatty acid 
oxidation, tricarboxylic acid cycle (TCA), and ETC [67, 
123]).

SIRT3 regulates core mitochondrial processes, but its 
function may differ in tissues contributing to fuel produc-
tion and fuel utilization, depending on the metabolic path-
ways involved [18]. Thus, SIRT3 may play distinct roles at 
the tissue level as well as at the cellular level. In previous 
studies, SIRT3 deficiency caused mitochondrial respiration 
impairment and elevated reactive oxygen species (ROS) 
production in myoblasts and cancer cells [6]. SIRT3 has 
been speculated to be associated with human longevity, and 
studies have demonstrated the reduced SIRT3 expression 
in sedentary older adults compared to younger adults [82].

Structure and biological function of SIRT6

The human SIRT6 gene is located at 13.3 of the short arm of 
chromosome 19 and consists of 8 exons, with exon 8 being 
the longest at 838 bases. On the other hand, exon 4 is the 
shortest with only 60 bases. The SIRT6 protein molecule 
comprises 355 amino acid residues and has a molecular 
weight of 39.1 kDa [63]. Structurally, SIRT6 consists of an 
N-terminal extension (NTE), a C-terminal extension (CTE), 
and a structurally conservative central domain. The NTE 
is associated with its catalytic activity, which is crucial for 
chromatin binding and the deacetylation of lysine 9 and 56 
(H3K9 and H3K56) of the intrinsic histone H3. The CTE is 
essential for nuclear localization and recognition of nucleo-
some DNA. Both extensions play an important role in nucle-
osome binding [97]. Unlike other Sirtuin proteins, SIRT6 
lacks the classical zinc finger binding sequence, Rossmann 
folding structure, and highly flexible  NAD+ binding ring 
in its central domain. However, SIRT6 possesses a unique 
unfolded zinc finger binding domain and a highly stable sin-
gle helix structure. Because of this unique characteristic, 
SIRT6 binds  NAD+ with high affinity, even in the absence 
of a deacetylation substrate. This feature may explain why 
SIRT6 effectively promotes the ADP-ribosyltransferase 
reaction [24, 73].

SIRT6 exhibits both ADP-ribosyltransferase and 
 NAD+-dependent histone deacetylase activities. It can 
utilize  NAD+ as a substrate for intramolecular ADP-ribo-
sylation. The currently identified glycosylation substrates 
of SIRT6 mainly include the K521 site of PARP1 and the 
nuclear helper inhibitor KAP1. As for histone deacetylation, 
three substrates have been identified: lysine 9, 18, and 56 
of histone H3 (H3K9, H3K18, and H3K56). SIRT6 can be 

actively recruited to target gene promoters to inhibit the tran-
scriptional activity of these genes through deacetylation of 
H3K9, H3K18, or H3K56 sites. This process helps maintain 
genomic stability, telomere integrity, promotes DNA repair, 
and prevents aging [9]. In addition, SIRT6 can deacetylate 
forkhead box O1 (FoxO1), associated factor histone acetyl-
transferase 5 (general control non-derepressible-5, GCN5), 
and several non-histone substrates such as C-terminal bind-
ing protein interacting proteins (CTIP). These deacetyla-
tion events further contribute to the modulation of glucose 
homeostasis, among other processes [66, 96].

The regulation of SIRT6 abundance is complex and pre-
cise in vivo. At the transcriptional level, SIRT6 expression 
is significantly activated by pharmacological inhibition of 
poly ADP-ribose polymerase 1 (PARP1) [108]. C-FOS and 
SIRT1-FOXO3a-NRF1 (SFN) complexes can also upregu-
late SIRT6 expression by binding to SIRT6 promoters [29]. 
Endogenous microRNAs (miRNAs), including miR-33a/b, 
miR-122, miR-330-5p, and miR-495, regulate SIRT6 trans-
lation by binding to its 3'-untranslated region (UTR) [87]. 
SIRT6 protein stability is largely controlled by proteasome-
dependent degradation pathways.

Fibrosis

The aging process predisposes people to fibrosis and can 
affect many tissues (Fig. 1) [8]. SIRT3 and SIRT6 have been 
found to play important roles in tissue fibrosis (Table 1).

Hepatic fibrosis

Hepatic fibrosis occurs when stressed or damaged liver cells 
and activated macrophages (Kupffer cells) stimulate the acti-
vation of hepatic stellate cells, which then secrete excessive 
ECM components, including type I and type III collagen, 
leading to the formation of liver fibrosis [84]. Hepatic fibro-
sis is a common feature of various chronic liver diseases and 
can progress to cirrhosis, liver failure, and hepatocellular 
carcinoma [16, 17].

