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Abstract
Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) 
play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T 
cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases’ 
pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of 
epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for 
sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious 
agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differ-
ences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the 
specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial 
agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, 
targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.

Keywords Microbial-Immune balance · Germ-related autoimmune disorders · Micorbial agents in multifactorial disease · 
Immune cell trafficking · Environment-related balance of health/disease

Introduction

We recently celebrated the 200th anniversary of Gregory 
Mendel birth. His work provided the scientific framework to 
understand a number of diseases that showed a clear pattern 
of inheritance and were largely independent from “infec-
tious” causes [1]. Earlier, in the eighteenth century Bernardo 
Ramazzini, considered the father of occupational medicine, 
had defined several work-related disease-causative agents 
thus identifying the first disease etiology [2]. Yet, it was 
in the late nineteenth century that the identification of the 
biological nature of the causes underlying many (infectious) 
diseases allowed the greatest progress in our ability to treat 
and prevent diseases. The recent compact, global, and fast 
response to the pandemic of COVID-19 has demonstrated 
the great benefits that identification of biologic etiology of a 
disease provide to humanity. The large number of microor-
ganisms present in the biologic fluids and in the environment 
led to the development of criteria, formalized by Koch, to 
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establish a causal relationship between a pathogen and a 
disease [3] (Table 1). These criteria, however, have several 
limitations due the complexity of pathogen, host and envi-
ronment relationship; in Table 1 we propose some examples 
of such exceptions [4–6].

The causes of most diseases cannot be easily reduced to 
a single factor among the above-mentioned (i.e., infectious 
or genetic or occupational). Neoplastic [7], cardiovascular 
[8–10], immune-mediated [11–17] and neurodegenerative 
diseases [18–20] are therefore defined as multifactorial dis-
eases, as for each of them a complex and not univocally 
defined combinations of genes, behaviors and “environment” 
converge, leading to its determination [21–23].

The growing knowledge about the complex host–microbe 
interactions, the improved diagnostics, the increased oppor-
tunity of travels and the globalization revealed the limita-
tions of Koch’s postulates. In addition, Koch’s criteria 
should be revised for diseases classified as non-infectious, 
but with a microbial origin [24–26].

Several microorganisms, including pathogens, patho-
bionts, symbionts and commensals are able to damage 
tissue(s) and to trigger different types of immune responses 
in a balance between elimination and control, in certain 
cases resulting in the breakdown of tolerance [27–29]. Infec-
tion persistence, molecular mimicry, bystander activation, 
self-antigens release, exceeding antigen presentation and 
superantigen presentation, each contribute to infection-trig-
gered immune imbalance [30]. Many associations between 
infections and autoimmune and non-autoimmune disorders 
have been described [31–35], although a proven evidence is 
often lacking (Table 2) [27].

Here, we will build on our observations from rheumatoid 
arthritis (RA) [51, 58, 59, 99–101], Multiple Sclerosis (MS) 
[102–108] and non-electrocardiographic ST segment Elevation 
Myocardial Infarction (NSTEMI) [73] to examine the concept 

of asymptomatic infection(s) in the light of immune impact, 
and then focus on the role of T cell antigen recognition and 
trafficking in concealing the responsibility of microbial agents 
in the etiology and pathogenesis of multifactorial diseases.

Host–microbe interaction and inflammation: 
a precarious balance between asymptomatic 
infection and multifactorial diseases

Several lines of evidence point to a prominent role for adap-
tive and innate immune systems in the pathogenesis of 
multifactorial diseases where inflammation constitutes the 
common trait. In these diseases, the overall role of microbial 
agents has been largely underestimated in the twentieth cen-
tury, probably because the emergence of overt disease was 
considered a prerequisite to implicate a microbe, as expected 
by the “Koch’s postulates” [109, 110].

