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Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and 
stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification 
of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell 
aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through 
an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve 
clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ 
dysfunction and disease.
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Introduction

It is now clear that epigenetic changes are one of the primary 
causes of aging in mammals, and restoring epigenome integ-
rity can reverse signs of aging [1]. Epigenetic regulation of 
mitochondrial DNA (mtDNA) is an emerging and rapidly 
growing field of research. The generation and modification 
of epigenetic marks in the nucleus require metabolites pro-
vided by the mitochondria, and subsequently, these epige-
netic marks modulate the expression of proteins within the 
mitochondria [2]. It is currently believed that mitochondrial 
epigenetics is regulated in four main ways: (1) epigenetic 
mechanisms that regulate nuclear-encoded mitochondrial 

genes affect mitochondria; (2) cell-specific mtDNA content 
and mitochondrial activity determine the level of methyla-
tion of nuclear genes; (3) mtDNA variation affects the pat-
tern of nuclear gene expression and the degree of methyla-
tion of nuclear DNA; and (4) mtDNA itself is subjected to 
epigenetic modifications [3, 4]. In recent years, numerous 
studies have validated the crucial function of mitochondria 
in controlling the destiny of stem cells [5–7]. An increas-
ing number of studies are concentrating on the epigenetic 
mechanisms by which mitochondria sustain stem cell pro-
liferation, renewal, differentiation, and lifespan.

The impact of epigenetic dysregulation on adult stem cell 
function varies widely, ranging from nonsignificant to sig-
nificant, depending on the tissue type and the specific epi-
genetic regulator affected [8]. Self-renewal and pluripotency 
are two key properties of stem cells [9]. Stem cell therapy 
is currently one of the most popular fields in regenerative 
medicine [10]. The basic idea is to plant selected stem cells 
into the patient’s body through specific methods to promote 
regeneration of pathological tissues for therapeutic purposes 
[11]. Precise regulation of these two properties is the basis 
for ensuring healthy cell development and tissue homeosta-
sis in stem cell therapy. The network of transcription fac-
tors regulating stem cell stemness and differentiation has 
been thoroughly studied [12–14]. Other aspects of regula-
tion, such as miRNAs and epigenetic modification, have also 
been extensively studied [15–19]. Although posttranslational 
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regulatory mechanisms have been poorly studied, recent 
studies have shown that protein quality control (PQC) is 
closely related to stem cell function [20–23].

Here, we focus on the influence of mitochondria and their 
metabolites on the fate of stem cells. In this rereview, we 
overview how the metabolites of the tricarboxylic acid cycle 
(TCA) in mitochondria support the survival and growth of 
stem cells. Additionally, we highlight the signaling function 
of mitochondria, which alters epigenetic remodeling through 
the mitochondrial stress response and mitochondrial 
dynamics during cell fate determination.

Mitochondrial metabolites are the material 
basis of epigenetic influence on stem cell 
senescence

Mitochondrial metabolites are important components 
of epigenetic pathways. It is increasingly recognized 
that metabolic signals originating from mitochondria 
initiate epigenetic modifications in the nucleus through 
nonmetabolic mechanisms [24]. Recent studies have found 
that mitochondrial metabolites regulate the epigenetic 
landscape that determines cell identity and function [25]. In 
particular, there is evidence to suggest that mitochondrial 
metabolites are involved in the regulation of epigenetic 
modifications, including chromatin structure regulation, 
DNA methylation, histone modification and noncoding 
RNA regulation. Moreover, it has been demonstrated 
that mitochondrial metabolism plays important roles in 
modulating gene transcription, DNA damage levels, and 
long-term developmental pathways in stem cells [26, 
27]. Therefore, mitochondrial metabolites offer essential 
regulation of stem cell fate when properly harnessed. 
Overall, these studies underscore the significance of 
mitochondrial metabolites in governing the progression 
and sustenance of stem cells while also highlighting their 
prospective applications in regenerative medicine.

Stem cell identity and function are largely determined by 
gene expression profiles. In eukaryotic cells, gene transcrip-
tion is regulated by the interaction between transcription fac-
tors and chromatin remodeling and modification factors [28]. 
The methylation of DNA and histones generally promotes 
the self-renewal of adult stem cells, while demethylation 
leads to stem cell activation, proliferation, and differentiation 
[29]. Furthermore, different metabolites of the TCA cycle 
are utilized as substrates by chromatin-modifying enzymes, 
which control gene expression by altering chromatin modi-
fication [30]. Acetyl-coenzyme A (acetyl-CoA) and alpha-
ketoglutarate (α-KG) have been extensively studied for their 

role in modulating the fate of mammalian embryonic stem 
cells and adult stem cells [6, 31].

In this section, we will discuss several mitochondrial 
metabolites, including acetyl-CoA, α-KG, nicotinamide 
adenine dinucleotide  (NAD+), and S-adenosylmethionine 
(SAM), as potential cell regulatory factors and how changes 
in their abundance influence the epigenomes and the aging 
process in different organisms (Fig. 1).

Acetyl‑CoA

Acetyl-CoA, which is necessary for histone acetylation, is 
produced in the cytoplasm by ATP citrate lyase (ACLY) and 
ACSS2, a member of the acyl-CoA synthetase short-chain 
family, using citrate and acetate as substrates, respectively 
[28]. Under conditions of nutrient restriction, ACSS2, a 
cytosolic enzyme belonging to the short-chain family of 
acyl-CoA synthases 2, plays a crucial role in generating 
acetyl-CoA by utilizing acetate as a substrate [32, 33]. 
Subsequently, acetyl-CoA is utilized in the mitochondria 
to generate citric acid and oxaloacetic acid via the TCA 
cycle [24]. In addition to its roles in metabolism and 
biosynthesis, acetyl-CoA provides acetyl groups for protein 
acetylation, such as histone acetylation, which is catalyzed 
by histone acetyltransferases (HATS) [34]. Acetylation 
neutralizes the positive charge on lysine residues, resulting 
in the opening of chromatin structures, which allows for the 
entry of transcription factors and impacts gene expression 
[34]. Therefore, acetyl coactivators serve as substrates for 
acetylation and regulate the nuclear epigenome of stem cells.

Hematopoietic stem cells (HSCs) primarily rely on 
anaerobic glycolysis to generate energy and remain 
stationary and undifferentiated, while their mitochondria 
remain active. As glycolysis and the TCA cycle are 
not directly linked in HSCs, they use other nutritional 
pathways, such as amino acid and fatty acid metabolism, 
to produce acetyl-CoA to fuel the TCA cycle. Recent 
studies have further revealed a connection between acetyl-
CoA metabolism and histone acetylation in HSCs during 
hematopoietic recovery after bone marrow ablation [35].

Mouse and human pluripotent stem cells (PSCs) 
possess an open chromatin structure characterized by DNA 
hypomethylation, abundant active histone modifications 
(e.g., H3 and H4 acetylation, H3K4 trimethylation, etc.), and 
low heterochromatin [36]. To maintain this unique chromatin 
state, PSCs have specific metabolic requirements, such as 
high levels of acetyl-CoA [37]. Treatment with acetyl-CoA 
precursor acetate increased H3K9/K27 acetylation labeling 
and delayed the early differentiation of hPSCs and mouse 
embryonic stem cells (mESCs), suggesting that decreased 
acetyl-CoA levels drive the differentiation of PSCs, possibly 
by reducing histone acetylation labeling and, thus, making 
chromatin more inaccessible [38]. A similar phenomenon 
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has been observed in muscle stem cells (MuSCs), 
where glucose-derived acetyl-CoA also influences their 
differentiation through histone acetylation [39].