SIRT3, which is predominantly located in the mitochon-
dria, has been strongly associated with oxidative stress and 
liver-related diseases [62]. It has been shown that adenosine 
5′-monophosphate-activated protein kinase (AMPK), a pro-
tein involved in the pathophysiology of liver fibrosis [41], 
can reduce liver fibrosis [33]. SIRT3 has been identified as 
a downstream effector of AMPK in several disease models, 
and activation of the AMPK-SIRT3 signaling pathway helps 
improve mitochondrial function, thereby alleviating disease 
progression. The anti-fibrotic effect of celastrol, which is 
attributed to its anti-inflammatory properties, depends on 
the activation of AMPK-SIRT3 signaling. Celastrol acts 
as an anti-fibrotic agent by suppressing inflammation, and 
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its effects are believed to be mediated by the activation of 
AMPK-SIRT3 signaling. Depletion of AMPK or SIRT3 
compromises the anti-inflammatory effects of celastrol 
[107].

Studies in mice fed a high-fat, high-fructose diet for 
16 weeks and in liver samples from patients with non-alco-
holic steatohepatitis (NASH) have shown that SIRT6 plays a 
regulatory role in the progression of NASH to liver fibrosis. 
Hepatocyte-specific knockout of SIRT6 in mice aggravated 
liver fibrosis, and reduced SIRT6 expression levels were 
observed in the livers of NASH patients as the disease pro-
gressed to fibrosis [39, 125]. It has been demonstrated that 
SIRT6 inhibits Smad3 activation, a member of the Smad 
family involved in TGF-β signaling, through H3K9 dea-
cetylation, thereby suppressing the expression of key genes 
related to liver fibrosis and contributing to fibrosis regres-
sion [64]. Mechanistic studies have revealed that SIRT6 
inhibits TGF-β-induced activation of hepatic stellate cells 
by deacetylating specific sites (K333 and K378) on Smad3, 
resulting in the downregulation of liver fibrosis-related genes 
and the inhibition of fibrosis progression [125].

Renal fibrosis

An important regulator of mitochondrial function, SIRT3 
participates in the injury and repair processes of acute kid-
ney injury (AKI). It has been suggested that SIRT3 may 
play a significant role in the early stages of fibrosis fol-
lowing ischemia–reperfusion injury (IR-AKI) by regulat-
ing mitochondrial dynamics. Furthermore, deficiency of 
SIRT3 can potentially worsen renal insufficiency and pro-
mote renal fibrosis [13]. Proximal renal tubular epithelial 
cells (TECs), which are rich in mitochondria and heavily 
rely on mitochondrial oxidative phosphorylation as their 
primary energy source, are particularly affected by the dys-
regulation of SIRT3. In the initial stages of renal fibrosis, 
decreased expression of SIRT3 is accompanied by increased 
acetylation of mitochondria isolated from TECs. Studies 
using SIRT3 knockout mice have shown that these mice 
are more susceptible to renal fibrosis, particularly charac-
terized by high levels of acetylated mitochondrial proteins 
[13]. Interestingly, the administration of honokiol has been 
found to activate SIRT3, leading to improved acetylation and 

Fig. 1  The role of SIRT3 and SIRT6 in several tissue fibrosis diseases. Mechanically, tissue fibrosis diseases include liver fibrosis, kidney fibro-
sis, lung fibrosis, and cardiac fibrosis
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prevention of renal fibrosis. Furthermore, in the context of 
unilateral ureteral obstruction, a condition associated with 
renal fibrosis, it has been observed that most renal proteins, 
accounting for 26.76% of mitochondrial proteins, undergo 
hyperacetylation. These hyperacetylated proteins are local-
ized within a wide range of mitochondrial pathways. Nota-
bly, pyruvate dehydrogenase E1α (PDHE1α), a crucial link 
between glycolysis and the TCA cycle, undergoes hyperacet-
ylation at lysine 1 in TECs following stimulation with TGF-
β. Importantly, this process is regulated by SIRT3 [123].

In the context of AKI, studies have demonstrated that 
overexpression of SIRT6 can prevent its occurrence [54]. 
In the context of renal tubular epithelial cells, depletion of 
SIRT6 leads to aggravated epithelial-mesenchymal transi-
tion (EMT), accompanied by upregulation of homeodomain-
interacting protein kinase 2 (HIPK2). A protein kinase called 
HIPK2 is involved in multiple molecular pathways that lead 
to cell death and development. It is noteworthy that this 
protein kinase can regulate a variety of pro-fibrotic path-
ways, such as Wnt/β-catenin, TGF-β and Notch, which are 
involved in kidney, lung, liver, and heart fibrosis [23]. Inter-
estingly,, SIRT6 has the ability to down-regulate HIPK2 at 
the post-transcriptional level [52].

