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Abstract
The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including 
development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease 
responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in 
controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA 
hairpins such as the 5′-phosphate, the apical loop, and the 2-nt 3′-overhang are important for the processing activity of Dicer. 
Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3′-overhang and get mono-uridylated in vivo, 
presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation 
and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and 
structural features of all human let-7 pre-miRNAs, including their 3′-end modifications, on Dicer binding and processing. 
Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we 
show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and 
cleaving these substrates. Moreover, the 1- or 2-nt 3′-overhang, 3′-mono-uridylation, and 3′-oligo-uridylation of pre-let-7 
substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regard-
ing the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3′-modifications on binding 
and cleavage by Dicer.

Keywords Let-7 microRNA · miRNA precursors · RNA structural probing · Dicer binding · Dicer cleavage · TRBP · 
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Introduction

MiRNAs (miRNAs) are ~ 22 nucleotides (nt) small non-cod-
ing RNAs that regulate gene expression in nearly all biologi-
cal processes [1–4]. They contain a seed sequence of 2–7 nt 
near the 5′ end that generally binds to the complementary 

region of target mRNAs to mediate translational repression 
and mRNA degradation [5, 6]. The lethal-7 (let-7) miRNAs 
are one of the largest families of miRNAs and are highly 
conserved across different species from worms to humans 
[7–9]. In humans, there are 10 mature let-7 miRNAs (let-7a, 
let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-98, 
and miR-202) that share the same seed sequence, but are 
derived from 13 distinct gene loci [10]. They play critical 
roles in many biological processes including cell differentia-
tion and development, and generally function as tumor sup-
pressors [11, 12]. Alterations in the levels of let-7 miRNAs 
have been associated with several human diseases, such as 
several types of cancer, neurodegenerative disorders, and 
viral infections [8, 11, 13].

Let-7 miRNAs undergo the canonical pathway of matura-
tion, which involves their processing by two endoribonucle-
ases belonging to the RNase III family, Drosha and Dicer 
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[12]. Drosha interacts with a dimer of DiGeorge critical 
region 8 (DGCR8) to form the Microprocessor complex that 
cleaves the primary miRNA (pri-miRNA) transcripts to a 
precursor miRNA (pre-miRNA) in the nucleus [9, 10]. The 
pre-miRNA is exported to the cytoplasm and therein pro-
cessed by Dicer and its optional cofactor, the transactivation 
response element RNA-binding protein (TRBP), generating 
a miRNA duplex, from which the mature miRNA strand 
is selected as part of the RNA-induced silencing complex 
(RISC). Faulty processing of immature forms of miRNA 
(pri-miRNA and pre-miRNA) could generate non-cognate 
substrates for the subsequent steps and affect gene silenc-
ing [14]. Thus, the expression and the specific functions of 
miRNAs are highly dependent on both Drosha and Dicer 
processing [15].

Dicer is responsible for the second cleavage step of the 
canonical miRNA maturation pathway. It is a large multi-
domain protein that adopts an L-shape structure where the 
Platform-PAZ-Connector (PPC) cassette is positioned at the 
top of the “L,” the helicase domain forms the base and the 
two RNase III domains (RIIIDa and RIIIDb) fall in between 
[16–22]. This architecture allows Dicer to interact with 
the extremities of the pre-miRNA hairpins. The Platform 
and PAZ domains contain binding pockets for the 5′-phos-
phate and the 2-nt 3′-overhang of the pre-miRNA, respec-
tively, and the helicase domain specifically interacts with 
the single-stranded hairpin loops of pre-miRNAs [23–25]. 
The RIIIDa and RIIIDb domains intramolecularly dimerize 
to form the catalytic center that cleaves each strand of the 
pre-miRNA. The anchoring of both ends of the pre-miRNA 
is critical for determining the cleavage sites of Dicer as it 
locates the catalytic center ~ 21–22 nt or ~ 58 Å away from 
the free ends of the pre-miRNAs [19].The dsRBD domain 
has RNA-binding affinity and enhances the cleavage effi-
ciency of Dicer. Structural investigations along with bio-
chemical and functional studies have revealed that these 
specific interactions of different domains of Dicer with the 
pre-miRNA are critical for precise and efficient processing 
[26]. The most recent cryo-EM studies have further sup-
ported the importance of these interactions by capturing 
structural rearrangements that occur during the transition 
from a pre-dicing state to a dicing state in both human and 
mouse Dicer [20–22]. These studies reveal that the catalytic 
center of Dicer is far from the pre-miRNA cleavage sites 
in the pre-dicing state and that Dicer undergoes structural 
rearrangements to accommodate the RNA substrate at the 
catalytic center.

Several sequence and structural features of pre-miRNAs 
are known to be associated with the processing efficiency of 
Dicer. Biochemical studies have shown that Dicer preferen-
tially bind and cleave pre-miRNAs with a 2-nt 3′-overhang 
and apical loops > 9 nt [27]. It requires the 5′-phosphate for 
precise cleavage and altering the length of the 3′-overhang 

impairs processing by Dicer [25]. The ends of the pre-
miRNA and the position of the apical loop are important 
for precise cleavage by Dicer [28, 29], exemplified by the 
numerous “counting rules” described in the literature. Dicer 
can determine the cleavage site based on a 5′ counting rule 
(21–22 nt away from the 5′-phosphate), a 3′ counting rule 
(21–22 nt from the 3′-end), and/or a loop counting rule (2-nt 
away from the apical loop) [27, 30–32]. The mismatches, 
bulges, symmetrical and asymmetrical internal loops in the 
double-stranded RNA (dsRNA) region of the pre-miRNAs 
have been associated with processing efficiency of Dicer, 
although not in all cases [29, 33]. However, specific struc-
tures at the Dicer cleavage site (e.g., bulge, base triplet) are 
known to affect Dicer cleavage [33, 34]. The sequence iden-
tity two nucleotides upstream and downstream of the cleav-
age site (5′-NN^NN-3′) has also been found to modulate 
Dicer cleavage [35, 36]. In addition, a paired guanine (G) 
followed by a pyrimidine (Y) and a mismatched cytosine or 
adenine (M) (GYM motif) near the cleavage site promotes 
Dicer processing at a specific position [37]. Thus, several 
structural features of pre-miRNA regulate miRNA matura-
tion pathway by modulating the cleavage activity of Dicer. 
However, the roles of different structural features for Dicer 
processing of the let-7 family have not been investigated 
systematically. Moreover, the secondary structures of let-7 
precursors have been previously determined for only a few 
family members [19, 38, 39]. Given that differences in the 
structure of pre-miRNA may modulate Dicer activity, it is 
important to further examine the secondary structures of all 
let-7 precursors.

Several RNA-binding proteins (RBPs), such as Lin28A/B 
and terminal uridyltransferases (TUTase) also known as ter-
minal nucleotidyltransferases (TENTs), add another layer of 
regulation in pre-let-7 processing by Dicer. By themselves, 
TUTases interact transiently with pre-let-7 and can add 1 to 
3 uridines at the 3′-end of pre-let-7 [40–42]. However, in the 
presence of Lin28, TUTases (TENT2 also known as TUT2, 
TUT4, or TUT7) were found to oligo-uridylate pre-let-7, 
and this modification is known to promote degradation by 
the 3′–5′ exonuclease DIS3L2 [41, 43–45]. In the pre-let-7 
family, 9 members contain a 1-nt 3′-overhang (Group II pre-
miRNA) instead of a typical 2-nt 3′-overhang (Group I pre-
miRNA) found in most pre-miRNAs. These group II precur-
sors get mono-uridylated in vivo by TUTases to generate a 
2-nt 3′-overhang [41]. About 20–30% of Group II pre-let-7 
in HEK-293 cells are found to contain an extra uridine at 
the 3′-end and 1% contain adenine [41, 46, 47]. The mono-
uridylated pre-let-7 have been shown to be processed more 
efficiently by an immuno-purified Dicer than the unmodified 
pre-let-7 [41], presumably because they are better substrates 
for Dicer binding and cleavage. Although oligo-uridylated 
pre–let-7 are viewed as being less responsive to processing 
by Dicer [40], it is not clear how oligo-uridylation directly 
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affects pre-miRNA cleavage by Dicer. In addition, TENT2 
can add adenines at the 3′-end of pre-miRNAs, which have 
been shown to affect miRNA maturation [47, 48]. However, 
it is not clear how these 3′-end modifications of pre-let-7 
affect Dicer processing.