However, thanks to a solid and extensive body of knowl-
edge gathered in the latest decades on the role of microbes 
in health and disease, we are gaining a new understanding 
about the impact and consequences of microbial interac-
tion with the host, and primarily with the host immune sys-
tem. In a seminal paper, Pirofski and Casadevall proposed 
a compelling model of microbial pathogenesis, or rather 
host–microbe interaction, where interaction with even the 
potentially most pathogenic microbe does not necessarily 
lead to damage and disease [111]. This model highlights 
the role of asymptomatic infections, defined as a state with 
microbial replication or persistence in host tissues, with a 
concomitant host immune response that contains microbial 
burden, without overt signs or symptoms of disease, result-
ing in unapparent or subclinical infection [112].

The possibility to shape the host immune responses dif-
fers depending upon (symptomatic/asymptomatic) infection 
lifespan. In chronic-persistent asymptomatic infections (i.e., 

Table 1  Koch’s postulates and selected examples of microorganisms

a We refer to pathogenic E. coli as EPEC, ETEC, STEC and similar strains
b The microbe can be detected in healthy subjects
c The microorganism cannot be cultivated in medium
d Only some of the infected subjects will develop disease

Koch’s postulates Escherichia 
colia in Diar-
rhea

Mycobacte-
rium leprae in 
Leprosy

Treponema 
pallidum in 
Syphilis

Helicobacter 
pylori in Peptic 
ulcer

The microorganism is trackable in all diseased organisms, but not in 
healthy organisms

Nob Yes Yes Nob

The microorganism must be isolated from a diseased organism and 
grown in pure culture

Yes Noc Noc Yes

The cultured microorganism should cause disease when introduced into 
a healthy organism

Nod Yes Yes Nod

The microorganism must be reisolated from the inoculated, diseased 
experimental host and identified as being identical to the original 
specific causative agent

Yes Yes Yes Yes
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Herpes viruses, Toxoplasma gondii, Trypanosoma brucei, 
Trypanosoma cruzi, and many other), concomitantly with 
fully competent immune responses, viable microbial agents 
in host tissues can impact both innate and adaptive immu-
nity, with either beneficial or unfavorable consequences.

Another good example of the dual effect of long-lasting 
asymptomatic infection is represented by Helicobacter 
pylori (H. pylori). On one hand it has been suggested it has 
beneficial effect to the infected host by protecting against 
diarrheal infectious diseases, asthma and allergies, inflam-
matory bowel diseases, and other conditions [113]. On the 
other hand, in a small percentage of infected subjects, its rep-
lication in the gastric mucosa lead to gastritis, peptic ulcer 
and eventually to gastric adenocarcinoma [114, 115]. In 

addition, this observation highlighted the interplay between 
inflammation driven by microbial agents and oncogenesis.

H. pylori represents one of the earliest examples of a 
microbial agent that did not fully comply with Koch’s pos-
tulates. Its role suggested earlier by histology, remained 
undemonstrated for several decades, due to the unexpected 
culture requirements of the bacterium (microaerophilic con-
ditions or in agar stabs [116]), preventing the fulfillment of 
Koch’s second postulate, which states that a microorgan-
ism isolated from a tissue of a diseased organism should be 
grown in a pure culture (Table 1).

Even when we consider several of the most important 
human infectious agents, the most-likely outcomes following 
infections are “asymptomatic”. For instance, the deadliest 

Table 2  Examples of genetic and microbial associations with common autoimmune and non-autoimmune multifactorial diseases

Acronyms in the table: HLA, Human leukocyte Antigen; IL, Interleukin; IFN, Interferon; TNF, Tumor necrosis Factor; CTLA-4, cytotoxic 
T-lymphocyte–associated antigen 4; PTPN22, Protein Tyrosine Phosphatase Non-Receptor Type 22; IRF, Interferon regulatory factor; STAT4, 
Signal Transducer And Activator Of Transcription 4; ICAM3, Intracellular Adhesion Molecule 3; CCL, Chemokine (C–C motif) ligand; 
CXCR, C-X-C chemokine receptor type; CXCL, chemokine (C-X-C motif) ligand; IGF1R, insulin like growth factor 1 receptor; GPD1L, glyc-
erol 3-phosphate dehydrogenase 1-like; OLR1, oxidized low-density lipoprotein receptor 1; TLR, toll like receptor; APO-E, Apolipoprotein E; 
TREM2, Triggering receptor expressed on myeloid cells 2; ABCA7, ATP Binding Cassette Subfamily A Member 7; DYNC1H1, Dynein Cyto-
plasmic 1 Heavy Chain 1; ITGB1, Integrin beta-1; GAL3, galectin 3; SHISA9, Shisa Family Member 9; SETD1A, SET Domain Containing 1A, 
Histone Lysine Methyltransferase