Pulmonary fibrosis

Pulmonary fibrosis is a severe and chronic interstitial lung 
disease for which effective treatments are limited. Apoptosis 

and mitochondrial dysfunction in alveolar epithelium cells 
are key factors in idiopathic pulmonary fibrosis and asbes-
tosis. Through deacetylation of manganese superoxide 
dismutase (MnSOD) and mitochondrial 8-oxygen guanine 
DNA glycosylase, SIRT3 plays a partial role in mitochon-
drial reactive oxygen species removal. By inhibiting acety-
lation of OGG1 at K338/341, SIRT3 counteracts mtDNA 
damage and apoptosis induced by reductive oxidant expres-
sion. Conversely, silencing of SIRT3 promotes these det-
rimental effects, ultimately leading to pulmonary fibrosis. 
Deficiency of SIRT3 contributes to increased mitochondrial 
DNA damage and apoptosis in alveolar epithelial cells, exac-
erbating the progression of pulmonary fibrosis [35]. Induc-
tion of SIRT3 expression by bayicalein reduces lung fibro-
blast senescence and fibrosis induced by bleomycin [36].

SIRT6, on the other hand, has demonstrated its ability 
to reduce fibrosis in various organs. In the context of pul-
monary fibrosis, SIRT6 has been found to inhibit bleomy-
cin-induced injury in alveolar epithelial cells both in vitro 
and in mice. High-throughput sequencing studies have 
revealed that SIRT6-overexpressing lung tissue exhibits 
enhanced lipid catabolism. SIRT6 mitigates bleomycin-
induced ectopic lipid toxicity by promoting lipid degrada-
tion, thereby increasing energy supply and reducing lipid 
peroxide levels. Notably, peroxisome proliferator-activated 
receptor α (PPARα) has been identified as a critical mediator 
of SIRT6’s effects on lipid catabolism, anti-inflammatory 
response, and anti-fibrotic signaling. These findings suggest 

Table 1  A summary of the association between fibrosis diseases and SIRT3/6

HSC hepatic stellate cells; TECs renal tubular epithelial cells; AEC alveolar epithelial cell; TCA  tricarboxylic acid; MnSOD manganese super-
oxide dismutase; HIPK2 homeodomain-interacting protein kinase 2; CF cardiac fibroblasts; MCP-1 monocyte chemotactic protein-1; AMPK 
adenosine 5′-monophosphate-activated protein kinase; ACE2 angiotensin-converting enzyme 2; CTGF connective tissue growth factor; CTGF 
connective tissue growth factor; AP-1 activator protein-1

Disease type Cell Pathway of activation Antifibrotic drugs References

SIRT3 SIRT6

Hepatic fibrosis HSC Activation of AMPK-SIRT3 signaling SIRT6 inhibits TGF-β by deacetylat-
ing specific sites (K333 and K378) 
on Smad3

Celastrol [107, 125]

Renal fibrosis TECs Regulation of glycolysis and TCA 
cycle and other energy sources

Down-regulate HIPK2 at the post-
transcriptional level

Honokiol [52, 123]

Pulmonary fibrosis AEC Deacetylating MnSOD and mito-
chondrial 8-oxygen guanine DNA 
glycosylase;

Inhibits injury and apoptosis by inhib-
iting OGG1 acetylation at K338/341

Promote lipid degradation, thereby 
increasing energy supply and reduc-
ing lipid peroxide levels;

Inhibits NF-κB signaling pathway 
and blocks TGF-β1

Bayicalein [35, 36, 121]

Cardiac fibrosis CF Inhibit FOS transcription and reduce 
AP-1 DNA binding activity;

Reducing the production of ROS and 
TGF-β1 by inhibiting Ang-II;

Activation and regulation of ROS-
NF-κB up regulates MCP-1;

Activating AMPK- ACE2 signaling 
and inhibiting the CTGF- CTGF 
pathway;

Negatively regulate IGF-Akt signal-
ing pathway;

Inhibit the transcriptional activity and 
DNA binding activity of nuclear 
factor κB;

Daidzein
LCZ696

[71, 75, 90, 124]



 W. Wei et al.   69  Page 6 of 14

that targeting the SIRT6-PPARα-mediated lipid catabolic 
pathway holds promise as a potential therapeutic strategy 
for pulmonary fibrosis and related disorders [31]. In addi-
tion, other studies have demonstrated that SIRT6 inhibits 
NF-κB signaling pathway and blocks TGF-β1-induced lung 
myofibroblast differentiation [95, 124].