In this study, the secondary structural features of all mem-
bers of the let-7 family were systematically characterized by 
Selective 2′-Hydroxyl Acylation analyzed by Primer Exten-
sion (SHAPE) and detailed thermodynamic and kinetic 
investigations were performed in vitro using purified recom-
binant Dicer and pre-let-7 RNAs. Surprisingly, this study 
reveals that Dicer shows remarkable promiscuity for struc-
turally different substrates, since it binds with similar affinity 
and cleaves with similar specificity all pre-let-7 substrates, 
including those of Group II with a 1-nt 3′-overhang. We also 
investigated the effect of 3′-end modifications of pre-let-7 in 
modulating binding and cleavage by Dicer. This study pro-
vides evidence that mono-uridylation does not substantially 
affect the rate of cleavage by Dicer in vitro and brings new 
information on the effect of 3′-extension on Dicer activity. 
Overall, this study challenges current views regarding the 
effect of 3′-end modifications on the processing activity of 
Dicer while highlighting its remarkable promiscuity toward 
pre-let-7 substrates.

Material and methods

Cloning

For this study, human pre-let-7 sequences were retrieved 
from the miRBase [49], and corrected as needed using 
results from Drosha cleavage assays of pre-let-7 RNAs [41]. 
For SHAPE studies, the coding sequence for each pre-let-7 
RNA was cloned into a pTZ19R vector containing a cassette 
composed of a 5′-linker, a 3′-linker, and a reverse transcrip-
tion (RT) primer binding site, as previously described [50]. 
Based on mFold secondary structure predictions [51], a one-
nucleotide modification at the + 1 position of the 3′-linker 
sequence was introduced, changing the U into G, to prevent 
interaction of the cassette with the pre-let-7 RNAs. For Dicer 
binding and cleavage studies, the pUC19-HH-pre-let-7-HDV 
vectors used for pre-let-7 transcription were constructed as 
described previously for pre-let-7a-1 [52].

RNA synthesis and purification

For SHAPE probing, the linearized plasmid was incubated 
with T7 RNA polymerase (prepared in house) for 3 h at 
37 °C in the presence of 40 mM Tris pH 7.6, 50 mM DTT, 
30 mM  MgCl2, 1 mM spermidine, 0.1% Triton X-100, 4 mM 
for each standard NTP, and 0.2 U/uL RNasin ribonuclease 
inhibitor. The transcribed RNA was purified using 10% 

denaturing polyacrylamide gels, visualized by UV shadow-
ing, and excised from the gel. The RNA was then extracted 
from the gel by crush and soak in TEN buffer (0.3 M NaCl, 
10 mM Tris and 1 mM EDTA, pH 7.6); the eluate was fil-
tered, ethanol precipitated and resuspended in  ddH2O. The 
RNA purity was assessed on 10% polyacrylamide denatur-
ing gels.

For Dicer binding and kinetic studies, the synthesis of all 
pre-let-7 substrates and 5′-end phosphorylation were car-
ried out as described previously [52, 53]. Briefly, each pre-
let-7 RNA was transcribed in vitro with 5′-Hammerhead and 
3′-HDV ribozyme tags that self-cleaved in the transcription 
reaction to yield an RNA with homogeneous 5′- and 3′-ends 
[54]. The pre-miRNA was then purified by denaturing gel 
electrophoresis and treated with T4 polynucleotide kinase 
using either unlabeled ATP or ATP-γ-32P to mimic the 5′- 
and 3′-ends of natural Dicer substrates resulting from cleav-
age of primary miRNAs by Drosha. This enzymatic treat-
ment phosphorylates the 5′-OH and modifies the 3′-end by 
opening the 2′,3′-cyclic phosphate and removing the 3′-phos-
phate [55, 56]. Subsequently, the 5′-monophosphorylated 
RNAs were purified either by denaturing anion-exchange 
HPLC (cold RNA) or by denaturing gel electrophoresis 
(32P-labeled RNA) and stored in TE buffer (10 mM Tris pH 
8.0 and 1 mM EDTA) at − 20 °C.

SHAPE probing

The secondary structure of let-7 RNA precursors was char-
acterized by SHAPE. The chemical probing experiments 
were performed in triplicate for all pre-let-7 RNAs, except 
for pre-let-7a-3 and pre-let-7f-1, which were done in dupli-
cate. Typically, 16 pmol of the RNA was refolded in 50 mM 
HEPES pH 7.4 and 50 mM NaCl, heated at 90 °C for 2 min, 
then cooled on ice for 10 min, after which 5 mM  MgCl2 
was added. The refolded RNA was then treated with 1 µL 
of 80 mM of 1-methyl-7-nitroisatoic anhydride (1M7) for 
5 min at 37 °C in a final reaction volume of 12 µL. A con-
trol sample was prepared, in which DMSO was added to 
the RNA instead of the 1M7 reagent. Following the reac-
tion, the RNA was ethanol precipitated and resuspended in 
 ddH2O. Using this RNA, a reverse transcription (RT) reac-
tion was performed according to the manufacturer’s protocol 
using 16 pmol of a 5′-6FAM-labeled primer (5′-CGA ACC 
GGA CCG AAG CCC G-3′) to generate 5′-labeled cDNA 
fragments. Using the same RT protocol, an RNA sequenc-
ing reaction was set up, with either didATPs, didTTPs or 
didCTPs, using a 1:1 dNTP:didNTP ratio. The cDNA frag-
ments from RT and sequencing reactions were analyzed by 
capillary electrophoresis at the genomics platform of the 
Institute for Research in Immunology and Cancer (IRIC) 
at the Université de Montréal. The resulting SHAPE data 
were processed using the RiboCAT and RiboDOG software 
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[57] to generate constraints files that were input into the 
RNAstructure software [58]. Using the Fold algorithm of 
the RNAstructure software, the secondary structures of let-7 
RNA precursors were generated with default settings except 
for: Maximum Loop Size = 40; Maximum % energy differ-
ence = 50 (ΔEmax = 50%); SHAPE slope = 2.6; and SHAPE 
intercept = −0.8 [59].

Protein expression and purification

The wild-type human Dicer (Dicer) and catalytically inactive 
variant (ciDicer: D1320A/D1709A) proteins were expressed 
and purified as described previously [52]. Briefly, the pro-
teins were expressed from a pTT5 vector in HEK 293-6E 
cells grown in suspension. The cells were first diluted to 
0.8 ×  106 cells/mL 24 h before transfection with the pTT5 
vector along with 2× polyethylenimine (PEI). After three 
days, the cells were harvested, and the pellets were frozen 
with liquid nitrogen and stored at −80 °C until purification. 
Dicer proteins were purified by anion-exchange chroma-
tography (Q Sepharose Fast Flow in a XK 26/20 column), 
Ni–NTA affinity chromatography (5-mL HisTrap High 
Performance column), and size-exclusion chromatography 
(Superdex 200 16/600 column), as described previously 
[52]. The last column was pre-equilibrated with storage 
buffer (50 mM Tris pH 8.2, 10 mM NaCl/KCl 24:1, 0.5 mM 
 MgCl2, 0.5 mM TCEP, 5% Sucrose, and 0.3 mM DDM 
(n-dodecyl-β-d-maltoside)) and the eluted fractions contain-
ing monomeric Dicer were concentrated to around 2–3 µM 
on a 7-mL Apollo concentrator 150-kDa MWCO (Orbital 
Biosciences). The purified protein was aliquoted, frozen in 
liquid nitrogen, and stored at −80 °C.