Etiology Disease Locus/i associations References Most frequently associated 
microbial agents

References

Autoimmune Multiple sclerosis (MS) HLA-DRB1, HLA-DQB1, 
IL-1, IL-1R, IFN-γ, TNF-α, 
CTLA-4

[36–39] Epstein–Barr virus, M avium 
subsp. paratuberculosis, C. 
pneumoniae, M. pneumoniae, 
C. perfringens type B, H. 
pylori, Euryarchaeota, Firmi-
cutes, Proteobacteria

[40–47]

Rheumatoid arthritis (RA) HLA-DRB1, CTLA-4, IL2RA, 
IL2RB, TNF-α, IL4, IL4RA, 
PTPN22

[48–51] P. gingivalis, P. mirabilis, 
Epstein–Barr virus, Myco-
plasma, Mycobacteriacae

[52–59]

Systemic lupus erythematosus 
(SLE)

HLA, IL2RA, IRF8, IRF5, 
STAT4, ICAM3, CD11a

[60, 61] Epstein–Barr virus, parvovirus 
B19, type 1 human immuno-
deficiency virus, Cytomeg-
alovirus

[62–64]

Type I diabetes (T1D) IL-10, CTLA-4, IL7R, IL2RA, 
CD226, PTPN2

[65] Coxsackievirus B, Varicella 
Zoster Virus, Enteroviruses

[66–68]

Non-autoimmune Acute myocardial infarction 
(MI)

NOTCH1, CCL5, CXCR2, 
CXCL6, IGF1R, GPD1L, 
OLR1, IL1B, TLR2, HLA-A3

[69–73] C. pneumoniae, M. pneumo-
niae, Mycobacteriacaee. 
Parvovirus B19, Cytomeg-
alovirus, Enteroviruses, 
Lactobacillus, Bacteroides, 
Streptococcus, Aerococ-
caceae, Ruminococcaceae

[74–76]

Alzheimer’s Disease (AD) APO-E, TREM2, ABCA7, 
DYNC1H1, ITGB1, S100

[77–80] Herpes simplex viruses (vari-
ous serovars), H. pylori, P. 
gingivalis, C. pneumoniae, B. 
burgdorferi

[81–86]

Schizophrenia GAL3, SHISA9, SETD1A [87–90] T. gondii, Cytomegalovirus, 
influenza, slow and latent 
viruses

[91–94]

Pan-cancer Cancer-type specific genes and 
pan-cancer genes

[95, 96] Candida, Mallasezia, Blasto-
myces, Lactobacillus

[97, 98]



 F. Ria et al.

1 3

   40  Page 4 of 19

bacterial agent, Mycobacterium tuberculosis (Mtb), respon-
sible for 10 million new active tuberculosis (TB) cases and 
1.5 million deaths per year, usually infects people without 
causing overt disease: latent TB accounts for 90–95% of the 
total Mtb infection, (≈ > 2 billion people) [117]. Hepatitis 
B virus infection usually results in asymptomatic infections 
with complete viral clearance more likely when infection 
occurs in adults and “old” children [118]. In endemic areas, 
exposure to the Plasmodium species causing malaria war-
rants a partial immunity which is maintained through con-
tinuous asymptomatic re-infections.

The characterization of the host immune response during 
latent (asymptomatic) TB infection highlights the dynamic 
equilibrium between the host and Mtb, that can last for the 
entire life without significantly perturbing the host homeo-
stasis [119]. Yet, during latent TB, Mtb replicates in the host 
tissues secreting highly immunogenic T cell antigens that 
elicit an immune response that contain Mtb replication with-
out causing the damage associated with the clinic disease. 
Immunization with Bacille Calmette and Guerin (BCG), 
a live attenuated vaccine administered at birth to protect 
against TB, activates an innate immune response (trained 
immunity) that protects children against many other infec-
tions [120]. It is reasonable to infer that latent Mtb infec-
tion [119], which promotes a more robust and long-lasting 
immune response at local and systemic level than BCG vac-
cination, may exert an even greater impact that may be ben-
eficial for the human host, thus explaining the competitive 
selection for Mtb-human co-evolution [121].