Cardiac fibrosis

Cardiac fibrosis is a common patho-physiological remod-
eling process, which greatly affects the structure and func-
tion of the heart and further causes heart failure. Abnormal 
proliferation, differentiation and migration of cardiac fibro-
blasts are responsible for excessive deposition of ECM in 
cardiac muscle [57]. Acetylation plays an important role in 
the development of cardiac fibrosis by regulating various 
pathogenic conditions, including oxidative stress, mitochon-
drial dysfunction and energy metabolism disorders [57].

SIRT3 is expressed at high levels in the heart and 
improves heart health by regulating cardiac energy [67]. 
Studies have demonstrated that SIRT3 inhibits inflamma-
tion and fibrosis in cardiomyocytes by promoter specific 
deacetylation of histone H3 lysine K27 to inhibit FOS tran-
scription and reduce activator protein-1 (AP-1) DNA bind-
ing activity [71]. Su et al. found that cardiac fibrosis was 
partly achieved by the mechanism of SIRT3 inducing ferrop-
tosis in myofibroblasts through p53 acetylation [89]. Peri-
cytes are the progenitors of myofibroblasts and fibroblasts 
and contribute to the deposition of ECM [21]. In another 
study by Su et al., SIRT3 knockdown was found to promote 
angiotensin II (Ang-II)-induced NADPH oxidase-derived 
ROS formation and increase the expression of TGF-β1. 
This suggests that Ang-II-induced myocardial fibrosis may 
involve both SIRT3-mediated transformation of pericyte into 
myofibroblast/fibroblasts and ROS-TGF-1 activity [90]. Car-
diovascular remodeling due to obesity involves structural 
and functional disorders, in which cardiac inflammation and 
fibrosis play a critical role. Studies have found that SIRT3 
upregulates monocyte chemoattractant protein-1 (MCP-1) 
by activating and regulating ROS-NF-κB, thereby inhibit-
ing cardiac inflammation and fibrosis [28]. Daidzein (DAI), 
an isoflavone found in soy foods, has antioxidant and anti-
inflammatory properties. DAI not only affects cardiac energy 
metabolism by regulating SIRT3 but also plays an antioxi-
dant role through the SIRT3/FOXO3a pathway [48]. Thera-
peutic hypothermia intervention may inhibit inflammation 
and fibrosis by modulating SIRT3/NLRP3 signaling pathway 
[119]. Through regulation of the SIRT3/MnSOD pathway, 
LCZ696 ameliorates pathological cardiac remodeling caused 
by oxygen stress and pressure overload [75].

SIRT6 is an important regulator of cardiovascular func-
tion in health and disease. Zhang et al. demonstrated that 
SIRT6 negatively regulates pathological remodeling, 

fibrosis, and myocardial injury by activating AMPK-angio-
tensin-converting enzyme 2 (ACE2) signaling and inhibiting 
the connective tissue growth factor (CTGF)-pro-inflamma-
tory chemokine fractalkine (FKN) pathway [124]. In addi-
tion, Sundaresan et al. found that SIRT6 knockdown can 
enhance histone H3 lysine 9 (H3K9) acetylation and c-Jun 
promoter transcriptional activity, resulting in the over-acti-
vation of a variety of IGF signaling related genes. These 
results indicate that SIRT6 can negatively regulate IGF-Akt 
signaling pathway and reduce myocardial hypertrophy and 
myocardial fibrosis [58]. The differentiation of cardiac fibro-
blasts into myofibroblasts represents a key event in cardiac 
fibrosis and contributes to pathological cardiac remodeling. 
SIRT6 deletion has been reported to induce the transcrip-
tional activity and DNA binding activity of nuclear factor 
κB, further exacerbating Ang-II-induced myofibroblast dif-
ferentiation [100, 112]. In addition, SIRT6 has also been 
shown to enhance mitochondrial biogenesis and mitophagy 
by deacetylation and inhibition of Sgk1, capable of ame-
liorating the cardiotoxicity induced by the anthracycline 
doxorubicin [74].