In mesenchymal stem cells (MSCs), an unexpected 
age-dependent change in the localization of acetyl-lysine 
signaling was observed, shifting from the nucleus to the 
mitochondria during senescence [40]. Due to reduced 
levels of citrate carriers, acetyl-lysine was trapped within 
senescent MSC mitochondria, resulting in reduced histone 
acetylation and age-dependent chromatin tightening. 
Expression of exogenous citrate carriers or supplementation 
with acetate restores cell membrane acetyl-CoA levels, 
remodels the chromatin landscape and rejuvenates MSCs 
[40]. The findings of this study underscore the impact of 
communication between mitochondria and the nucleus on 
the process of stem cell senescence. Additionally, during the 
differentiation of neural stem cells (NSCs), the antiapoptotic 
gene TP53-inducible glycolysis and apoptosis regulator 

(TIGAR) specifically modulates H3K9 acetylation by 
regulating the level of acetyl-CoA in cells and mitochondria, 
which determines the differentiation process of neural cells 
[41].

Recently, the emergence of non-histone acetylation 
has sparked a great deal of interest among biomedical 
researchers. Numerous studies have shown that non-histone 
protein acetylation plays a central role in various cellular 
processes related to physiology and disease [42]. However, 
the epigenetic regulation of stem cells is mainly focused on 
histone acetylation, with little attention given to the effects 
of non-histone acetylation. Therefore, further research is 
warranted to investigate this area.

Alpha‑ketoglutarate

α-KG is a crucial intermediate in the TCA cycle, also 
known as the Krebs cycle, located between isocitrate and 

Fig. 1  Mitochondrial metabolites regulate the epigenetic landscape 
to determine stem cell fate. Historically, mitochondrial metabolism 
has been linked to the production of ATP and tricarboxylic acid cycle 
(TCA) metabolites to support stem cell survival and growth, respec-
tively. However, it is now clear that beyond these canonical roles, 
mitochondria, as signaling organelles, dictate stem cell fate and func-
tion through TCA cycle metabolite production, NAD + /NADH ratio 
modulation, and epigenetic regulation. Metabolites generated by the 
TCA cycle and one-carbon cycle act as substrates or cofactors to con-
trol epigenetic modification of stem cells, especially histone acetyla-

tion and methylation as well as DNA methylation. These metabolic 
cycles interact with each other like a gear, making the mitochondria 
a high-speed organelle that controls various life processes of stem 
cells. An imbalance in the ratio of mitochondrial metabolites can 
disrupt the normal function of stem cells. For example, an imbalance 
in the α-KG/succinic acid ratio or the  NAD+/NADH ratio can lead 
to changes in stem cell fate and function. α-KG alpha-ketoglutarate, 
NAD+ nicotinamide adenine dinucleotide, NADH  NAD+ hydrogen, 
SAM S-adenosylmethionine, TCA  tricarboxylic acid
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succinyl-CoA. Remarkably, recent studies have highlighted 
the crucial role of α-KG in preserving the pluripotency of 
ESCs [43] and its potential application in anti-aging thera-
pies [44]. Indeed, administering α-KG in a dose-dependent 
manner has been shown to extend the lifespan and delay the 
diminish of rapid, coordinated body movements in worms 
[44]. Wang and colleagues demonstrated that α-KG admin-
istration improved bone health in aged mice by increasing 
bone mass, reducing age-related bone loss, and accelerating 
bone regeneration. Additionally, α-KG treatment amelio-
rated the senescence-associated phenotypes of bone MSCs 
derived from aged mice while also enhancing their prolifera-
tion, colony formation, migration, and osteogenic potential 
[45]. The mechanism underlying the beneficial effects of 
α-KG on bone health involved a decrease in the accumula-
tion of H3K9me3 and H3K27me3, which in turn led to an 
upregulation of bone morphogenetic protein (BMP) signal-
ing and Nanog expression [45]. These findings shed light 
on the rejuvenating role of α-KG in MSCs and its potential 
for ameliorating age-related osteoporosis, highlighting its 
promising therapeutic potential for age-related diseases.

Ten–eleven translocation (TET) proteins play a key role in 
the demethylation of ESCs [46], and their absence leads to a 
decrease in pluripotency gene expression and an increase in 
the methylation level of their promoters, resulting in reduced 
cell pluripotency and cell differentiation [47]. Furthermore, 
overexpression of TET1 and TET2 has been shown to 
significantly improve induced pluripotent stem cell (iPSC) 
reprogramming in a catalytic-dependent manner. In these 
cells, α-KG maintains cellular pluripotency by controlling 
the level of histone K3K27me3 and TET-dependent DNA 
demethylation [43].

Studies  have  revea led  tha t  phosphoser ine 
aminotransferase 1 (Psat1) plays a key role in maintaining 
intracellular α-KG levels in mESCs. The levels of Psat1 and 
a-KG have a direct impact on the timing of differentiation. 
By modulating a-KG levels at the onset of differentiation, 
an epigenetic landscape is created that is conducive to 
differentiation [48]. When ESCs are grown in the presence 
of signaling inhibitors to mitogen-activated protein kinase 
and glycogen synthase kinase, they utilize both glucose and 
glutamine in the medium to preserve high levels of α-KG 
to alter chromatin modifications [43, 49]. Compared with 
more differentiated cells, naïve ESCs utilize glucose and 
glutamine catabolism to maintain high intracellular levels 
of α-KG. When Psat1 levels are lowered, mESCs start to 
differentiate more quickly [50]. The study also found that 
α-KG levels decline during differentiation and that the 
dysregulation of α-KG impedes differentiation. In vitro, 
supplementation with cell-permeable α-KG directly 
supports ESC self-renewal. Importantly, treatment with 
cell-permeable dimethyl α-KG (DMKG) reverses the 
increases in the H3K27 and H4K20 trimethylation marks in 

the mESCs, confirming that the increases in trimethylations 
are caused by a decline in α-KG levels in the cells [43]. 
Nevertheless, the enzymes that control α-KG production and 
how α-KG fine-tunes the fate of mESCs remain unclear. For 
NSCs, different levels of oxygen pressure and durations of 
hypoxic exposure determine the developmental process. The 
hydroxylation response activity of hypoxia-inducible factor 
(HIF) is controlled by a-KG [51].

Succinate and fumarate

In addition, succinate and fumarate, which are structurally 
similar to α-KG, competitively inhibit TETs and Histone 
lysine demethylases (KDMs), leading to the regulation 
of gene expression [52–54]. It was reported that in naïve 
embryonic stem cells, glutamine-derived α-KG helps sustain 
a high α-KG-to-succinate ratio, which is important for 
promoting histone/DNA demethylation and maintaining a 
highly accessible genome [50, 55]. Furthermore, succinate 
accumulation and, thereby, a decrease in the α-KG/succinate 
ratio induced by pharmacological inhibition or genetic 
knockdown of succinate dehydrogenase A (SDHA) delay 
primed hPSCs differentiation [56]. This effect can be rescued 
by DMKG treatment, which increases the α-KG/succinate 
ratio. An increase or decrease in the αKG/succinate ratio 
also appears to regulate primed PSC fate by activating 
or inhibiting TET and KDM enzymes, respectively [56]. 
Recently, activation of succinate receptors on neural stem 
cells was shown to enhance their anti-inflammatory activity 
in an experimental model of autoimmune encephalomyelitis 
[57]. Interestingly, succinate may indirectly impact 
hematopoiesis in individuals with diabetes, as osteoclasts, 
which function as negative regulators of HSCs [58], may 
be influenced by succinate levels. In contrast, osteoblasts, 
which support lymphoid progenitors, may be less affected by 
succinate [59, 60]. Further research is necessary to confirm 
and expand upon these hypotheses.

NAD+/NADH

Nicotinamide adenine dinucleotide is a dietary compound 
essential for life and a coenzyme implicated in cellular redox 
reactions [61].  NAD+ and its reduced form,  NAD+ hydrogen 
(NADH), are crucial for cellular function and genomic 
stability [61]. As a coenzyme for redox reactions,  NAD+ 
is essential for key metabolic pathways, including the TCA 
cycle, the mitochondrial electron transport chain (ETC), 
glycolysis, and fatty acid β-oxidation. Mitochondria, as 
critical regulators of the cellular  NAD+/NADH ratio, dictate 
the fate and function of different stem cells. Recent studies 
in yeast, worms, and mice have suggested that the activity 
of three different enzyme groups, namely, sirtuins (class III 
histone deacetylases), CD38 (cyclic ADP-ribose synthases), 
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and PARPs (poly ADP-ribose polymerases), are regulated 
by NAD + /NADH [62–64]. Supplementation with  NAD+ 
in a nematode Werner syndrome model improved mitotic 
cell numbers and proliferation capacity, promoting nematode 
health and longevity, indicating enhanced stem cell function 
[65]. Notably, studies of sirtuins have yielded many exciting 
findings in recent years.