For TRBP expression, a pET21a vector containing the 
TRBP sequence (DNASU HSCD00045566 [60]) was 
transformed in Escherichia coli Rosetta (DE3) pLys strain. 
The bacterial cultures were grown at 37 °C in LB medium 
supplemented with 35  mg/L chloramphenicol and 100 
mg/L ampicilin, induced at an OD600 of 0.6 with 0.1 mM 
isopropyl-β-d-thiogalactopyranoside (IPTG), and then 
grown for 16 h at 16 °C. The cells were harvested by cen-
trifugation and resuspended in HisA buffer (20 mM Tris 
pH 8.0, 500 mM NaCl, 20 mM imidazole, and 4 M Urea) 
supplemented with one tablet of Roche complete protease 
inhibitor. The cells were then lysed by French press and cen-
trifuged at 100,000×g for 45 min at 4 °C. The supernatant 
was loaded onto a 20-mL gravity flow Nickel-bound IMAC 
column (GE Healthcare) equilibrated with HisA buffer. The 
column was then washed with 10 column volumes (CV) of 
HisA buffer, and the bound proteins eluted with HisB buffer 
(20 mM Tris pH 8.0, 500 mM NaCl and 300 mM imidazole). 
The fractions containing TRBP were pooled, supplemented 
with TEV protease and dialyzed overnight in TEV buffer 
(20 mM Tris pH 8.0, 100 mM NaCl and 5 mM DTT) at room 

temperature. The retentate was then loaded on 60-mL of SP 
Sepharose High Performance media packed in a XK 26/20 
column (GE Healthcare) and equilibrated with SPsephA 
buffer (20 mM Tris pH 8.0 and 1 mM DTT). The column 
was then washed with 2.5 CV of 10% SPsephB buffer (20 
mM Tris pH 8.0, 500 mM NaCl and 1 mM DTT), and TRBP 
was eluted using a linear gradient (from 10 to 100% over 4 
CV) of SPsephB. Fractions containing TRBP were pooled 
and dialyzed in storage buffer (100 mM Tris pH 7.4, 100 
mM NaCl and 10% glycerol). The dialyzed sample was then 
concentrated to 20–50 μM, aliquoted, flash frozen in liquid 
nitrogen, and stored at −80 °C.

Binding assays for Kd determination

Binding assays to characterize the pre-let-7/Dicer interac-
tions were performed with ciDicer using an electrophoretic 
mobility shift assay (EMSA), as described previously [52]. 
Typically, the binding reactions were initiated by adding 
10 µL of the RNA sample to 10 µL of the protein samples, 
both diluted with Dicer binding (DB) buffer (50 mM Tris 
pH 7.6, 50 mM NaCl, 10% glycerol, 0.05% NP-40, and 2 
mM DTT) and incubated at 4 °C for 30 min. The RNA was 
heated at 95 °C for 2 min and snap-cooled on ice for 5 min 
before diluting it with the DB buffer. Dicer binding reactions 
used to determine Kd values contained 2 pM 32P-labeled 
RNA and protein concentrations varying between 0.01× and 
100× of the estimated Kd value. The Dicer-binding reactions 
were loaded on a 4–15% gradient polyacrylamide gel (37.5:1 
acrylamide:bis-acrylamide) in Tris–Glycine buffer (25 mM 
Tris–Base pH 7.4 and 200 mM glycine) and run for 2 h at 
200 V in the cold room. The protein-bound and unbound 
RNA fractions were quantified by phosphor imaging using 
either a personal molecular imager (PMI) system (BioRad) 
or a GE Typhoon FLA 9500. The fraction of bound RNA 
was then plotted against protein concentration, and the bind-
ing data were fitted to the Hill equation with the OriginPro 
2020 SR1 software (OriginLab). The Kd values are reported 
with experimental errors taken from the average and stand-
ard deviations from at least three independent experiments.

Steady‑state kinetic studies of pre‑let‑7 cleavage 
by Dicer

Steady-state kinetic studies involving Dicer and the pre-let-7 
substrates were carried out as described previously [52]. 
Briefly, RNA and proteins solutions were prepared sepa-
rately at twice their final desired concentration in 30 µL of 
the cleavage buffer (50 mM HEPES pH 7.4, 50 mM NaCl, 
5 mM  MgCl2 and 0.05% NP-40). The RNA solutions, con-
taining 80 pM of 32P-labeled pre-let-7 substrate and dif-
ferent concentrations of the corresponding non-labeled 
5′-monophosphorylated RNA (from 80 to 7680 nM), were 
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heated at 95 °C for 2 min and snap-cooled on ice for at least 
5 min to refold the RNA. Both RNA and protein solutions 
were pre-heated for 5 min at 37 °C, and cleavage reactions 
were initiated by adding 30 µL of the protein solution to 
30 μL of the RNA solution. A 5-µL aliquot of the cleavage 
reaction was taken at 5, 10, 15, 20, 25, and 30 min, mixed 
with 25 µL of stop buffer and placed on ice. The cleavage 
reactions were analyzed by denaturing gel electrophoresis 
[15% acrylamide:bis-acrylamide (19:1)/7 M urea gel]. The 
amounts of substrate (S) and product (P) were quantified 
from radioactive bands detected by phosphor imaging, and 
the fraction of product [F = P/(S + P)] was plotted against 
time. The resulting time courses were fitted by linear regres-
sion (y = mx + b); the slope (m) of the linear fit was taken as 
the initial velocity (v0). To ensure that initial cleavage rates 
were measured under steady-state conditions, the enzyme 
concentration ([E]) was varied along with the initial sub-
strate concentration ([S]) to maintain [S]/[E] ≥ 50, and 
time points were collected after at least one turnover of the 
enzyme pool and with 5–10% of the substrate being cleaved 
within 30 min. The dependence of v0/[E] on [S] was plotted 
and fitted to the Michaelis–Menten equation (written as v0/
[E] = kcat[S]/(KM + [S]) with the OriginPro 2020 SR1 soft-
ware (OriginLab) to derive kcat and KM values. The quality of 
the fit was obtained from the square of the correlation coef-
ficient (R2), and in all cases R2 ≥ 0.97 and the distribution of 
residuals was random around the regression line.