SIRT3/6 and aging

Ageing is a natural process characterized by the gradual 
decline in structural integrity of an organism over time, 
resulting in decreased functioning and an increased risk of 
biological death [61]. Cellular senescence refers to a perma-
nent state of cell cycle arrest, where cells lose their prolif-
erative capacity while maintaining viability and metabolic 
activity [126]. Ageing has emerged as a major risk factor for 
various human diseases, including diabetes, cancer, cardio-
vascular disease, and neurodegenerative disorders. Cellular 
senescence can be categorized into two types: replicative 
senescence and stress-induced premature senescence (SIPS). 
Replicative senescence occurs due to the cessation of cell 
division, which is a consequence of telomere depletion [15]. 
On the other hand, stressors such as oxidative stress and 
DNA damage can induce SIPS, leading to growth arrest 
within a few days. It is worth noting that SIPS does not 
necessarily involve telomere shortening [69]. During cel-
lular ageing, functions like autophagy, energy metabolism 
regulation, stress resistance, and metabolic status gradually 
decline.

SIRT3 and aging

SIRT3 is one of the first genes identified to extend lifespan 
[40]. As early as 2003, SIRT3 was reported to be associated 
with longevity in humans [82]. Scientists have demonstrated 
that mice without SIRT3 have significantly shorter lifespans 
and spontaneously develop cancer, metabolic syndrome, 
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cardiovascular disease, and neurodegenerative diseases [3]. 
Clinical studies have indicated that the decline in SIRT3 
activity in the elderly is mainly attributed to the reduction 
in NAD levels, which can be partially offset by appropriate 
activities [14]. Furthermore, SIRT3, as a major mitochon-
drial deacetylase, has been found to increase the acetylation 
of mitochondrial proteins in various tissues of knockout 
mice [18].

Multiple studies have posited that the advantageous 
impacts of SIRT3 on the processes of aging and disease pri-
marily occur through its facilitation of ROS clearance [86]. 
SIRT3 is involved in multiple antioxidant pathways. SIRT3 
actively participates in numerous antioxidant pathways. The 
ETC serves as a significant generator of ROS, and SIRT3 
can indirectly diminish ROS production by regulating the 
efficiency of the ETC. Furthermore, SIRT3 directly modu-
lates the activity of various superoxide scavengers through 
deacetylation, thereby mitigating superoxide production 
and averting oxidative stress (van [103]. In addition, the 
transcription coactivator PGC-1α and the transcription fac-
tor FOXO3a are involved in the regulation of antioxidant 
enzymes expression by SIRT3 [92].

SIRT6 and aging

SIRT6 is a nucleolar chromatin-associated protein that 
plays a crucial role in stabilizing the genome and telom-
eres, thereby preventing premature cell aging [66]. Animal 
studies have demonstrated that male mice with ineffective 
SIRT6 exhibit a phenotype of premature aging, while mice 
overexpressing SIRT6 show an extended lifespan [41, 66]. 
The deacetylation activity of SIRT6 is essential for maintain-
ing genomic stability. As a result of SIRT6 deacetylation of 
H3K9ac, WRN is stabilized in telomere chromatin, prevent-
ing replication-related telomere defects, fusion of end-to-
end chromosomes, and premature cell aging [66]. SIRT6 
has been found to engage in interactions with the RELA 
subunit of NF-κB, resulting in the deacetylation of H3K9ac 
at the promoter region of NF-κB target genes [9]. This pro-
cess effectively hinders cell senescence. In addition, SIRT6 
recruits the chromatin remodeler SNF2H to the DNA cleav-
age site, leading to the deacetylation of histone H3K56ac. 
This mechanism serves to prevent genomic instability and 
facilitates the repair of damaged sites through chromatin 
remodeling [104].

In human cells, SIRT6 is indispensable for the main-
tenance of telomere position effect silencing and plays a 
crucial role in preserving the structure of silenced telomere 
chromatin [98]. SIRT6 promotes the deacetylation of 
H3K18ac, which leads to the silencing of peripheral centro-
meric heterochromatin and prevents abnormal accumulation 
of peripheral centromeric transcripts [96].

Furthermore, SIRT6 regulates glucose homeostasis and 
NAD metabolic balance, contributing to the slowing down 
of the aging process. As a result of increased lipolysis and 
elevated precursor levels, SIRT6 maintains the youthfulness 
of both the gluconeogenesis and tricarboxylic acid (TCA) 
cycles [81, 109].

Pathological mechanism of SIRT3/6 
in fibrosis and aging

The pathological process of fibrosis is characterized by 
inflammation, oxidative stress, and apoptosis and energy 
metabolism (Fig. 2).