Sirtuins are conserved protein NAD-dependent 
deacetylases, and their functions are intrinsically linked 
to stem cell differentiation and senescence. When  NAD+ 
is deficient in nasopharyngeal carcinomas, their ability to 
differentiate and self-renew is impaired.  NAD+ levels in 
the hippocampus of mice decline with age and are highly 
correlated with NSCs dysfunction [66]. Sirt1 and Sirt2 
redundantly mediate neural stem/progenitor cell fate 
decisions into oligodendrocytes [67]. Moreover, Gomes 
et al. reported that reduced levels of  NAD+ contribute to the 
mitochondrial decay associated with skeletal muscle aging 
and that SIRT1 modulates this process [68]. In aged mice, a 
decrease in  NAD+ levels in MuSCs leads to cell senescence, 
and boosting  NAD+ levels with the dietary precursor 
nicotinamide riboside alleviates MuSCs senescence and 
extends mouse lifespan [69]. A comparable occurrence 
was noted in HSCs, where the process was mediated by 
SIRT3 and SIRT7. The expression of SIRT3 and SIRT7 
declines with age and leads to HSC dysfunction [70, 71]. 
Furthermore, overexpression of SIRT3 reduces oxidative 
stress and rescues functional defects in aged HSCs [70]. 
Expression of SIRT2, another SIRT family member, also 
decreases with age, which leads to chromatin silencing [72]. 
Activation of SIRT2 regulates signaling for mitochondrial 
stress in HSC, inhibits activation of NLRP3 inflammatory 
vesicles, and reverses functional deterioration in aging 
hematopoietic stem cells [73].

The NAD + /NADH redox cycle, which plays a crucial 
role in energy production via glycolysis, the TCA cycle, and 
oxidative phosphorylation (OXPHOS), is also involved in 
regulating aging-related signaling pathways and functions 
[69, 74]. Human MSCs with damaged mitochondria 
exhibit depolarized mitochondrial membranes and low 
mitochondrial complex I function, which could compromise 
the ability to metabolize NADH and maintain  NAD+/NADH 
redox balance. This observation indicates that senescent 
hMSCs may shift toward a more reducing (or less oxidized) 
 NAD+/NADH cycle [75]. The ectopic expression of the 
single-subunit yeast alternative NADH dehydrogenase in 
Drosophila intestinal stem cells has been shown to delay the 
onset of intestinal aging and extend lifespan by modulating 
the  NAD+/NADH ratio in aged cells [76]. This suggests that 
the  NAD+/NADH ratio is a fundamental factor in cellular 
aging and lifespan. It is intriguing to investigate whether the 
role of  NAD+ and NADH dehydrogenases in age-related 
mitochondrial dysfunction is conserved in various tissues 

and stem cells of different species and whether strategies to 
manipulate the  NAD+/NADH ratio in humans could have 
therapeutic benefits.

SAM

S-Adenosyl methionine (SAM) is a cofactor for histone 
methyltransferases connecting histone methylation to one-
carbon metabolism [36] and threonine (Thr) metabolism 
[77]. DNA and histone methylations are driven by SAM 
as the methyl donor. Hence, mitochondrial metabolic 
fluctuation-induced changes in SAM levels may exert 
an influence on histone and DNA methylation, which are 
critical for maintaining cellular homeostasis and regulating 
lifespan [78].

The metabolic state of mouse ESCs is highly dependent 
on Thr catabolism. Recently, it was reported that Thr 
metabolism regulates intracellular SAM and histone 
methylation such that depletion of Thr from the culture 
medium or knockdown of threonine dehydrogenase 
(Tdh) in mouse ESCs decreases SAM accumulation and 
trimethylation of histone H3 lysine 4 (H3K4me3), leading 
to slowed growth and increased differentiation. Studies have 
shown that Thr metabolism regulates intracellular SAM 
and histone methylation [79, 80]. Removal of Thr from the 
medium or knockdown of Tdh reduced SAM accumulation 
and trimethylation of H3K4me3, resulting in slower growth 
and increased differentiation [79].

Naïve hPSCs also control SAM levels to regulate H3K4 
trimethylation, which acts as a recognized signature marker 
of active chromatin [81]. This process links the metabolic 
and epigenetic regulation of pluripotent hPSCs. In a 
subsequent study, methionine deprivation was simulated 
under conditions of zinc deficiency in the culture medium, 
leading to a reduction in intracellular SAM and, thus, leaving 
PCSs in a state of enhanced differentiation [82].

Stress signals affect epigenetic pathways 
in stem cell senescence

Environmental factors can easily impact the metabolic state 
of stem cells. Mitochondrial disruptions trigger stress signals 
and notify the nucleus of its functional state, resulting in 
adaptations. Various pathways are activated when mitochon-
drial function is impaired, including mitochondrial DNA 
(mtDNA) loss, mtDNA mutation accumulation, mitochon-
drial unfolded protein response  (UPRmt), and generation of 
ROS [83, 84] (Table 1). These stress-related changes can 
cause modifications to the epigenome and gene expression, 
leading to metabolic adaptation and increased lifespan of 
stem cells [85, 86] (Fig. 2). This section delves into how 
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Table 1  Mitochondrial stress response in stem cell proliferation, differentiation, and aging

Stressor Stem cell type Cell activity Effects References

MtDNA mutation NSCs, HPCs Dysfunction Anemia and lymphopenia [87]
ISCs Abnormal proliferation

Senescence
Impair intestinal function
Reduce nutrient absorption

[88]

MtDNA mutation HSCs Inhibit differentiation Hematopoietic abnormalities
Defects in lymphopoiesis
Myelodysplastic syndromes

[89]
 [90]

MtDNA deletion MuSCs Dysfunction
Increase senescence

Affect MuSCs pool
Reduce regenerate and repair ability

[91]

ROS HSCs Regulate divisions
Increase senescence

Regulate the differentiation
Reduce the replicative potential

[92, 93]

Affect FAO pathway
Modulation cell divisions

[94]

Maintain the quiescence and survival by FOXO proteins [95]
NSCs Survival

Proliferation
Increase Nrf2 expression and Transcription [96]
Regeneration of neurons [97]

MSCs Inhibit proliferation
Increase senescence

Affect sirtuins expression and activity [98]

UPRmt HSCs Functional decline
Maintain Proliferation

Downregulation of SIRT7
Increase mitochondrial protein Dysfunction

[71]

UPRmt is activated during the Transition from quiescence 
to Proliferation

[99]

SOD2 activates UPRmt [100]
MuSCs Senescence NR treatment can induce UPRmt

Rejuvenate aged MuSCs
[101, 102]

Fig. 2  Roles of mitochondrial 
stress signaling responses 
in stem cells. Mitochondrial 
stress signaling responses play 
important roles in stem cells 
and are regulated by several 
key players, including mtDNA, 
ROS, and the UPRmt. These 
stress-related changes result in 
modifications to the epigenome 
and gene expression, leading 
to metabolic adaptation and 
increased lifespan of stem cells 
[85, 86]. In a variety of stem 
cells, different mitochondrial 
stress responses are regulated 
to some extent by epigenetic 
changes. mtDNA mitochondrial 
DNA, HSCs hematopoietic stem 
cells, MSCs mesenchymal stem 
cells, MuSCs muscle stem cells, 
NSCs neural stem cells, ROS 
reactive oxygen species, UPRmt 
mitochondrial unfolded protein 
response
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mitochondrial stress signaling controls stem cell senescence 
through epigenetic regulation.