In general, during and following “transient” infections, 
where the host–microbe interaction drives microbe removal 
from host tissues, the impact on the host immune homeo-
stasis may differ between microbes that are eliminated by 
host tissues within few days, as in most respiratory infec-
tions (influenza virus, coronavirus, Bordetella pertussis) and 
microbes that are eliminated following weeks or months as 
in some gut infections (Shigella, Cryptosporidium) [122].

Not only microbial viability affects host cellular responses 
but also the continuous release of microbial antigens and 
proteinaceous components impacts the immune system. In 
this context, a seminal paper from Mazmanian showed that 
a specific product (Polysaccharide A, PSA) from bacteria 
(Bacteroides fragilis) was involved in the modulation of 
autoimmunity [123]. Indeed, PSA can suppress the produc-
tion of the pro-inflammatory interleukin-17, and also pro-
tect from inflammatory disease inducing secretion of the 
anti-inflammatory interleukin-10, without the need for the 
immune cells to cross-recognize non-self-antigens from the 
bacteria and self-antigens. Indeed, B. fragilis establishes a 
complex and generally beneficial relationship with the host 
while persisting in the gut as a commensal [124, 125]. This 
observation led to the development of a new field of research 
regarding the role of the microbiota as a modulator of the 

immune system [123, 126] and consequently as a potential 
regulator of health/disease [127].

Asymptomatic/subclinical gut infections, common in 
low-resource settings, have been associated with poor child 
growth, highlighting their impact on gut immune responses 
and microbiota composition [122]. Similarly, it has been 
shown that transient viral infections may drive long term 
consequences on host immune homeostasis with relevant 
clinical implications [128–131].

Thus, a satisfactory description of host–microbe interac-
tion shall consider the events taking place at cellular and 
immunological level that occur during asymptomatic infec-
tion and analyze their consequences in the short and long 
terms (Fig. 1).

Trafficking of microbiota-specific antigens from the gut 
to the thymus induces expansion of specific T cells that once 
in the periphery may exert their activity, that can either pro-
tect against related pathogens or be potentially pathogenic 
[132]. Starting from the role of microbial agents in enhanc-
ing/precipitating immune disorders, we can speculate that 
an individual susceptibility to microbial colonization, and 
especially to chronic, persistent, or even unnoticed/asymp-
tomatic infections, may contribute to immune dysregulation 
contributing to a wide range of diseases.

Microbial colonization starts in prenatal life 
and leads to early training of the immune system

Two long-held propositions about fetal immune system 
and microbial agents during pregnancy have recently been 
disproved. It was in fact held that the fetal environment 
was a sterile environment (unless some specific infec-
tions occurred such as e.g., rubella or syphilis) and that the 
immune system was largely immature at least until very late 
in the pregnancy.

Several papers in the last decade ([133–135] and several 
others] have shown that the fetal immune system appears 
competent and mature already at the second trimester of 
pregnancy. On the other hand, it has recently been reported 
that microbial colonization occurs in several fetal tissues, 
with a wide range of agents albeit at a low concentration. 
At the same time, a variable specific T cell repertoire is 
primed and activated towards a memory phenotype [136]. 
The effect of such inapparent exposure to microbial agent on 
the immune system can alter the balance between asympto-
matic versus symptomatic infections. Thus, infections with 
enterotoxigenic E. coli will result in asymptomatic infec-
tions or diarrhea depending on the presence of an immune 
system producing high levels of type 2 cytokine before the 
infection itself [6]. The effect of early exposure to bacte-
rial antigens is not limited to T cells, but extends to and 
persistently modifies also other components of the immune 
response including NK cells [137]. Thus, early exposure of 
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the immune system to microbial antigens may have perma-
nent effects that influence response to vaccines, or develop-
ment of inflammatory diseases later in life [138].