Single turnover kinetic studies of pre‑let‑7 cleavage 
by Dicer

Single turnover kinetic studies were typically carried out 
in 60-µL reaction volumes containing 0.1 nM 32P-labeled 
pre-let-7 substrate and 5 nM Dicer in cleavage buffer. The 
RNA was first refolded by heating at 95 °C for 2 min and 
snap-cooled on ice. Both RNA and protein-containing solu-
tions were pre-heated for 5 min at 37 °C, and reactions were 
initiated by adding the RNA solution (2 µL) to the protein-
containing solution. The cleavage was carried at 37 °C and 
5-µL aliquots were taken at specific time points (0.5, 1, 2, 5, 
10, 20, 30, 40, and 60 min). To stop the reaction, each ali-
quot was diluted in 45 µL of stop buffer (0.1% bromophenol 
blue, 95% formamide, and 50 mM EDTA) and immediately 
placed on ice. For the 0-min time point, no Dicer was added 
to the cleavage reaction. The samples were heated at 95 °C 
for 2 min before loading on a 15% acrylamide:bis-acryla-
mide (19:1)/7 M urea gel, that was then run at 220 V for 1 h. 
The gels were soaked in a buffer containing 20% ethanol, 5% 
acetic acid, and 1 × TBE for 30 min before they were dried 
with a vacuum gel dryer. The dried gel was then exposed to 
the phosphor imaging screen overnight and scanned using 
phosphor imaging. The amounts of substrate (S) and product 
(P) were quantified from radioactive bands in the gel and the 

percentage of cleavage [%C = P/(S + P) * 100] was plotted 
against time. The data was fit to an exponential equation 
using nonlinear regression in OriginPro 2020 SR1 software 
(OriginLab) by using the equation y = y0 + A * exp (−R0 * x), 
where y is the percentage of cleavage at a given time point, 
y0 is the maximum percentage of cleavage at the plateau 
(x ≥ ∞), and R0 is the observed rate constant (kobs). The qual-
ity of the fit was obtained from the square of the correlation 
coefficient (R2), and in all cases, R2 ≥ 0.98. The kobs values 
are reported with experimental errors taken from the aver-
age and standard deviations from at least three independent 
experiments.

Characterization of miRNA‑5p products

To characterize the 5p products of pre-let-7 cleavage by 
Dicer, we carried out cleavage assays under single-turnover 
conditions as described above, but taking a single time point 
at 15 min. T1 ladders were generated by incubating 0.05 
nM of 32P-labeled pre-let-7a-2 (or pre-let-7f-1) in a 10-µL 
volume containing 20 mM sodium citrate pH 5.0, 1 mM 
EDTA, 7 M Urea, 0.37 mg/mL yeast tRNA with 0.05 U 
of T1 nuclease (Sigma-Aldrich) for 5 min at 37 °C. The 
hydroxyl ladders were generated by incubating 1 nM of 
32P-labeled pre-let-7a-2 (or pre-let-7f-1) in a 5-μL reaction 
volume containing 50 mM  NaHCO3/Na2CO3 pH 9.2, 1 mM 
EDTA, 0.25 mg/mL yeast tRNA for 7 min at 95 °C. The 
reaction was stopped by adding ~ 1× volume of stop buffer. 
Each reaction was further diluted with 20 mL of stop buffer 
and analyzed by loading 10 μL of the diluted reaction on a 
20% acrylamide:bis-acrylamide (19:1)/7 M urea gel run at 
800 V for about 2.5 h. The dried gel was visualized using 
phosphor imaging.

Pre‑let‑7 cleavage by Dicer in the presence of TRBP

Single-turnover kinetics for pre-let-7 cleavage by Dicer in 
the presence of TRBP was performed under standard condi-
tions using 0.1 nM pre-let-7 substrate, 5 nM Dicer and 5 nM 
TRBP. For pre-let-7 cleavage by Dicer under multiple-turn-
over conditions in the presence of TRBP, the experiments 
were performed as described earlier, except that 25 nM pre-
let-7 substrate, 0.5 nM Dicer, and 10 nM TRBP were used, 
and aliquots were taken at 5, 10, 20, 30, 40, 60, 90, and 120 
min. For both single-turnover and multiple-turnover kinetic 
experiments, Dicer and TRBP were co-incubated at 37 °C 
for at least 10 min before adding RNA to initiate the cleav-
age reaction.

Model building of the Dicer‑pre‑let‑7 complex

To build the model of Dicer-TRBP bound to a pre-let-7 RNA 
with an extended 3′-end, the PDB file 5ZAL [19] was used 
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as initial atomic coordinates. The 3′-end extension was then 
modeled as a single-stranded A-form helix using BIOVIA 
Discovery Studio Visualizer and energy minimized using 
CHARMM [61]. STRIDER was used for analysis of steric 
hindrance [62].

Results

Primary structure of the let‑7 pre‑miRNAs

A comparative analysis of pre-let-7 RNA sequences was 
first conducted based on previous studies to uncover their 
distinctive features beyond their classification as Group I 
or Group II pre-miRNAs (Supplementary Table S1). Their 
length ranges from 58 to 79 nt, with pre-miR-202 (m202) 
being the shortest and pre-miR-98 (m98) the longest. For 
twelve members, the conserved seed sequence is nested 
in the 5p-miRNA, whereas for m202, the conserved seed 
sequence is in the 3p-miRNA [10]. Dicer cleavage sites are 
fairly conserved for the 5p let-7, with UU^(G/U)N and (C/A)
A^CU consensus at the 5p and 3p sites, respectively [49]. 
For miR-202, the cleavage sites are different with UG^AG 
and AA^AG at the 5p and 3p sites, respectively [49]. These 
Dicer cleavage sites separate the double-stranded miRNA 
portion (dsRNA) from the apical loop region, which ranges 
between 14 and 34 nt.

Secondary structure of the let‑7 pre‑miRNAs

To systematically determine the secondary structures of 
all pre-let-7 miRNAs, SHAPE probing was performed 
using the fast-acting reagent 1M7, and secondary struc-
tures were determined using the RNAstructure software 
[58] (Fig. 1). A single structure defines the 10% lowest-
energy conformation(s) of most let-7 members, except for 
7e and 7f2, which are defined by two energetically similar 
conformations that likely co-exist in solution (Supplemen-
tary Table S2). When considering the 50% lowest-energy 
conformations, a few other pre-let-7 members are defined 
by more than a single conformation, namely 7f1, 7i, and 
m98 (Supplementary Fig. S1). The lowest-energy structures 
derived from SHAPE data are generally different from those 
reported in miRBase [49] or predicted by mFold based on 
nearest neighbor thermodynamic rules (Supplementary 
Fig. S2) [51]. We also found some differences with sec-
ondary structures derived from chemical probing data for 
7a1, 7c, 7f1, 7g, and m98 that may result from variations in 
experimental conditions [19, 39], although our 7g structure 
is in good agreement with dsRNA cleavage data [38].

These SHAPE-derived structures are in good agreement 
with the experimental SHAPE reactivities, with > 95% 
of highly reactive bases not being involved in canonical 

base-pairing or residing adjacent to helices, termini or 
bulges/loops. Reactive nucleotides in paired region are often 
associated with G–U base pairs and/or base-pair stacking 
that is less energetically favorable, as previously observed 
[63]. Non-reactive nucleotides in unpaired regions could 
be due to base stacking. Alternatively, it may suggest that 
the reactivity is not fully compatible with a single structure 
but rather is consistent with an ensemble of structures, as 
observed for the 10% lowest-energy conformations of 7e 
and 7f2 (Fig. 1) and the 50% lowest-energy conformations 
of 7f1, 7i, and m98 (Supplementary Fig. S1). Two types of 
apical loops are observed for the pre-let-7 RNAs in Fig. 1. 
In the first set, the pre-miRNAs form a large loop, either an 
internal loop (7a1, 7d, 7f2, and 7 g) or a terminal loop (7a2, 
7e, 7f2, and m202). In the second set, the structures contain 
a large 3′ bulge near the cleavage site (7a3, 7b, 7c, 7e, 7f1, 
7i, and m98). For all pre-let-7 members, except 7e, the 5p 
cleavage site is located exactly at the junction between the 
paired region and the large loop/bulge region or 1–2-nt away. 
For the latter cases, only minor conformational changes 
would be required to bring the 5p cleavage site in a dicing-
compatible conformation, as found in recent cryo-EM struc-
tures of human Dicer in the dicing state [19, 21]. In contrast 
to current conception, SHAPE results indicate that several 
residues at the 5′/3′ ends of all pre-let-7 are mostly unpaired 
and flexible, except for m202. Thus, the SHAPE results are 
generally consistent with the view that pre-let-7 RNAs are 
best described by a dynamic ensemble of conformations, 
with each pre-let-7 having its own structural characteristics.