Mitochondrial DNA

Mitochondria possess multiple copies of their DNA. The 13 
subunits of the mitochondrial respiratory chain enzymes as 
well as the 22 tRNAs and 2 rRNAs needed for the translation 
of these proteins are encoded by mtDNA [103].

The accumulation of damaged mitochondrial genomes 
is considered to be the underlying cause of age-related 
neurological and cardiovascular diseases, including 
Parkinson’s disease and coronary artery disease [104–107]. 
Many studies have shown that altered mitochondrial DNA 
causes a reduction in stem cell populations and dysfunction, 
which is responsible for triggering aging and degenerative 
diseases. For instance, mtDNA polymerase gamma (POLG) 
mutant mice had NSC and hematopoietic progenitor cell 
(HPC) dysfunction from embryogenesis. HPCs showed 
abnormal lineage differentiation leading to anemia and 
lymphopenia [87]. Accelerated mitochondrial DNA 
mutations in stem cells of POLG mutant mice lead to 
impaired intestinal function and reduced nutrient absorption, 
which are important processes in aging [88]. In addition, 
the reprogramming ability of POLG mutant stem cells was 
significantly impaired during the generation of iPSCs [108]. 
McDonald et al. [109] showed that mtDNA mutations were 
present in stem cells of the normal human gastric epithelium 
and were passed on to differentiated progeny. Age-associated 
mitochondrial DNA mutations have also been reported to 
cause abnormal cell proliferation and apoptosis in human 
colonic crypts and inhibit the early differentiation of HSCs 
[89, 110]. In another mouse model of aging, systemic 
dysfunction of mitochondria due to mtDNA deletion 
affects the pool of muscle stem cells, thereby diminishing 
the muscle’s capacity to regenerate and repair itself during 
the aging process [91]. Overall, these studies highlight 
the importance of mtDNA in controlling stem cell fate 
and function in a variety of contexts. Intact mitochondrial 
function is needed for appropriate multilineage stem cell 
differentiation. Notably, Norddahl et  al. revealed that 
mitochondrial DNA mutations alone are not sufficient to 
cause age-related stem cell dysfunction [90].

Increasing evidence suggests that aberrant mtDNA 
modification plays an important role in disease development 
and progression [111–113]. Although mitochondria do not 
have histones, there are DNA‒protein assemblies consisting 
of mtDNA [114]. A variety of nucleoid factors are involved 
in the maintenance and transcription of mtDNA, including 
mitochondrial transcription factor A (TFAM, the central 
mtDNA packaging factor), mitochondrial single-strand DNA 
binding protein (mtSSB), mitochondrial RNA polymerase 
(POLRMT), and Lon protease [115, 116]. Whether mtDNA 

is modified by methylation has been controversial [111, 
117]. Because methylase cannot enter mitochondria and 
mtDNA does not bind to histones, the prevailing view is that 
mtDNA cannot be methylated [118]. One study found that 
mtDNA methylation does not occur in the oocytes and early 
embryos of mice [119]. Recently, Tian et al. demonstrated 
that the mitochondrial genome undergoes DNA de novo 
methylation similar to the nuclear genome, which can 
help embryonic and somatic cells combat mtDNA damage 
triggered by mitochondrial oxidative stress and maintain 
mitochondrial genome stability [120]. Recent studies have 
implied that methylation can occur on cytosine and adenine 
residues in mtDNA, which is associated with aging and age-
related diseases [121–123]. However, the methylation status 
of mtDNA remains a topic of controversy due to limitations 
in current methods for detection, as both CpG and non-
CpG sites are present in mtDNA [124–126]. Many of the 
available methods for detecting mtDNA methylation have 
significant drawbacks [127]. mtDNA methylation changes 
to different degrees during development, aging, and hypoxic 
stress [127, 128], but the regulatory mechanism remains 
to be studied. Likewise, methylation of mtDNA regulates 
the activities of mitochondrial transcription factors. 
Methylation of mtDNA attenuates the binding of TFAM 
to the genome, thereby altering its transcriptional activity. 
This process may indirectly regulate the activities of TFB2M 
(transcription factor B2, mitochondrial) and POLRMT 
through the recruitment mechanism of TFAM [129]. 
Although the physiological role of mtDNA methylation 
is unknown, it has been found that aging reduces mtDNA 
5-hydroxymethylcytosine (5hmC) in the frontal cortex of 
mice. In the same tissue, the expression of mitochondrial-
encoded genes is upregulated with aging [130], suggesting 
that epigenetic regulation of mtDNA transcription is 
also involved in the aging process. In contrast. mtDNA 
methylation was not observed in mouse oocytes and early 
embryos [119]. This idea needs to be supported by more 
research.

Mitochondrial ROS

ROS refers to oxygen-containing free radicals or compounds 
that are more reactive than molecular oxygen, including 
superoxide radical anion (O2 −), hydroxyl radical (·OH), 
hydrogen peroxide (H2O2), and lipid hydroperoxides 
(LOOH) [131]. Mitochondria are a major source of ROS 
and central modulators of redox homeostasis in stem cells, 
a consequence of their role in energy (i.e., ATP) production 
via OXPHOS. Murphy has elaborated in detail on the 
process of ROS production by mitochondria [132, 133].

Impairment of the mitochondrial respiratory chain 
and inefficient OXPHOS can enhance electron leakage, 
leading to increased ROS generation. This detrimental 
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cycle can cause progressive and irreversible damage to 
cells, ultimately contributing to the aging process [134]. 
Mitochondria alter the epigenetic landscape via ROS, which 
play a particularly relevant role in regulating stem cell fate 
[6, 7]. The regenerative potential of stem cells is closely 
related to intracellular reactive oxygen species levels and 
cellular redox homeostasis [135].

The majority of mitochondrial ROS are produced due 
to electron leakage from OXPHOS complexes I and III, 
leading to damage to various cellular components, such as 
DNA, lipids, and proteins [136]. Stem cells appear to be 
particularly sensitive to elevated ROS levels. Under normal 
conditions, ROS function as signaling molecules that 
regulate the differentiation of stem/progenitor cells, such as 
in Drosophila hematopoietic cells [92]. Nevertheless, ROS 
levels increase in HSCs with age, and prolonged treatment 
with the antioxidant N-acetyl-L-cysteine (NAC) increases 
the replicative potential of HSCs upon serial transplantation 
in irradiated mice [93]. Another study demonstrated that 
Bmi1-deficient cells exhibit compromised mitochondrial 
function, elevated levels of reactive oxygen species, and 
activation of the DNA damage response pathway. However, 
these effects were ameliorated through NAC treatment 
[137]. Ito et al. provided evidence that mitochondrial ROS 
generation in HSCs and progenitors could be influenced by 
the fatty acid β-oxidation (FAO) pathway, leading to the 
modulation of symmetric and asymmetric HSC division 
[94]. Furthermore, Forkhead box O (FOXO) proteins, 
crucial mediators in ROS signaling, play an important 
role in the response to oxidative stress and are involved 
in preserving the quiescence and survival of HSCs [95]. 
Neural stem cells can eliminate ROS by upregulating Nrf2 
expression and transcription [96]. High ROS levels inhibit 
MSC proliferation and increase senescence. Modulating 
sirtuins expression and activity may reduce oxidative stress 
in MSCs [98]. Alterations in ROS levels may impact the 
expansion, depletion, and maintenance of stem cells.

Mitochondria altering the epigenetic landscape through 
ROS play a particularly pertinent role in regulating stem 
cell fate [138–140]. For instance, mitochondrial dysfunction 
induces histone hypermethylation by increasing the levels of 
ROS, which inhibits histone demethylases [2]. Neural stem 
cells exposed to the synthetic glucocorticoid dexamethasone 
or ROS have reduced overall DNA methylation and DNA 
methyltransferases, intimating the development of epigenetic 
alterations [141]. The generation of ROS is also associated 
with epigenetic chromatin modifications, including global 
DNA CpG hypomethylation and histone-3 phosphorylation, 
which promote cellular apoptosis and lead to hematopoietic 
catastrophe [142].