Cross‑mimicry and the complexity of T cell antigen 
recognition: distinct infectious agents can lead 
to the same autoimmune diseases

T cells recognize the antigens as a complex of foreign pep-
tides (epitopes) assembled with one’s own HLA-encoded 
molecules. In each individual, 10–15 HLA-encoded mol-
ecules are present, each selecting a repertoire of 8–15mer 
peptides limited by the requirement of some residues at two 
to three so-called anchor positions. HLA genes are highly 
polymorphic, therefore the HLA haplotype (i.e., the rep-
ertoire of HLA encoded molecules of each individual) is 
highly variable among individuals within a non-inbred popu-
lation [139–141].

In practical terms, it means that each repertoire of HLA-
encoded molecules of a given individual binds only a distinct 
repertoire of foreign epitopes and, according to such antigen 
recognition model, individual immune response will focus 
on a set of epitopes per each antigen that is at the same time 
limited (restricted) at the individual level because of one’s 

own (HLA) haplotype, but is highly variable at the popula-
tion level because of the HLA extensive polymorphism.

The very same situation occurs when the antigen is not 
a foreign molecule but is a self-molecule. The restriction 
mechanism applies both for the development of tolerance 
(each individual is tolerant to a “limited” set of self-epitopes, 
specific and distinct from any other individual) and to the 
development of self-reactive immunity in the case of autoim-
mune diseases (each patient will respond to a private set of 
self-epitopes, despite all suffering the same clinical mani-
festations) [142–144].

A noteworthy characteristic of autoimmune diseases is 
that patients affected by a given disease share at least one 
HLA allele, with a wide range between 40 (such HLA 
DRB1*15 in Multiple Sclerosis and HLA-DR4 in rheuma-
toid arthritis) and 90% (such as HLA-B27 in Ankylosing 
Spondylitis or HLA-DR3/DR4 haplotype in type 1 diabetes 
with early onset). This implies that the self- or allo-reactive 
T cell responses of a subgroup of autoimmune patients are 
skewed by a limited repertoire of restricting elements. As 
shown in Fig. 2, a common microbial agent may express one 
or more epitopes potentially cross-reactive with human ones, 
in the contest of an HLA allele. If the response to a cross-
reactive protein is able to drive a disease, the large presence 

Fig. 1  Key steps in host–microbe interplay. The early events follow-
ing exposure and adhesion, promote an increase in microbial burden 
that activates innate and adaptive immune responses. When host 
immune responses cannot rapidly eradicate microbes, survival in the 
host occurs in the presence of innate and adaptive immune responses 
and may lead to rupture of host homeostasis and emergence of overt 
disease. However, microbes can “transiently” survive and persist in 
host tissues despite the presence of host immune responses, without 

causing symptomatic infections and yet contribute to shape cellular 
and tissue host homeostasis (e.g., respiratory and gut microbiota). 
Many microbes can persist indefinitely in host tissues (commensals 
or latent infection) without perturbing host homeostasis at an extent 
that results in symptoms: the continuous interplay between host and 
microbes during these asymptomatic lifelong infections can have an 
impact on human health (e.g., EBV infection)
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of the microbial agent in the environment will result in a 
frequent association of the disease to that HLA allele. Con-
versely, patients affected by the same autoimmune disease 
but not sharing that very HLA allele will be characterized 
by distinct T cell responses. If the microbial agents carrying 
a potentially cross-reactive epitope in the contest of another 
HLA allele is rare in the environment, there will be no epi-
demiologic association between this latter HLA allele and 
the disease.

Thus, when studying “multifactorial diseases” and the 
role that the T cell responses may potentially play in such 
context, the HLA haplotype of each patient should be 
assessed and if the frequency of a given allele is overrepre-
sented in a subpopulation of patients then patients should be 
examined separately, according to their positivity or negativ-
ity for such allele in order to define microbial agents poten-
tially involved in the determination of the disease, to predict 
disease course and to target the best treatment approaches 
(Fig. 2) [99, 101].