Binding of let‑7 pre‑miRNAs to Dicer

For in vitro binding and kinetic studies of Dicer with precur-
sors of the let-7 family, we used pre-let-7 substrates care-
fully prepared to replicate the cleavage products generated 
by Drosha (Fig. 1 and Supplementary Fig. S3a–c). Those 
RNAs were 5′-32P-end-labeled to enhance the sensitivity, 
precision, and quantitative aspects of our analyses while 
ensuring that the chemical structure of the 5′- and 3′-ends 
corresponds exactly to those of natural pre-let-7 substrates. 
This labeling approach is highly suitable for these studies 
given that it allows the observation 5′-cleavage products and 
that the let-7 miRNAs mature primarily from the 5p arm.

For binding studies, we performed electrophoretic 
mobility shift assays using 32P 5′-end-labeled RNAs and 
catalytically inactive Dicer (ciDicer). Apparent dissocia-
tion constants (Kd) were determined for all thirteen pre-
let-7 members as shown for 7a1 (Fig. 2a). To allow a fair 
comparison between values obtained for different pre-let-7 
members, experiments were performed under identical con-
ditions using the same preparation of Dicer for all RNAs. We 
found that the Kd values for all thirteen pre-let-7 members 
range between 7 and 17 nM (Table 1), which is in good 
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Fig. 1  Secondary structures of the lowest energy conformer(s) for 
pre-let-7 RNAs determined by SHAPE analysis. The structures 
shown represent the lowest energy conformation(s), using a thresh-
old of maximum energy difference with the lowest energy structure 
of 10% (ΔEmax = 10%; see Supplementary Table S2). The normalized 

1M7 reactivity of each nucleotide is color-coded as per the SHAPE 
reactivity key. Dicer cleavage sites according to miRBase are indi-
cated with an arrowhead and Group II pre-let-7 are annotated with 
a star
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general agreement with previous studies of Dicer binding to 
7a1 under similar conditions [29, 64]. A surprisingly small 
range (~ twofold) of Kd values were observed for the thirteen 
pre-let-7 members (Fig. 2b). Pre-miR-202 with its smaller 
apical loop (14-nt) has the lowest Kd value (7 nM), two-
fold smaller than the average of the twelve other members 
(13.7 ± 2.3 nM). Overall, it appears that the sequence and 
structural differences identified in the pre-let-7 RNAs (Fig. 1 
and Supplementary Table S1), including the type of 3′-over-
hang (Group I versus Group II), do not affect Dicer binding.

Single‑turnover kinetic studies for pre‑let‑7 
cleavage by Dicer

To compare the cleavage activity of Dicer for different pre-
let-7 members, single-turnover kinetics were performed with 

a 50-fold excess concentration of enzyme (5 nM) over the 
substrate (0.1 nM). The integrity and thermal stability of the 
Dicer protein used for our kinetic studies was first validated 
by SDS-PAGE before and after incubation at 37 °C for 30 
min (Supplementary Fig. S3d). The observed rate constant 
(kobs) values were derived for all thirteen pre-let-7 substrates 
as shown for 7a1 (Fig. 3a). Cleavage data for all pre-let-7 
fit well the single-exponential function describing pseudo-
first-order kinetics and reaching a cleavage saturation of 
93% to 98% (Fig. 3b). We found that the observed rate 
constant (kobs) values range between 0.12 and 0.44  min−1. 
(Table 1). These results indicate that Dicer cleaves these 
RNAs with very similar rates (within 3.4 folds) under the 
same single turnover conditions (Fig. 3c), with m202 hav-
ing the fastest rate, 2.5-fold faster than the average of the 
twelve other members (0.175 ± 0.047  min−1). Moreover, 

Fig. 2  Binding studies of Dicer with pre-let-7 RNAs. a Typical 
EMSA performed with 5′-32P-labeled pre-let-7a-1 and increasing con-
centrations of ciDicer. The bound (B) and unbound (U) RNA frac-
tions were analyzed on a 4–15% gradient native PAGE. The bound 
fractions were plotted against Dicer concentrations and the data 

were fitted to the Hill equation to obtain the dissociation constant 
(Kd = 12  nM). b Relative Kd values for all thirteen pre-let-7 were 
normalized using pre-let-7a-1 as the reference. The Kd values were 
obtained with standard deviation (shown by the error bars) from at 
least three independent experiments

Table 1  Summary of Dicer 
binding and kinetic constants 
for the pre-let-7 family

a Group II pre-let-7 RNAs

Pre-let-7 
substrate

Kd (nM) kobs  (min−1) KM (µM) kcat  (min−1) kcat/KM  (min−1 µM−1)

7a1a 14 ± 3 0.17 ± 0.03 0.93 ± 0.09 6.90 ± 0.20 7.42 ± 1.10
7a2 12 ± 5 0.14 ± 0.01 0.46 ± 0.18 1.40 ± 0.40 3.04 ± 1.50
7a3a 16 ± 5 0.153 ± 0.001 0.90 ± 0.06 4.60 ± 0.10 5.11 ± 0.40
7ba 13 ± 1 0.16 ± 0.03 0.11 ± 0.01 1.80 ± 0.04 16.36 ± 2.6
7c 13 ± 4 0.26 ± 0.03 0.27 ± 0.03 3.00 ± 0.10 11.11 ± 1.2
7da 16 ± 3 0.14 ± 0.04 1.13 ± 0.11 17.2 ± 0.6 15.22 ± 1.5
7e 12 ± 2 0.22 ± 0.01 0.13 ± 0.01 1.60 ± 0.10 12.31 ± 1.0
7f1a 10 ± 1 0.120 ± 0.003 1.20 ± 0.13 8.70 ± 0.60 7.25 ± 0.90
7f2a 17 ± 4 0.17 ± 0.01 0.80 ± 0.08 8.40 ± 0.40 10.50 ± 1.1
7ga 12 ± 2 0.26 ± 0.03 0.24 ± 0.03 1.90 ± 0.60 7.92 ± 2.29
7ia 17 ± 5 0.18 ± 0.02 1.19 ± 0.16 3.20 ± 0.50 2.69 ± 0.50
m98a 12 ± 7 0.13 ± 0.01 0.36 ± 0.06 2.10 ± 0.20 5.83 ± 1.10
m202 7 ± 2 0.44 ± 0.02 1.83 ± 0.33 26.6 ± 1.8 14.53 ± 3.6
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cleavage by Dicer yields a single 22-nt let-7-5p product for 
all pre-let-7, except for 7e and 7f1 (Supplementary Fig. S4). 
In these cases, a minor 23-nt product is observed in addition 
to the main 22-nt let-7-5p product, with the percentage of the 
alternate product being 25% for 7e and 5% for 7f1. Overall, 
our single-turnover kinetic studies show that Dicer does not 
discriminate much between the pre-let-7 substrates, despite 
their sequence and structural differences.