Fibrosis is characterized by the aberrant accumulation of 
ECM proteins within the interstitial space, representing a 
fundamental pathological reaction to persistent inflamma-
tion. SIRT6 was recruited to the promoter regions of NF-κB 
target genes, leading to the suppression of gene expression. 
This inhibition occurs through the deacetylation of histone 
H3K9 at the target gene’s promoter by SIRT6 [43]. Sirt6 
knockout mice exhibited obesity-related insulin resistance 
and increased inflammation in adipose tissue [45]. The 
loss of SIRT6 in macrophages resulted in the activation of 
NF-κB, leading to the production of IL-6 in the endothelium. 
This, in turn, activated the positive feedback loop involving 
STAT3 and NF-κB [47]. The interaction between SIRT6 and 
NF-κB activation enhances the pro-inflammatory M1 polari-
zation of macrophages in the bone marrow and augments the 
migratory capacity of macrophages toward adipose tissue.

SIRT3 plays a critical role in mitigating mitochondrial 
oxidative stress through direct regulation of MnSOD [79, 
94]. Furthermore, SIRT3 and SIRT4 collaborate to main-
tain mitochondrial NAD levels and safeguard against cell 
death following induced stress [117]. SIRT6 has been 
identified as a crucial element in the process of aging and 
age-related illnesses. SIRT6 interacts with NRF2, a tran-
scription factor that regulates the expression of antioxidant 
genes, including heme oxygenase 1 in human mesenchy-
mal stem cells [72]. Therefore, SIRT6-mediated activation 
of NRF2 protects cells from decay by protecting them from 
oxidative stress. Phosphatidylinositol 3-kinase (PI3K), as 
one of the central regulators of aging, plays a key role 
in the regulation of aging-related diseases [59]. Through 
PI3K activation, miR-34a becomes upregulated in epithe-
lial cells in response to oxidative stress. Oxidative stress 
triggers the activation of miR-34a, leading to a decrease in 
the expression of SIRT6 and its abilities to combat aging. 
During periods of hyperosmotic stress, the cell utilizes 
aldose reductase (AR) to control its stress reactions [101, 
102]. It is interesting to note that the increased AR expres-
sion under hyperosmotic stress is the result of SIRT6-
mediated regulation. By overexpressing SIRT6, serum 
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levels of IGF1 were reduced, IGF-binding protein 1 was 
increased, and major components of the IGF1 signaling 
pathway were phosphorylated [41].

Through autophagy, damaged cells are eliminated from 
the body, preventing cellular senescence [83]. IGF-Akt 
signaling through mTOR exerts a negative regulation on 
the process. It is reported that SIRT6 triggers autophagy in 
human bronchial epithelial cells by attenuating IGF-Akt-
mTOR signaling [93]. Induction of autophagy prevents 
cellular damage and the aging process, further supporting 
SIRT6’s role in aging.

SIRT3, known as longevity promoting sirtuin, is also 
known as the “guardian of mitochondria” [65]. SIRT3 reg-
ulates mitochondrial DNA integrity, mitochondrial struc-
tural dynamics, and functional homeostasis by affecting 
metabolism. SIRT3 exhibits deacetylase activity against 
hundreds of mitochondrial proteins and is able to regulate 
stress pathways and energy homeostasis [1]. The energetic 
regulation of SIRT3 is further enhanced by its role in the 
TCA, as it activates the functions of AceCS2 and JNK2 
[12].

Therapeutic strategies for SIRT3/6 in aging 
and organ fibrosis

SIRT3/6 has been shown by more and more studies to 
alleviate the progression of multi-organ fibrosis and is a 
promising target (Table 2).

Zhang et al. found that probucol, as a cholesterol-low-
ering drug with strong antioxidant properties, improved 
EMT and pulmonary fibrosis by restoring SIRT3 expres-
sion [118].In addition, a recent study found that baicalein 
attenuates bleomycin-induced lung fibroblast senescence 
and pulmonary fibrosis by restoring SIRT3 expression and 
inhibiting TGF-β1/Smad signaling pathway [36]. Renal 
interstitial fibrosis is a common pathway for the progres-
sive development of chronic renal diseases (CKD) with 
different etiology, and is the main pathological basis lead-
ing to end-stage renal disease. Poricoic acid A is an anti-
fibrotic drug isolated from Poria cocos. It was shown to 
attenuate renal fibroblast activation and interstitial fibro-
sis by upregulating SIRT3 and inducing β-catenin K49 