Two bacteria for one disease: the example 
of rheumatoid arthritis

RA is an autoimmune disease leading to a wide range of 
organ-specific and systemic damages. Type II collagen, 
highly represented in the synovial membranes, is likely one 
of the main targets, not the sole, of CD4 + T cells that drive 
a cell-mediated response during RA contributing to the clini-
cal outcome of the disease. At the same time, anti-cyclic 
citrullinated peptide (ACPA) and Rheumatoid Factor (RF) 
antibodies (IgMs specific for the constant region of IgGs) are 
consistently present, mediating systemic inflammation and 
providing reliable biomarkers of disease [145]. An infec-
tious pathogenesis for RA had been suggested many years 
ago, based on the observation that it is possible to induce 
an adjuvant dependent arthritis in the mouse, due to Mtb-
derived adjuvant components [146].

Two alleles (HLA-DR4 and DR1) are present in 40% to 
50% of RA patients, sharing a similar binding pocket and 

Fig. 2  HLA alleles behave as predisposing or not-predisposing 
depending on the frequency of cross-reactive microbial agents. 
Immunodominant self-antigen(s) derived from a generic self-protein 
(A) and presented antigen(s) from common microbial agents (C) can 
cross react only in presence of a predisposing/susceptible HLA allele 

(B). On the other hand, other epitope(s) from the same generic self-
protein (D) may be cross-reactive with an antigen from a rare micro-
bial agent (F) and can eventually lead to the development of the same 
disease in presence of a non-predisposing HLA allele (E)
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presenting the same or a similar repertoire of epitopes. In 
line with the above proposed reasoning, we examined the 
collagen-reactive T cell repertoire composition in RA, iden-
tifying shared TCRs among patients that were enrolled, gen-
otyped and selected based on their HLA-DR4 [99, 100, 147]. 
Moreover, we found that this TCR repertoire was detectable 
in a cluster of RA patients in a moderate/severe disease state, 
with a low response to first line drugs, usually conventional 
disease-modifying antirheumatic drugs, (DMARDs) and 
who most needed to rapidly switch to second line therapy, 
generally with the addition or a combination with a bio-
technological DMARDs [51]. In a second set of studies, we 
reported that a pathogenic protein of Glæsserella parasuis 
(G. parasuis) is recognized by the very same T cells that 
recognize human collagen II within HLA-DR4 and DR1 
[59]. G. parasuis is the bacterium responsible for Glæsser 
disease in swine, a disease characterized by a combination 
of meningoencephalitis, polyserositis and polyarthritis. Sur-
prisingly, we found that the contact between G. parasuis 
and humans was not a rare event and was not limited to 
patients suffering of immune-mediated arthritis. The DNA 
of G. parasuis was detectable also in healthy subjects, and 
among them in young adults more frequently than older 
individuals. From these data it can be reasonably suggested 
that the contact with G. parasuis, although traceable in a 
large healthy population, acts as a trigger for RA only in the 
subgroup of individuals sharing the high-risk HLA alleles. 
In other words, this is a striking example of the very tight 
link between environment and genetics in the regulation of 
immune responses. Since G. parasuis cannot be found in all 
DR4/1+ RA patients during overt disease and it likely acts 
early in life and in an HLA-restricted manner, it would be 
very difficult to reproduce RA in laboratory animal models 
by infection [148]. Thus, this microorganism contradicts 
almost all of Koch’s postulates. Nature however provided 
a model in swine (that shares the same collagen II epitope 
cross-reactive with G. parasuis with humans).

It is likely that other (possibly, less common) microbial 
agents play the same role in RA patients with a different 
HLA haplotype [149–155]. The presence of Haemophilus 
spp. (most-likely H. parainfluenzae) in oral cavity acts as 
immunomodulatory commensal bacteria, negatively asso-
ciating with the levels of serum C-reactive protein (CRP) 
and the serum titers of ACPA and RF in RA [156, 157]. 
As recently demonstrated, environmental pathogens might 
act as triggers for autoimmunity and it could possible to 
determine recognized epitope(s) and the microbial agent(s) 
involved in distinct autoimmune and non-autoimmune dis-
eases, starting from TCRs/HLA and immune response [158]. 
The oral microbiome exerts bystander effects in the immu-
nomodulation downregulating CD86 expression in human 
submandibular gland cell line cells by Rothia mucilaginosa, 
while IFN-γ-induced expressions of class II HLA, CD80, 

and CD86 appear to be modulated by pretreatment with 
Streptococcus salivarius, R. mucilaginosa, Fusobacterium 
nucleatum, Prevotella melaninogenica, and Prevotella his-
ticola [159].