Catalytic efficiency of Dicer for pre‑let‑7 cleavage

Steady-state kinetics were performed to obtain informa-
tion about the overall reaction pathway, including product 
release. The Michaelis–Menten parameters (kcat and KM) 
and the specificity constant (kcat/KM) were determined for 
all thirteen pre-let-7 substrates. This was achieved by first 
determining the initial rate of the cleavage reaction at sev-
eral different substrate concentrations and then fitting these 
values to the Michaelis–Menten equation as shown for 7a1 
(Fig. 4a, b). For pre-let-7 substrates, the KM values vary 
by 16 folds (0.11–1.8 μM) and the kcat values by 19 folds 
(1.4–26.6  min−1); however, the kcat/KM varies by only 6 folds 
(2.7–15.8  min−1 μM−1; Table 1; Fig. 4c, d). Two pre-let-7 
substrates stand out with their high kcat value (7d: 17.2  min−1 
and m202: 26.6  min−1) and KM values (7d: 1.13 μM and 
m202: 1.83 μM). Overall, the small difference in kcat/KM 
values shows that Dicer’s catalytic efficiency is comparable 
for different pre-let-7 substrates, and thus, the enzyme has 
similar specificity for all pre-let-7 substrates, including those 
of the Group I and Group II families. Moreover, for all pre-
let-7 substrates, the KM value is greater than the Kd value 
(between 8.5-fold and 261-fold greater), indicating that in 
all cases catalysis occurs somewhat faster than substrate 
dissociation.

Effect of 3′ mono‑uridylation on pre‑let‑7 processing 
by Dicer

In our investigations, Group I and Group II pre-let-7 RNAs 
bind Dicer with similar affinities and are cleaved by Dicer 
with similar rates (kobs and kcat/KM). In contrast, a previous 
study shows that an immuno-purified Dicer could process 
mono-uridylated Group II substrates more efficiently than 
the unmodified substrate in vitro [41]. Thus, to directly test 
the effect of mono-uridylation using recombinant Dicer puri-
fied from human cells, Dicer binding and cleavage studies 
were performed with the 3′-mono-uridylated form of all nine 
Group II pre-let-7 substrates as well as with a blunt-end con-
trol (7a1_bl; Fig. 5a).

Dicer cleavage assays were first performed under single-
turnover conditions and the exponential fits of the cleavage 
reactions were compared (Fig. 5b). We found that the cleav-
age for all mono-uridylated pre-let-7 substrates are rather 
similar, and they reach cleavage saturation above 90%, 
except for 7b_U (75%). The 7a1_bl control is cleaved slower 
than mono-uridylated pre-let-7 and does not reach cleav-
age saturation during the first 60 min of the reaction. Our 
results show that the mono-uridylated forms of pre-let-7 are 
cleaved with rates (kobs values between 0.17 and 0.44  min−1; 
Fig. 5c) that are overall similar to those obtained for their 
unmodified form (0.12–0.26  min−1). When directly compar-
ing kobs values of individual mono-uridylated pre-let-7 with 

Fig. 3  Single-turnover kinetics of pre-let-7 RNA cleavage by Dicer a 
Typical cleavage assay carried with 0.1  nM 5′-[32P]-labeled pre-let-
7a-1 and 5 nM Dicer. The denaturing gel shows the relative quantity 
of substrate (S) and 5′-product (P) of aliquots taken at different time 
points (0–60 min). The exponential fit of this single-turnover kinetic 
data yields the values of kobs (0.21   min−1) and maximum percent-
age of cleavage (96.2%) with an R2 value of 0.999. b Comparison of 
exponential fits of single-turnover kinetic data for the thirteen pre-
let-7 showing the full time course and an insert with the early time 
points. c Relative kobs values for all thirteen pre-let-7 using pre-let-
7a-1 as the reference. In (b) and (c), the fits and kobs values with 
standard deviation (shown by the error bars) were obtained from at 
least three independent experiments
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their unmodified counterpart, the most considerable differ-
ence is a 3.6-fold increase for m98. Otherwise, we observed 
a twofold increase for 7d_U, 7f2_U, and 7i_U and values 
within 1.5-fold for all other substrates. In contrast, the kobs 
value for the blunt control (7a1_bl) is sevenfold lower than 
for the unmodified 7a1.

Dicer binding studies with five 3′-mono-uridylated Group 
II pre-let-7 substrates (7a1, 7b, 7d, 7g, and m98) show 
that Dicer binds these mono-uridylated pre-miRNA (Kd 
of 15–24 nM) with similar affinities (Fig. 5d, left panel). 
When compared individually to their unmodified counter-
parts (Kd of 7–17 nM; Table 1), the mono-uridylated pre-
let-7 bind with slightly lower affinity, within twofold of less 
(Fig. 5d, right panel). Moreover, steady-state kinetics for 
mono-uridylated 7a1 and 7d reveal that the kcat/KM values 
are very similar between the mono-uridylated (between 7.5 
and 10.3 μM−1  min−1) and unmodified RNAs (between 7.4 
and 15.2 μM−1  min−1; Table 1), with individual differences 
being less than 1.5-fold (Fig. 5e). Overall, little differences 
were observed in the binding and cleavage by Dicer between 
mono-uridylated and unmodified pre-let-7 substrates.

Since it was previously shown that an immuno-purified 
Dicer can process mono-uridylated Group II substrates 

more efficiently than unmodified substrates [41], a cofactor 
may be important to allow Dicer to discriminate between 
these two substrates. Thus, we conducted cleavage studies 
of 7a1 in the presence of the well-known Dicer cofactor 
TRBP [65–67]. Under single-turnover conditions, addition 
of TRBP does not have a significant effect on the observed 
cleavage rate of both 7a1 (0.17 ± 0.01  min−1) and 7a1_U 
(0.31 ± 0.02  min−1) compared to their respective rates 
without TRBP (0.21 ± 0.01  min−1 and 0.26 ± 0.01  min−1) 
(Fig. 5e and Supplementary Fig. S5a). Thus, as previ-
ously observed, TRBP does not affect the cleavage rate of 
7a1 under single-turnover conditions [64], and, interest-
ingly, we make the same observation for 7a1_U. In con-
trast, under multiple turnover conditions, the presence of 
TRBP enhances the cleavage efficiency of 7a1, as previ-
ously observed [64] (Supplementary Fig. S5b). Neverthe-
less, the multiple-turnover cleavage profiles for 7a1 and 
7a1_U in the presence of TRBP are nearly identical. Thus, 
Dicer cleaves mono-uridylated and unmodified pre-let-7a1 
at similar rates both in the absence and presence of TRBP 
and regardless of the kinetic conditions (single or multiple 
turnover).
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Effect of oligo‑uridylation on pre‑let‑7 processing 
by Dicer

To investigate the effect of oligo-uridylation on Dicer pro-
cessing, pre-let-7a-1 RNAs containing additional uridines 
at their 3′-end were prepared (3U, 6U and 10U; Fig. 6a), 
and their cleavage by Dicer was assayed from a 20-min 
single-turnover reaction. Cleavage by Dicer produced the 
same 5p-miRNA product (P1) for 7a1 and its uridylated 

counterparts (1U, 3U, 6U and 10U; Fig. 6b). However, an 
additional product  (P2) was observed for the oligo-uridylated 
substrates (3U, 6U, and 10U), with P2 being less than 5% 
of the total products for 3U and 10U, but the most abundant 
one for 6U. Sequencing gel analysis was used to confirm that 
P1 is the expected 22-nt product and to define P2 as being 
17-nt long (Supplementary Fig. S6). A closer examination 
of the 6U cleavage time course reveals that the appearance 
of the two products is intertwined (Supplementary Fig. S7). 
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While P1 formation dominates at shorter time points to peak 
to 40% of total products at 10 min and then decline to 20% 
at 60 min, formation of P2 is slower at first but essentially 
follows an exponential model, reaching 80% of total prod-
ucts at 60 min. Thus, it appears that formation of the 17-nt 
P2 product results at least in part from a secondary cleavage 
event, whereby a 5-nt fragment at the 3′-end of P1 is cleaved 
off. From single-turnover kinetic studies, kobs values of 0.21 
to 0.26  min−1 were obtained for cleavage of 3U, 6U, and 
10U (Fig. 6c, left panel). Surprisingly, the kobs values for 
the oligo-uridylated RNAs are very similar to those of the 
unmodified 7a1 substrates (Fig. 6c, right panel), the larg-
est difference observed being 1.5-folds. Thus, even though 
Dicer cleavage of oligo-uridylated pre-let-7a-1 substrates 
can yield a shorter additional product, 3′-uridylation does 
not affect the rate of the single-turnover cleavage reaction.