Although ROS are better known for their damaging 
properties, recent findings indicate that ROS may also be 
an integral physiological mediator of cellular signaling in 

primary cells [143]. Intriguingly, the effects of mitochondrial 
ROS on stem cell dysfunction and aging are not all 
negative. Long-lived species do not always demonstrate 
lower levels of ROS [144]. A rise in ROS even increases 
the lifespan of worms [145]. Similarly, an increase in ROS 
levels is accompanied by an increase in mitochondrial 
size and ATP levels to protect HSCs from irradiation-
induced apoptosis [146]. ROS production is an important 
component of neural stem cell regulation. The regeneration 
of dopamine neurons also depends on ROS production 
[97]. ROS signaling is considered to be an emerging key 
regulator of multiple stem cell populations [147]. Metabolic 
analysis has demonstrated that oxidative phosphorylation 
stimulates p38 mitogen-activated protein kinase (p38-
MAPK) activation by mitochondrial reactive oxygen species 
signaling, thereby establishing the mature crypt phenotype. 
Hye Jin Jin et  al. observed that senescent UCB-MSCs 
release monocyte chemoattractant protein 1 (MCP-1), a 
prominent chemokine, which facilitates the transmission of 
senescence signaling through its receptor chemokine (c–c 
motif) receptor 2 (CCR2), thereby promoting senescence by 
elevating the levels of p53 and p21 proteins via ROS or p38-
MAPK signaling. Additionally, the polycomb protein BMI1 
was found to downregulate the expression of MCP-1 by 
binding to its regulatory elements. As UCB-MSCs undergo 
senescence and BMI1 levels decrease, the epigenetic profile 
of MCP-1 changes, leading to the loss of H2AK119Ub 
and ultimately causing the derepression of MCP-1 [148].
This suggests that ROS signaling plays a critical role in the 
differentiation of stem cells in the small intestine [149]. 
Nevertheless, the effects of mtROS on stem cell function and 
the specific mechanisms remain to be further investigated.

Mitogen-activated protein kinases allow cells to interpret 
and respond to a wide variety of signals, such as changes 
in osmolarity, oxidative stress, and heat shock [150, 151]. 
Activation of MAPKs is associated with the ability to 
differentiate multiple types of stem cells in humans and mice 
[152–154]. In particular, all four p38 identified isoforms 
(p38α, β, γ, and δ) serve as nexuses for signal transduction 
and play crucial roles in many biological processes [155, 
156]. For stem cells, studies have indicated that the p38-
MAPK pathway activated by ROS has a negative effect 
on the self-renewal and expansion of HSCs [155, 157]. 
SB203580 is a selective inhibitor of p38-MAPK. One 
possible mechanism is that SB203580 regulates the p38-
MAPK signaling pathway by reducing the downstream 
phosphorylation of MAPKAPK2, HSP27, and ATF2 [158]. 
Administration of SB203580 helps HSCs recover the 
regenerative ability, maintain a static state, and promote 
expansion. [157, 159–161]. One recent study revealed that 
p38α differentially modulates HSC function between the 
early and late progression phases of chronological aging 
[162]. During the early progression phase of chronological 
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aging, p38-MAPK activity maintains HSC repopulation 
capacity and multipotency after transplantation, whereas in 
the late progression phase, it decreases HSC repopulation 
capacity after transplantation [162]. The p38 pathway is 
also one of the major controllers that determines the fate 
of muscle stem cells by inducing the expression of muscle-
specific genes [163]. The p38-MAPK pathway is also a key 
player in MSC senescence [164]. Inhibition of p38-MAPK 
signaling leads to improved regenerative properties of MSCs 
and their ability to support HSCs, even abrogating aging 
phenotypes [165, 166]. Prakash et al. found that depleting 
SIRT3 increases p38 signaling and promotes MSC death 
during oxidative stress [167]. Notably, in a later study, 
inhibition of p38 by SB203580 significantly impairs the lipid 
differentiation potential of MSCs [168], which diverges from 
the results obtained in the above study. This may be due to 
the different response of varied types or sources of stem 
cells to SB203580. As the major source of cancer initiation, 
relapse, and drug resistance, research on cancer stem cells 
(CSCs) has increased in recent years. For most cancers, 
inhibition of p38 can reduce the expression of stemness 
factors in CSCs and attenuate the invasion and metastasis of 
circulating tumor cells [169]. Another study suggested that 
the p38 pathway inhibits cancer development by inhibiting 

cell proliferation and mediating cell senescence. Specifically, 
for non-small cell lung cancer cells, increased expression 
of WIP1 (wild-type p53-induced phosphatase) suppresses 
p38 activity and promotes CSCs properties by enhancing the 
expression of stemness-related transcription factors [170]. 
In a previous study, Shuhei Hattori demonstrated that the 
expression of EC-SOD (Extracellular-superoxide dismutase) 
in tubular-epithelial COS7 cells is downregulated through 
intracellular ROS signaling [171]. In line with this finding, 
treatment with  CoCl2 decreased the acetylation levels of 
histone H3 and H4 by activating intracellular ROS–p38-
MAPK signaling. Additionally, luteolin effectively mitigated 
the reduction in EC-SOD caused by  CoCl2 by inhibiting 
ROS–p38-MAPK signaling and histone deacetylation [172]. 
Additionally, Arctigenin, a dietary phytoestrogen, has been 
identified as an inducer of apoptosis in MDA-MB-231 cells 
by activating the ROS/p38-MAPK pathway and regulating 
Bcl-2 through increased histone H3K9 trimethylation [173]. 
Nevertheless, further investigation is required to determine 
the potential involvement of  CoCl2 and Arctigenin in 
regulating the stem cells fate.

In summary, these studies reveal multifaceted functions 
of the p38-MAPK pathway in various contexts of multiple 

Fig. 3  Roles of mitochondrial stress signaling responses in stem cells. 
Some pathways activated by stress signals, such as p38-MAPK and 
Wnt, control whether stem cells express stemness factors and affect 

their differentiation and aging. This figure shows how related regula-
tors (SIRT3/6, BMI1, SB203580, NCB-0846) influence these process 
through epigenetic pathways
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stem cells (Fig. 3). Thus, regulating p38 might enable us 
to control the stem cell state and differentiation direction.

The UPRmt

During aging, mitochondria will decline in function 
as a result of several factors. In cases of mitochondrial 
dysfunction, cells initiate a transcriptional response 
mechanism known as UPRmt, which serves to regulate 
mitochondrial protein homeostasis [174].  UPRmt was 
originally discovered in cultured mammalian cells where 
deletion of mtDNA or overexpression of mitochondrial 
targeting proteins triggered associated transcriptional 
responses, including mitochondrial molecular chaperones 
and quality control proteases [175, 176]. Studies in C. 
elegans have identified components in multiple subcellular 
compartments, providing insights into how cells detect 
mitochondrial dysfunction and communicate with the 
nucleus to adapt to transcription accordingly [177]. 
Importantly, this mitochondrial protein quality control 
mechanism is conserved among many species, including 
worms, mice, and humans [178–181]. However, the 
human  UPRmt, which is gaining relevance in a variety of 
physiological processes, remains not fully understood. 
The  UPRmt pathway not only triggers the transcription 
of chaperones and proteases to restore mitochondrial 
proteostasis but also renders cells more resistant to aging and 
metabolic stresses by inducing tolerance to mitochondrial 
stress [182, 183].