Fig. 2  Schematic representation of the pathological mechanism of 
SIRT3/6 in fibrosis and aging. The pathological process of fibrosis 
is characterized by inflammation, oxidative stress, and apoptosis and 

energy metabolism. ETC electron transport chain; MnSOD manga-
nese superoxide dismutase; PI3K phosphatidylinositol 3-kinase
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deacetylation [11]. Uncoupling protein 1 is a nuclear 
encoded protein located in the inner mitochondrial mem-
brane, which has been shown to inhibit the occurrence of 
oxidative stress by stabilizing SIRT3, thereby reducing 
EMT and ECM accumulation, and ultimately alleviating 
renal interstitial fibrosis [115]. Liver fibrosis, a chronic 
inflammatory healing reaction, progresses to hepatocir-
rhosis without effective intervention. Physion 8-O-β-
glucopyranoside (PSG), an anthraquinone derived from 
Rumex japonicus Houtt, was shown to be able to increase 
the enzymatic activity and promoter activity of SIRT3 in 
fibrotic liver and activated hematopoietic stem cells. In 
addition, PSG significantly increased SIRT3 mRNA and 
protein expression. In brief, PSG can reduce inflamma-
tory response by regulating SIRT3-mediated NF-κB P65 
expression in liver fibrosis, which is an effective anti-
fibrotic effect [10]. Hesperetin derivative (HD-16), a mon-
omer compound extracted from hesperetin, was proved by 
Li et al. to reduce ccl4-induced hepatitis and liver fibrosis 
by activating AMPK/SIRT3 pathway [49]. Studies have 

found that γ-man is a strong candidate for the treatment of 
oxidative stress-induced liver fibrosis. γ-man can induce 
SIRT3 to inhibit NAD(P)H oxidase activity, thereby reduc-
ing oxidative stress in cells. In addition, γ-man enhanced 
SIRT3 expression and decreased HMGB1 expression, 
resulting in reduced accumulation of type I collagen and 
α-SMA in the liver [105]. Zhang and colleagues demon-
strated that therapeutic hypothermia inhibits inflammation 
and fibrosis through SIRT3/NLRP3 signaling pathway to 
protect myocardial ischemia—reperfusion injury in an iso-
lated rat heart model [119]. Liu et al. explored the role of 
hydrogen sulfide through the detection of SIRT3 myocar-
dial fibrosis. They found that NaHS enhanced the activ-
ity of the SIRT3 promoter and increased SIRT3 mRNA 
expression. Altogether, NaHS attenuated myocardial 
fibrosis through oxidative stress inhibition via a SIRT3-
dependent manner [56].

SIRT6 regulates DNA repair, glucose and lipid metabo-
lism, cellular senescence, and inflammation. Studies have 
found that Yishen Tongluo formula significantly improves 

Table 2  Therapeutic strategies for SIRT3/6 in aging and organ fibrosis

Sirtuin Therapeutic strategies Disease type Pathway References

SIRT3 Probucol Pulmonary fibrosis Restoring SIRT3 expression [118]
Baicalein Lung fibroblast senescence and pulmonary 

fibrosis
Restoring SIRT3 expression and inhibiting 

TGF-β1/Smad signaling pathway
[36]

Poricoic acid A Renal interstitial fibrosis Upregulating SIRT3 and inducing β-catenin 
K49 deacetylation

[11]

Uncoupling protein 1 Renal interstitial fibrosis Inhibit the occurrence of oxidative stress by 
stabilizing SIRT3;

Reducing EMT and ECM accumulation

[115]

PSG Liver fibrosis Regulating SIRT3-mediated NF-κB P65 
expression

[10]

Hesperetin derivative Hepatitis and liver fibrosis Activating AMPK/SIRT3 pathway [49]
γ-man Liver fibrosis Induce SIRT3 to inhibit NAD(P)H oxidase 

activity;
Enhanced SIRT3 expression and decreased 

HMGB1 expression;
Reduced accumulation of type I collagen and 

α-SMA

[105]

Therapeutic hypothermia Myocardial inflammation and fibrosis SIRT3/NLRP3 signaling pathway [119]
Hydrogen sulfide Myocardial fibrosis Enhanced the activity of the SIRT3 promoter 

and increased SIRT3 mRNA expression;
[56]

SIRT6 Yishen Tongluo formula Renal fibrosis Regulating SIRT6/TGF-β1/Smad2/3 signaling 
pathway, promoting TGF-β1 degradation;

Inhibiting the expression of type I collagen, 
α-smooth muscle actin, type IV collagen and 
fibronectin

[122]

Calorie restriction Age-dependent renal degeneration and replica-
tive senescence of human fibroblast

Enhancing SIRT6 expression;
SIRT6 interacts with NF-κB to regulate 

inflammation and apoptosis

[120]