Effect of mono‑ and oligo‑adenylation on pre‑let‑7 
processing by Dicer

Terminal nucleotidyl transferases (Tents) such as Tent1 (also 
known as Tut1) and Tent2, can also mono-adenylate the 3′ 
end of pre-miRNAs to stabilize miRNAs [42], and this mod-
ification may affect Dicer activity. To test this possibility, 

we performed Dicer processing with mono-adenylated pre-
let-7a-1 (1A; Fig. 6d). Under single-turnover conditions, 
Dicer was found to cleave the mono-adenylated substrate 
with a rate (kobs = 0.19  min−1) that is very similar to that of 
its unmodified counterpart (kobs = 0.17  min−1; Table 1 and 
Fig. 6e, f).

Although oligo-adenylation of pre-miRNAs by human 
Tents has not been observed in vitro, it may occur in vivo 
through the assistance of RNA binding proteins [68]. To 
study the effect of oligo-adenylation on Dicer processing, 
pre-let-7a-1 RNAs were prepared that contain additional 
adenines at their 3′-end (3A, 6A and 10A; Fig. 6d), and 
their cleavage by Dicer was first assayed from a 20-min 
single-turnover reaction. Cleavage by Dicer produced the 
same 5p-miRNA product (P1) for 7a1 and its adenylated 
counterparts (1A, 3A, 6A, and 10A), with only minor 
amounts (< 5%) of an additional 17-nt product for the oligo-
adenylated substrates (Fig. 6e and Supplementary Fig. S6). 
However, a greater proportion of the uncleaved substrate is 
observed for 6A and 10A compared to 7a-1, 1A, and 3A. In 
agreement with this observation, kobs values for cleavage of 
6A and 10A are reduced by 2.6- and 4.3-folds, respectively, 
compared to the unmodified 7a1 (Fig. 6f), whereas the rates 
of 1A and 3A are within 1.5 folds of 7a1. Thus, although a 

Fig. 6  Effect of oligo-uridylation and oligo-adenylation on pre-let-7 
cleavage by Dicer. a, d End structures of pre-let-7a-1 RNAs with 
extra uridines or extra adenines at the 3′-end (shaded). b, e Dicer 
cleavage products for unmodified (7a1) and modified pre-let-7a-1 
RNAs (b: uridylated and e: adenylated). The cleavage assays were 
carried under single-turnover conditions (0.1 nM substrate and 5 nM 
Dicer) for 15 min. The standard 22-nt miRNA product (P1) and a 

shorter alternate product (P2) were separated from the substrate (S) by 
denaturing gel. c, f Reported average kobs values and histogram show-
ing relative kobs values for modified pre-let-7a-1 RNAs compared to 
the unmodified 7a1 (0.17  min−1) (c: uridylated and f: adenylated). In 
(c) and (f), the kobs values with standard deviation (shown by the error 
bars) were obtained from at least three independent experiments
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small adenylate tail of 1–3 residues does not affect the rate 
of cleavage by Dicer, a longer oligo-adenylate tail (6–10 
residues) reduces to some extent the rate of pre-let-7 cleav-
age by Dicer.

Discussion

In this study, we first defined the lowest-energy secondary 
structure(s) of all pre-let-7 members using SHAPE prob-
ing, highlighting their individual characteristics and inher-
ent dynamics. Surprisingly, we found that the 5′/3′ ends 
of most pre-let-7 are flexible and do not form stable base 
pairs. Given that less stable pre-miRNA ends are known to 
be readily captured by Dicer and cleaved from the 5′-end 
(5′ counting rule) [25, 27], pre-let-7 RNAs probably use a 
similar mechanism. Upon Dicer binding, the 5′/3′ ends may 
be stabilized via formation of additional base pairs, leaving 
a 1-nt or 2-nt 3′-overhang, although it is not clear if forma-
tion of these base pairs is required for cleavage by Dicer. 
Nevertheless, a flexible 5′/3′-end may help recognition by 
other RNA-binding proteins, such as TUTases, that regulate 
let-7 maturation and stability.

Detailed thermodynamic and kinetic investigations with 
in vitro purified Dicer revealed that despite structural dif-
ferences among the thirteen pre-let-7 RNAs, Dicer does not 
discriminate much between these substrates. The most nota-
ble disparities among the results were observed for miR-202, 
which displays somewhat higher affinity for Dicer and faster 
cleavage rates, possibly due to some of its unique features 
like its smaller apical loop [28, 29]. The poor discrimination 
of Dicer for different pre-let-7 substrates aligns with prior 
research demonstrating that human Dicer tolerates signifi-
cant structural variations in its natural substrates [28, 29, 
33]. Moreover, given that the KM value is much greater than 
the Kd value for all pre-let-7 substrates, these are consid-
ered “sticky” substrates for Dicer, which means that nearly 
every instance of substrate binding to Dicer results in cleav-
age. This enzymatic behavior is generally associated with 
broad substrate specificity [69], as observed here for Dicer 
and its pre-let-7 substrates. However, these observations do 
not align with previous reports showing that pre-miRNAs 
with a 1-nt 3′-overhang are cleaved less efficiently by Dicer 
[40–42].

Investigations of the mono-uridylated form of Group II 
pre-let-7 also support this change of paradigm, revealing 
that the reported thermodynamic and kinetic parameters are 
hardly affected by the extra uridine at their 3′-end. Similar 
observations were made based on kinetic studies of pre-let-
7a1 in the presence of TRBP. Thus, we conclude that mono-
uridylation does not significantly affect Group II pre-let-7 
cleavage by Dicer. Mono-uridylation may promote let-7 
maturation and stability, but not by directly enhancing Dicer 

cleavage activity. Instead, mono-uridylation may prevent 
binding of protein factors that induce pre-let-7 degradation 
or promote binding of proteins that protect pre-let-7 from 
degradation. In summary, our in vitro studies on Dicer bind-
ing and cleavage indicate that Dicer does not discriminate 
between the 1-nt and 2-nt 3′-overhang of the pre-let-7 sub-
strates. These remarkable findings challenge our established 
understanding of the importance of a 2-nt 3′-overhang for 
efficient cleavage by Dicer.

Oligo-uridylation of pre-let-7 is known to promote deg-
radation by the exonuclease Dis3L2 [43, 45], and oligo-uri-
dylated pre-let-7 are often viewed as being poor substrates 
for Dicer [40, 48]. Surprisingly, we found that Dicer cleaved 
oligo-uridylated and unmodified 7a1 substrates with simi-
lar rates. However, we observed a second cleavage prod-
uct for 7a-1_3U, 7a1_6U, and 7a1_10U. This result differs 
from previous observations where 7a1 with extra Us at the 
3′-end yielded minor products of shorter sizes that varied in 
length according to number of added Us and were thought 
to originate from a 3′-counting model [27]. In contrast, our 
results indicate that this product is 17-nt long no matter the 
length of the 3′-oligo-uridylation tail and, thus, does not 
result from Dicer using a 3′ counting rule since this would 
entail that the product size depends on the number of extra 
residues at the 3′ end [27, 32], which is not the case. Moreo-
ver, analysis of the kinetic time course for 7a1_6U cleav-
age revealed a unique mechanism whereby Dicer cleaves 
the 22-nt 5p miRNA product to yield a secondary 17-nt 
product that becomes prominent as the reaction proceeds. A 
similar phenomenon has been reported previously in which 
human recombinant Dicer could cleave an RNA substrate 
with 5′-overhangs twice in vitro [70]. Further investigations 
are required to understand exactly why this secondary activ-
ity of Dicer is most important with the 7a1_6U substrate. 
One possible mechanism involves the normal production of 
the miRNA duplex that would then change its position with 
respect to the enzyme active site possibly due to changes in 
how the PAZ domain interacts with its 3′-end.