Following comprehensive research on the function and 
regulation of the  UPRmt in somatic cells, scientists have 
focused on exploring the regulatory mechanisms of the 
 UPRmt in stem cells. Mohrin et al. found that the reduction 
in SIRT7 expression in aged HSCs leads to functional 
decline. The downregulation of SIRT7 contributes to 
age-related functional degradation through an increase 
in mitochondrial protein dysfunction [71]. In line with 
this study, they further provide direct evidence that the 
mitochondrial  UPRmt is activated when hematopoietic 
stem cells transition from quiescence to proliferation [99]. 
This work has been recently extended into NSC aging. 
Wang et al. used single-cell RNA sequencing to analyze 
the dentate gyrus of young and aged mice and confirmed 
that mitochondrial protein folding stress is elevated as 
neural stem cells age. Among them, SIRT7 overexpression 
inhibited mitochondrial protein folding stress to protect 
neural stem cells [184]. In addition to SIRT7,  UPRmt 
activation by superoxide dismutase 2 (SOD2) is imperative 
for HSCs to maintain the integrity of the mitochondrial 
network [100]. The expression of  UPRmt-associated 
genes can be affected by the level of cellular  NAD+. 
NR (Nicotinamide riboside) treatment rejuvenated aged 

MuSCs by inducing the mitochondrial unfolded protein 
response and synthesis of prohibition proteins [101, 102]. 
Moreover, intestinal epithelial-specific heat shock protein 
60 (HSP60) deficiency triggers the UPRmt pathway, which 
leads to the excessive proliferation of residual stem cells 
[185]. The findings indicate that the  UPRmt performs 
crucial functions in preserving adult stem cell populations 
in various tissues by ensuring metabolic robustness prior 
to committing to proliferation.

As a well-studied ‘old pathway’, Wnt signaling 
has been found to have a novel function in the  UPRmt. 
Highly conserved Wnt signaling is sufficiently required 
to mediate the involuntary activation of the  UPRmt in 
neuronal–intestinal cells [186]. Furthermore, there is 
a remarkable phenomenon wherein the  UPRmt induced 
by mitochondrial stress in neurons can be inherited 
by offspring [187]. Traditionally, the Wnt pathway is 
recognized as an important regulatory signaling axis that 
influences developmental processes in the embryo and 
regulates the maintenance, self-renewal, and differentiation 
of adult mammalian tissue stem cells [188]. In general, 
Wnt proteins act to maintain the undifferentiated state of 
stem cells [189]. Specifically, Wnt signaling regulates 
the metabolic requirements of neural crest-like stem cells 
through glycolysis and determines their differentiation 
[190]. There have been many advances in the epigenetic 
regulation of Wnt signaling in stem cells [191] (Fig. 3). 
For instance, the activation of the Wnt/β-catenin signaling 
pathway ensures normal DNA methylation of mESCs, 
which is essential for differentiation and proliferation 
[192]. SIRT6 is a histone deacetylase that maintains 
Wnt signaling at a low level in HSCs by two methods: 
(1) deacetylating H3K56ac at the promoters of Wnt 
target genes and thereby inhibiting transcription; and 
(2) limiting signaling specificity by interacting with Wnt 
signaling factor TCF/LEF1. [193]. In addition, when Wnt 
signaling is activated by p38β via LRP6 phosphorylation, 
this pathway maintains the self-renewal capacity of normal 
stem cells and cancer stem cells (CSCs) in many cell types 
[169]. A novel Wnt small molecule inhibitor NCB-0846 
down-regulates the levels of LRP5 and LRP6 in colorectal 
cancer cells. NCB-0846 reduces the expression of Wnt 
downstream targets AXIN2 and cMYC and is expected 
to remove cancer stem cells [194]. What is more, the 
WNT protein is a critical cell reprogramming signaling 
molecule that can successfully reprogram fibroblasts 
or skin cells into induced pluripotent stem cells [195]. 
Given the important role of the Wnt/β-catenin pathway 
in the pluripotent differentiation and regeneration of stem 
cells, further exploration of how Wnt signaling pathway-
mediated  UPRmt in stem cells prolongs their lifespan is a 
promising direction of research.
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Mitochondrial quality control and stem cell 
senescence

Mitochondria have evolved multiple mechanisms to ensure 
mitochondrial quality. These programs are dysregulated 
during physiological aging, which contributes to the 
functional deterioration of stem cells, tissue degeneration, 
and shortened organismal lifespan. A decline in 
mitochondrial quality control pathways results in a 
multitude of cellular malfunctions, including genetic and 
epigenetic changes. For example, Katarzyna Kornicka and 
her colleagues identified that the regulation of mitochondrial 
dynamics and autophagy by 5-azacytydine and resveratrol 
can reverse senescence and aging in adipose stem cells 
[196]. Specifically, 5‐azacytidine/resveratrol treatment 
rejuvenates adipose stem cells isolated from equine 
metabolic syndrome (EMS) horses through epigenetic 
alternations [196]. Currently, several genes involved in 
mitophagy and mitochondrial dynamics have been identified 
to regulate stem cell activation and differentiation (Table 2).

Mitochondrial dynamics: fusion and fission

In higher eukaryotes, the segregation of mtDNA within cells 
is regulated by continuous cycles of mitochondrial fission 
and fusion. These processes are highly dynamic, and their 

rates are finely tuned to meet the specific requirements of 
different cell types [217]. Mitochondrial dynamics is an 
important aspect of mitochondrial behavior that involves 
the processes of mitochondrial fission, fusion, tethering, and 
motility [218]. The balance between mitochondrial fission 
and fusion is critical for maintaining mitochondrial function 
and preventing cell death (Fig. 4) [219]. The alteration of 
mitochondrial dynamics leads to an increase in mitochon-
drial fission, which facilitates the process of mitophagy for 
the removal of damaged mitochondria and plays a role in 
driving cellular differentiation [220].

The use of mitochondria-specific probes, combined 
with fluorescence microscopy, has demonstrated that mito-
chondria are in the process of mitochondrial dynamics in 
mammalian cell lines and yeast [221]. The regulation of 
mitochondrial fusion is primarily achieved through three 
large proteins of GTPases situated on the mitochondrial 
membrane, namely, mitochondrial fusion proteins 1 and 2 
(MFN1, MFN2) and optic nerve atrophy protein 1 (OPA1) 
[221, 222]. Conversely, the process of mitochondrial fis-
sion is controlled by a group of five proteins, which include 
dynamin-related protein 1 (DRP1), mitochondrial fission 
protein 1 (FIS1), mitochondrial fission factor (MFF), and 
mitochondrial elongation factors 1 and 2 (Mi49 and MiD51) 
[223]. Specifically, DRP1, which resides in the cytoplasm, 
plays an imperative role in the regulation of mitochon-
drial fission [224]. Upon receiving the fission signal, a 

Table 2  Mitochondrial stress response in stem cell proliferation, differentiation, and aging

Dynamics Key genes Manipulation Effect on stem cell References

Fusion OPA1, MFN1/2 Removal of MFN1 and MFN2 Impair NSC self-renewal [197]
Block asymmetric division of stem cells [198]
Improve reprogramming efficiency and pluripotency [199]

Gene trapping of MFN2 or OPA1 Impair ESC differentiation [200]
Removal of OPA1 Impair ISCs differentiation [201]
Overexpression of MFN2 promote ESC differentiation [202]

Promote hiPSCs differentiation [203]
Maintain HSCs stemness [204]

Fission DRP1
FIS1, MFF, Mi49/51

Downregulation of DRP1 Rescue ISC differentiation defect [205]
Reduces the reprogramming efficiency of IPSCs [206]
MSCs lost differentiation potential [207]
Loss stemness [208]

Upregulation of DRP1, FIS1 Improve reprogramming efficiency of iPSCs [209]
Impair developmental potential [210]
Influence MSCs’ differentiation direction [207]

Mitophagy PINK1, PARKIN,
FUNDC1, BNIP3
AMBRA1

Upregulation of PARKIN and PINK1 Maintain stemness and regenerative capacity [211, 212]
Induction of ISCs aging [213]

Upregulation of BNIP3 Lead to mitochondrial fragmentation and apoptosis [214]
Deficiency of PINK1 Increase spontaneous differentiation and decrease 

reprogramming efficiency of iPSCs
[215]

Deficiency of SIRT1 Delay activation of muscle stem cells [216]
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considerable amount of DRP1 is transported to the outer 
membrane of mitochondria, where it interacts with FIS1, 
MFF, MiD49, and MiD51 to facilitate the process of mito-
chondrial fission [219]. Additionally, GDAP1 (Ganglioside 
Induced Differentiation Associated Protein 1), as a mito-
chondrial outer membrane protein, plays a role in certain 
types of Charcot–Marie–Tooth disease and is also respon-
sible for regulating mitochondrial fission [225]. However, 
the specific mechanism through which it accomplishes these 
actions remains unclear.