Hydrogen sulfide Cardiomyocyte senescence and diabetic myo-
cardial fibrosis

Activate cystathionine-lyase and autophagy 
through SIRT6/AMPK signaling pathway;

[53]

OSS-12816 (SIRT6-
specific inhibitor)

Myocardial fibrosis Increase the levels of inflammatory factors and 
ROS; aggravate the apoptosis and fibrosis

[34]
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renal fibrosis by regulating SIRT6/TGF-β1/Smad2/3 sign-
aling pathway, promoting TGF-β1 degradation, and then 
inhibiting the expression of type I collagen, α-smooth mus-
cle actin, type IV collagen and fibronectin [122]. It has been 
found that calorie restriction can delay age-dependent renal 
degeneration and replicative senescence of human fibroblast 
WI38 by enhancing SIRT6 expression. In addition to this, 
SIRT6 interacts with NF-κB to regulate inflammation and 
apoptosis [120]. Li and colleagues demonstrated that exog-
enous  H2S could activate cystathionine-lyase and autophagy 
through SIRT6/AMPK signaling pathway, inhibit cardiomy-
ocyte senescence and improve diabetic myocardial fibrosis 
[53]. In addition, SIRT6 is also a potentially favorable thera-
peutic target for diabetic cardiomyopathy. SIRT6-specific 
inhibitor OSS-12816 can increase the levels of inflammatory 
factors and ROS in vitro and in vivo, and aggravate the apop-
tosis and fibrosis of cardiomyocytes induced by diabetes in 
mice [34].

Perspective

Interstitial fibrosis is a prevalent pathological characteris-
tic observed in various tissues during the process of aging, 
resulting in the gradual decline of organ functionality. 
Among the organs commonly affected by age-related ail-
ments, the kidneys are particularly susceptible, rendering 
older individuals more prone to chronic kidney disease.

Mammalian sirtuins have emerged as a group of meta-
bolic regulators that facilitate the connection between pro-
tein acetylation and energy metabolism. While the com-
prehension of the roles of distinct sirtuins across different 
organ levels is still in its nascent phase, there has been some 
advancement in identifying sirtuin targets that have a wide 
range of effects on cellular protection and regeneration 
mechanisms. Consequently, a logical progression from these 
discoveries is the exploration for compounds that activate 
sirtuins [20, 88]. Resveratrol has the ability to function as 
an allosteric modulator, inducing structural alterations in 
the substrate, consequently enhancing its affinity for sirtuins 
[4]. Encouraging results have been achieved in the areas of 
diabetes, cardiovascular disease, and neuropathy. Regarding 
SIRT3, magnolol has demonstrated the ability to selectively 
activate SIRT3, thereby exhibiting anti-inflammatory and 
antioxidant effects in both chronic and acute kidney disease 
models [50, 51].

Ageing is a major risk factor for chronic diseases and 
is highly associated with cardiovascular disease, cancer, 
metabolic disorders, and decline in organ function over 
time [113]. It is important to note that most fibrotic diseases 
become more common with age. In an increasingly aging 
population, the use of effective anti-fibrosis treatments is 
essential to extend healthy life. In recent years, the important 

physiological functions of SIRTs in the pathophysiology of 
organ fibrosis have attracted extensive attention. SIRT regu-
lates a variety of biological functions in different processes. 
In addition, SIRT is considered a therapeutic target for age-
related diseases. As two different subtypes of SIRTs, SIRT3 
and SIRT6 play an irreplaceable role in the prevention and 
treatment of aging and fibrosis. Based on the description 
of aging and fibrosis, the function of SIRT3/6 in aging and 
organ fibrosis was summarized, and some prevention and 
treatment strategies were provided for aging and organ 
fibrosis.

This review also has some limitations, fibrosis and aging 
are complex processes and mutual influence. Insights into 
the regulatory mechanisms of SIRT have been extrapolated 
from in vitro studies, lacking more data from clinical trials. 
In addition, other members of the SIRT family also play 
an important role in fibrosis and aging, which requires fur-
ther study and comparison of the interaction and interaction 
between SIRT family members.

The advancements made in the targeting of SIRT3/6 have 
shown promising potential for the development of novel 
therapies aimed at addressing tissue injury and fibrosis 
associated with aging. In addition, these investigations have 
elucidated the underlying mechanisms of SIRT3/6-mediated 
signaling pathways involved in oxidative stress, inflamma-
tion, and apoptosis across various tissues. In conclusion, the 
findings from previous research serve as a valuable founda-
tion for future studies focused on the prevention and mitiga-
tion of age-related tissue fibrosis.
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