Although 3′-oligo-uridylation of 7a1 does not affect its 
cleavage rate by Dicer, 3′-oligo-adenylation lowers the cleav-
age rate by Dicer for 7a1_6A and 7a1_10A. It is puzzling 
that the nucleotide identity of the longer 3′-oligo tails dif-
ferently affects the cleavage rate by Dicer since it is unlikely 
that these tails directly interact with Dicer. However, the 
longer 3′-oligo-adenylated tails (6A and 10A) may specifi-
cally affect the structural integrity of the RNA substrates 
and thereby inhibit their cleavage. Given that residues at 
the 5′/3′ ends of pre-let-7a1 are not stably paired, there is a 
possibility for these 3′-oligo-adenylated tails (but not for the 
3′-oligo-uridylated tails) to base pair with the immediately 
upstream U-rich region (Fig. 6d), which may perturb the 
structural integrity of both the 5′- and 3′-ends and thereby 
hinder substrate recognition by the PAZ domain.
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This work reveals that most 3′-end modifications do not 
affect the rate of pre-let-7 cleavage by Dicer. We sought 
to understand if these results are consistent with our cur-
rent structural understanding of human Dicer in which the 
platform-PAZ-connector (PPC) domain interacts with the 
5′/3′-end of pre-miRNAs. A certain level of plasticity within 
the PAZ domain was previously observed from crystal struc-
tures of the human PPC domain in complex with different 

siRNAs (Supplementary Fig. S8a) [25] and cryo-EM struc-
tures of human Dicer in complex with different pre-let-7a-1 
variants (Supplementary Fig. S8b, c) [19, 21]. However, the 
adaptability of the PAZ domain is more readily observed 
from structural rearrangements associated with the cleav-
age activity of human Dicer (Fig. 7a), first a minor change 
to bind the RNA (pre-dicing state) and then a major change 
to bring the bound RNA closer to the catalytic center to 

Fig. 7  Structural understanding of the promiscuity of Dicer cleavage 
toward different substrates. a Alignment of cryo-EM structures of 
human Dicer free (PDB entry 5ZAK, dark blue) and in complex with 
pre-let-7a-1 variants [PDB entries 5ZAL (cyan; pre-dicing state with 
a full RNA stem) and 5ZAM (green-yellow; pre-dicing state with a 
partial RNA stem) and 7XW2 (pink; dicing state)] are shown [19, 
21]. The platform-PAZ-connector (PPC) was aligned for all structures 
and the regions of interaction between the PAZ and RNA substrates 
are shown. b Stable interactions of pre-let-7a-1 variants with the 3′ 
binding pocket of the PAZ domain in selected structures of human 
Dicer. The uracil at the N + 2 position interacts with Tyr936, Arg937, 

Lys959, Ser962, Tyr971, and Tyr972 [21] in a structure of the dicing 
state (left panel; PDB entry 7XW2) [21], whereas the cytosine at the 
N + 1 position interacts with Tyr936, Tyr971, Tyr972, and Gln1031 
in a structure of the pre-dicing state (right panel; PDB 5ZAL) [19]. c 
Cryo-EM model of human Dicer (blue) bound to a modified pre-let-
7a-1 (cyan) containing an extension of 4 uridines at the 3′-end (a 6-nt 
3′-overhang; magenta). This model was build from pdb entry 5ZAL 
[19]. The zoom-in view (right panel) shows the relevant region of the 
structure represented by a dotted box (left panel) and the absence of 
steric hindrance between the 3′ extension and the PAZ domain
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achieve a cleavage-competent state (dicing state) [19, 21]. 
This plasticity of the PAZ domain in different states is not 
unique to human Dicer, as it was also found in the cryo-EM 
structure of mouse Dicer in complex with pre-miR-15a (Sup-
plementary Fig. S8d) [20]. These conformational changes 
within the PAZ domain likely reflect its inherent flexibility 
and support the ability of Dicer to cleave with similar rates 
pre-let-7 substrates with different 3′-ends.

Recent cryo-EM structures of human Dicer further illus-
trate the adaptability of the PAZ domain for recognition of 
the 2-nt 3′-overhang. Whereas the structure of a Dicer/pre-
let-7 complex in the dicing state [21] provides evidence for 
the interaction of the PAZ domain with the sugar-phosphate 
backbone of the terminal nucleotide (N + 2) (Fig. 7b, left 
panel), the structure of a Dicer-TRBP-pre-let-7 complex in 
a pre-dicing state [19] shows PAZ interacting exclusively 
with the penultimate residue (N + 1) of the 2-nt 3′-overhang 
(Fig. 7b, right panel). These observations are fully consist-
ent with results from kinetic studies of cleavage by Dicer 
showing similar rates for Group I and Group II pre-let-7 sub-
strates as well as for mono-uridylated Group II substrates. 
More generally, our binding and kinetic data suggest that as 
long as an interaction between the PAZ domain and either 
the N + 1 or N + 2 nt of pre-let-7 can occur, the 3′-end exten-
sion does not affect the cleavage rate by Dicer. Furthermore, 
to verify that 3′-end oligo-uridylation of 7a1 is also com-
patible with the structure of the human Dicer-TRBP-pre-
let-7 complex, a 6-nt 3′-end extension was modeled as an 
A-form helix onto this complex (Fig. 7c). Interestingly, no 
steric hindrance was found between the extended 3′-ends 
and the nearby PPC of Dicer, in agreement with our single-
turnover kinetic results of pre-let-7 cleavage by Dicer, where 
the observed cleavage rates are similar for the unmodified 
and 3′-oligo-uridylated substrates. Future high-resolution 
structural studies of human Dicer in complex with different 
substrates are required to fully support our results highlight-
ing the remarkable substrate promiscuity of Dicer.

In conclusion, we found that human pre-let-7 RNAs adopt 
diverse secondary structures in solution, and most of them 
contain several mostly unpaired and flexible residues in the 
apical loop, dsRNA region, and at the 5′/3′ ends. We dem-
onstrated that despite these structural discrepancies, Dicer 
displays promiscuity in its binding and cleavage activity 
toward these pre-let-7 substrates, with some slight prefer-
ence for the shorter m202 substrate. In contrast with the 
current paradigm, mono-uridylation has little effect on Dicer 
binding constants and cleavage rates of Group II pre-let-7 
RNAs, indicating that Dicer displays little preference for 
2-nt over 1-nt 3′-overhangs. Moreover, 3′-oligo-uridylation 
of pre-let-7a-1 was found not to affect its cleavage rate by 
Dicer. Yet, 3′-oligo-uridylation may yield an additional 5p 
miRNA product of 17-nt. These in vitro investigations of 
Dicer binding and cleavage of let-7 precursors allow us to 

update current concepts related to Dicer activity toward 
different substrates, accentuating the broad specificity of 
this key enzyme in RNA silencing. This broad specificity 
is likely important for cleavage of a wide variety of other 
known substrates, such as dsRNAs, Line1 retrotransposons, 
mRNAs, snoRNAs, tRNAs, and harmful R-loops [16, 31, 
71, 72].
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