Mitochondrial dynamics induce the differentiation 
potential of pluripotent stem cells. Chen and Chan 
suggested that there is a relationship between the shape and 
structure of mitochondria and the ability of stem cells to 
mature into specialized cell types. Specifically, high levels 
of mitochondrial fission are associated with resistance to 
differentiation in some stem cells [226]. Loss of some key 
proteins leads to severe respiratory chain function, which 
may be essential for cell differentiation. Mitochondrial 
dynamics affect NSCs by regulating their self-renewal 
and fate decisions through transcriptional programming. 
Manipulation of mitochondrial structure impairs NSC self-
renewal, leading to age-dependent depletion, neurogenesis 
defects, and cognitive impairments. Removal of MFN1 and 
MFN2 causes age-dependent attrition, neurogenesis deficits, 
and cognitive impairment in NSCs [197]. Additionally, 

A recent study found that lower levels of SETD5 caused 
fragmentation in mitochondria and decreased mitochondrial 
membrane potential and ATP production in both neural 
precursors and neurons. And mutant neurons exhibited 
mislocalized mitochondria, with fewer organelles within 
neurites and synapses [227]. Gene trapping of MFN2 
or OPA1 in mice arrested mouse heart development and 
impaired the differentiation of ESCs into cardiomyocytes 
[200]. MFN1 interacts with a cell polarity protein complex to 
direct asymmetric cell division, allowing stem cell progeny 
to inherit fused mitochondria with enhanced reactive oxygen 
species scavenging capacity to sustain the stem cell pool 
[198]. MFN2 is specifically needed for the maintenance of 
HSCs with extensive lymphoid potential [204]. MFN2 also 
plays a role in inducing stem cell development. For example, 
knockdown of MFN2 resulted in deficits in mitochondrial 
metabolism, whereas overexpression of MFN2 enhanced 
mitochondrial bioenergetics and functions and promoted 
the differentiation of hiPSCs [203]. MFN2-induced 
mitochondrial elongation is sufficient to drive the exit of 
embryonic stem cells from initial pluripotency. This implies 
that MFN2 plays a vital role in the transformation of mouse 
initial pluripotent cells to initiating pluripotent cells by 
promoting mitochondrial elongation [202]. The depletion of 
MFN1/2 facilitates the transition of cells into a pluripotent 
state and sustains pluripotency through the coordinated 

Fig. 4  Mitochondrial qual-
ity control in stem cells. 
The mitochondrial dynamic 
balance between fusion and 
fission maintains mitochondrial 
homeostasis, while damaged 
mitochondria are cleared via 
the mitophagy pathway or 
mitochondria-dependent apop-
tosis pathway. The alteration of 
mitochondrial dynamics leads 
to an increase in mitochondrial 
fission, which facilitates the 
process of mitophagy for the 
removal of damaged mitochon-
dria and plays a role in driving 
cellular differentiation
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integration of Wnt or p53 signaling [199, 228] (Fig. 3). 
Knockdown of OPA1 blocked enterocyte differentiation in 
intestinal stem/progenitor cells [201].

As with mitochondrial fusion, loss of mitochondrial 
fission results in stem cell fate changes. Dysfunction of 
DRP1 leads to mitochondrial fragmentation and impaired 
mitochondrial quality control [229]. Specifically, the 
induction of pluripotency is associated with mitochondrial 
fragmentation via the regulation of DRP1 phosphorylation 
[205]. Inhibition of DRP1 using a small molecule called 
mdivi-1 leads to the formation of a fused mitochondrial 
network. This greatly reduces the efficiency of 
reprogramming, thereby inhibiting the reprogramming of 
somatic cells to induced pluripotent stem cells [206]. The 
upregulation of Fis1 expression during chondrogenesis 
implies that mitochondrial fragmentation plays a vital role 
in this differentiation process. The depletion of Drp1 and 
Fis1 resulted in a significant reduction in the differentiation 
potential of MSCs [207]. Drp1 also helps CSCs of 
nasopharyngeal carcinoma (NPC) maintain stemness [208]. 
The possibility of DRP1 improving the reprogramming 
efficiency of iPSCs cannot be ruled out; thus, further 
investigation is required to fully understand its potential 
involvement [209]. Zhong et  al. showed that excessive 
mitochondrial division regulated by DRP1 is associated with 
impaired embryonic developmental potential of stem cells. 
This indicates that the balance between mitochondrial fission 
and fusion regulated by DRP1 and other proteins is essential 
for the pluripotency of stem cells [210].

In contrast, Wang and colleagues discovered that 
knockdown of Drp1 affected neither mitochondrial division 
and function nor ESC proliferation and pluripotency [230]. 
The defect in intestinal stem cell (ISC) differentiation 
could be rescued by concomitant inhibition of DRP1 
[201]. Treatment with Drp1-specific inhibitors rescues 
mitochondrial function and apoptosis [231]. Downregulation 
of Drp1 negatively affects the eventual differentiation of 
stem cells, particularly in the neurogenesis profile in vitro 
and in vivo [230]. Consequently, significant controversies 
persist concerning the mechanism by which DRP1 
modulates stem cell fate. As mentioned above, mitochondrial 
fusion is involved in the regulation of stem cell pluripotency. 
However, the exact mechanisms involved are still being 
explored. The relationship between these factors requires 
further research for a comprehensive understanding.

Mitophagy

The concept of mitochondrial autophagy was first 
formalized in 2005 by Lemasters, who observed that loss 
of mitochondrial membrane potential and the opening of 
mitochondrial permeability pores could cause mitochondrial 
autophagy [232]. Mitophagy, along with mitochondrial 

dynamics, plays a crucial role in maintaining a balance that 
preserves the quality control system of mitochondria.

Mitophagy regulatory pathways are classified as ubiquitin-
dependent or ubiquitin independent [233]. The most studied 
mitophagy pathway involves mitochondrial serine/threonine 
PTEN-inducible kinase 1 (PINK1) and the cytoplasmic 
E3-ligase PARKIN [234–236]. In  situations where 
mitochondria become damaged, there is typically a decrease 
in mitochondrial membrane potential, which triggers the 
activation of Parkin and PINK1 [237]. Initially, PINK1 
starts to accumulate on the outer mitochondrial membrane. 
Once activated, PINK1 phosphorylates ubiquitin proteins 
that are minimally associated with outer mitochondrial 
membrane proteins. This process leads to an increase in 
Parkin levels on the outer mitochondrial membrane, which 
results in the continual formation of clustered ubiquitin 
chains by Parkin on outer mitochondrial membrane proteins 
[238]. Ubiquitin chain-tagged damaged mitochondria 
are recognized by a set of ubiquitin-bound mitochondrial 
autophagy receptors, resulting in Parkin-mediated 
degradation of mitochondrial outer membrane proteins 
[238]. In addition to Parkin, other ubiquitin E3 ligases are 
involved in the regulation of mitochondrial autophagy, 
either joining or acting in parallel with the Parkin/PINK1-
mediated mitophagy pathway in a dendritic branching 
model [239, 240]. Furthermore, alternative pathways for 
mitophagy exist, which typically involve the recruitment of 
receptor molecules for LC3 family members on the outer 
mitochondrial membrane to identify and eliminate damaged 
mitochondria [241, 242]. These mechanisms mainly involve 
FUNDC1 (a mitochondrial autophagy receptor) regulated 
by hypoxia-inducible factor-1 (HIF-1), the mitochondrial 
outer membrane receptor BNIP3L/NIX (a mitochondrial 
protein belonging to the BCL2 family), and autophagy and 
Beclin 1 regulator 1 (AMBRA1) [243–245]. Despite the 
identification of numerous participants in mitophagy, the 
overall understanding is further complicated by significant 
overlap between these pathways.

There is increasing evidence highlighting the significance 
of mitophagy in maintaining stem cell homeostasis and 
promoting rejuvenation. For instance, adult human stem 
cells require intact mitophagy pathways for self-renewal and 
differentiation. The level of autophagy is higher in certain 
types of stem cells, including HSCs and skin stem cells, 
than in the surrounding cells [246]. HSCs maintain stem 
cell potential during cell cycling due to high mitochondrial 
clearance through the upregulation of Parkin and Pink1 
[211, 212]. Loss of PINK1-dependent mitophagy led to a 
decrease in the efficiency of iPSC reprogramming and an 
increase in spontaneous differentiation [215]. Similarly, the 
reduction of Pink1 or Parkin in intestinal stem cells (ISCs) 
appears to lead to the induction of senescence, which in 
turn inhibits age-related loss of tissue homeostasis [213]. 
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Moreover, BNIP3L/NIX is involved in mitophagy that 
occurs during reprogramming, which is important for iPSCs 
and is not dependent on mitochondrial membrane potential 
dissipation [247]. During the differentiation of MSCs 
into adipocytes and osteoblasts, autophagosome-forming 
proteins were significantly upregulated, indicating increased 
levels of autophagy. Additionally, the lipogenic capacity of 
MSCs was reduced after treatment with autophagy inhibitors 
[248]. Inhibition of autophagy leads to an increase in ROS 
accumulation and DNA damage, resulting in the loss of 
stemness in MSCs [249]. The nutrient sensor SIRT1 also 
plays a crucial role in regulating autophagy in muscle stem 
cell progeny. SIRT1 deficiency results in a delay in MuSCs 
activation, which is partially rescued by exogenous pyruvate. 
The loss of SIRT1 also leads to hyperacetylation of ATG7, 
a protein involved in autophagy [216]. Increasing evidence 
suggests that abnormal mitophagy can lead to senescence of 
bone marrow mesenchymal stem cells (BMSCs) [250, 251]. 
Targeting BMSC senescence can ameliorate osteoporosis, 
highlighting their potential as effective therapeutic 
interventions [252]. Intriguingly, Sirtuin-3 (Sirt3) is a 
crucial enzyme involved in regulating mitochondrial 
metabolism and maintaining mitochondrial homeostasis 
[253]. Brown et al. reported that the inhibition of Sirt3-
mediated mitochondrial homeostasis contributes to increased 
oxidative stress in aged stem cells [70]. Most importantly, 
recent evidence has indicated that Sirt3 plays a protective 
role in mitigating senescence and sarcopenic obesity (SOP) 
induced by AGEs in BMSCs. In addition, targeting Sirt3 to 
enhance mitophagy could serve as a promising therapeutic 
approach to attenuate age-related SOP [254]. Additionally, 
the decline in autophagy in geriatric satellite cells leads to 
a loss of proteostasis, increased mitochondrial dysfunction, 
and oxidative stress, resulting in a decline in the function 
and number of satellite cells. Nevertheless, reestablishment 
of autophagy reverses senescence and restores regenerative 
functions in geriatric satellite cells [255]. In general, 
mitophagy-driven mitochondrial rejuvenation is required to 
induce and maintain stem cell pluripotency.

Emerging evidence suggests that mitochondrial dynamics 
and mitophagy are integrated systems [256–258] (Fig. 4). 
For example, as a master regulator of mitochondrial fission, 
Drp1 may play a role beyond the regulation of fission itself 
and is also considered to be an integral part of mitophagy 
[256]. After being ubiquitinated by Parkin, Drp1 promotes 
autophagy in damaged mitochondria [259]. Another previous 
study demonstrated that overexpression of Drp1 in HeLa 
cells resulted in a 70% reduction in mitochondrial mass, 
suggesting a direct link between mitochondrial division 
and mitophagy. Considering the size of mitochondria, only 
fragmented mitochondria can enter the autophagosome 
[260]. In contrast, an article published in 2021 observes that 
mitochondrial fission in primary neuronal cells exposed to 

oxygen–glucose deprivation is a Drp1-dependent process, 
whereas mitochondrial clearance by mitophagy is not Drp1 
dependent. A similar phenomenon has been observed in 
stem cells in recent years. Mitochondrial division promotes 
mitophagy in cancer stem cells [261]. Mitochondrial 
fission permits mitophagy in satellite cells during muscle 
regeneration [262]. However, the role of this relationship in 
other types of stem cells remains unclear.

Conclusions and perspectives

Mitochondria have evolved multiple mechanisms to ensure 
mitochondrial quality. These programs are dysregulated 
during physiological aging, which contributes to the 
functional deterioration of stem cells, tissue degeneration, 
and shortened organismal lifespan. A decline in 
mitochondrial quality control pathways results in a multitude 
of cellular malfunctions, including genetic and epigenetic 
changes. Currently, several genes involved in mitophagy 
and mitochondrial dynamics have been identified to regulate 
stem cell activation and differentiation (Table 2).

Mitochondria are essential organelles that play a crucial 
role in regulating stem cell fate. Both mitochondrial 
dysfunction and stem cell exhaustion have been the focus 
of considerable research in recent years. Evidence suggests 
that mitochondrial metabolites regulate various epigenetic 
changes that impact stem cell aging or differentiation 
by altering stress signaling levels or through quality 
control mechanisms. In this review, we elaborate on the 
crosstalk between mitochondrial and epigenetic changes 
in the modulation of stem cell fate. Understanding how 
mitochondria regulate stem cell fate is critical to the 
development of clinical-grade stem cells under strict quality 
control standards, contributing to the management of aging-
associated organ dysfunction and disease.

Stem cells have promising applications in regenerative 
medicine and cell therapy. Researchers are dedicated 
to resolving how stem cells regulate their self-renewal, 
pluripotency, and plasticity. Maintaining stem cell stemness, 
controlling the direction of stem cell differentiation, 
preserving stem cell quality, and preventing their senescence 
are crucial aspects of stem cell research and its applications 
in regenerative medicine. Given the critical role of 
mitochondria in the induction and maintenance of stem cell 
pluripotency and cell differentiation, numerous researchers 
are striving to gain a comprehensive understanding of the 
mechanisms and roles of mitochondria in regulating the 
physiological functions of stem cells.

Despite the great progress that has been made, 
research in this field is still in the developmental stage. 
These relationships obtained thus far, like some threads, 
are insufficient to construct a mitochondrial network 
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that regulates the fate of stem cells. In particular, 
there are still overlaps and intersections between some 
relationships, and certain conclusions remain controversial 
and require further clarification [263]. This topic is also 
directly linked to several age-related diseases, such as 
Parkinson’s disease, Alzheimer’s disease, cancer, and 
other degenerative diseases. It is known that mitochondrial 
function decreases in several types of adult stem cells, but 
it remains unclear whether all types of stem cells, upon 
aging or differentiation, have similar mitochondrial and 
metabolic changes. Additionally, the identification of key 
regulators of the  UPRmt, mitophagy, and mitochondrial 
dynamics in different stem cells is one of the current 
research hotspots.

Modulating mitochondrial function or enhancing 
mitochondrial quality control may prove to be effective 
strategies for controlling stem cell amplification, stimulating 
stem cell activation for regenerative medicine, and 
combating stem cell dysfunction during the aging process. 
Notably, many aspects of mitochondrial regulation of stem 
cell function require additional research. Encouragingly, 
emerging tools of modern biology have made it easier to 
gain insight into this complex interaction. For example, 
simultaneous analysis of the genome, transcriptome, 
proteome, and metabolome to connect multiple levels of 
information has been successfully applied to the study of 
genetic reference populations. This multilayered study is 
also valuable for identifying the regulatory networks that 
govern stem cell function and fate decisions [264]. Another 
effective approach to study cellular diversity among stem 
cells is the use of emerging single-cell technologies such 
as single-cell RNA sequencing. This approach may be 
particularly relevant because of its high sensitivity and the 
limited availability of stem cells [265]. The application of 
these new technologies will undoubtedly provide stronger 
support in building mitochondrial regulatory networks and 
mapping stem cell epigenetic profiles.
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