Other bacteria are detectable in RA patients at a very high 
frequency (approximately, 90%), and much higher amount 
than in healthy individuals, namely Porphyromonas gingi-
valis (P. gingivalis) and Aggregatibacter actinomycetem-
comitans (A. actinomycetemcomitans) [58, 160–162]. In 
the context of periodontitis, they are both able to promote 
the citrullination of peptides, considered one of the main 
mechanisms underlying the B cell autoimmune response, 
thereby producing new epitopes for self-antibody recogni-
tion. However, T cell cross reactivity with collagen cannot 
be found neither for P. gingivalis nor for A. actinomycetem-
comitans. It can be proposed that full-blown RA depends on 
a first early contact/infection with a bacterium able to drive 
a collagen-reactive T cell response, followed by a second 
microbial agent promoting citrulline-specific B cell-medi-
ated responses. Intriguingly, the actual incidence of RA and 
HLA-DR4/1 in the general population (that is 0.01) is very 
close to the value resulting from the multiplication of (fre-
quency of HLA-DR4+/DR1+: 0.08) × (frequency of G. par-
asuis infection at early age: 0.5) × (frequency of P. gingivalis 
infection: 0.2) in the general population.

In addition, or alternatively, it can also be suggested 
that P. gingivalis or A. actinomycetemcomitans may drive 
pathogenetic mechanisms in RA other than via antigenic 
recognition. The growing body of literature about this topic 
corroborates the idea that RA could be enhanced or even 
directly induced by asymptomatic trafficking of oral/gut 
microorganisms to joints, or indirectly through the mouth-
to-gut transmission permeabilizing the intestinal barrier. 
These mechanisms could cause a breakdown of tolerance 
to self-antigens, especially in the cases of microorganisms, 
such as P. gingivalis, able to resist to innate immunity [163]. 
Similarly to what happens in Multiple Sclerosis (MS) with 
Epstein–Barr Virus (EBV) infection [42, 164–166], pre-
ceding the onset of the disease [167] infectious agents can 
modify antigen processing in infected B cells [164] or in 
macrophages (Fig. 3).

Several distinct “ectopic” microbial agents may 
activate a converging T cell repertoire, leading 
to the same disease: the example of N‑STEMI

Acute coronary syndrome (ACS) is the prototypic multi-
factorial disease of the western world. Based on clinical 
and ECG presentation, it is clinically divided in unstable 
angina, non-ST segment Elevation Myocardial Infarction 
(N-STEMI) and ST segment Elevation Myocardial Infarc-
tion (STEMI) this latter showing a high severity of the 
ACS outcome. In all types of ACS, inflammation plays a 
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prominent role [168, 169]. When we examined the reper-
toire of T cells in the epicardial adipose tissue (EAT) we 
found that a large fraction (approximately, 50%) of samples 
from N-STEMI patients at their first episode shared the pres-
ence of a public TCR [73]. Distinct individuals use the same 
receptor to specifically recognize a given antigen/epitope. 
Arguing that the finding of this shared clonotypic receptor 
could imply a common MHC, we found that HLA-A0301 
allele was enriched in N-STEMI patients and poorly repre-
sented in other subgroups with other cardiac diseases, and 
that most of patients sharing the common public TCR also 
shared the HLA-A0301 allele. To the best of our knowledge, 
the association between ACS and HLA alleles had not been 
previously reported.

To examine the interaction between the public TCR and 
HLA-A0301, we performed in silico analyses that allowed 
us to deduce a hypothetical optimal sequence for the epitope 
driving the T cell response [73]. In a previous work, some 
bacteria belonging to the gut microbiota could be found in 
EAT during N-STEMI and it has been demonstrated that 
the non-inflamed EAT obtained from patients suffering 
from valvular pathology contained a very limited, if any, 
DNA from bacteria, in contrast with EAT from Acute Coro-
nary Syndrome patients and from Stable Angina patients 
[169]. When we searched the genome of these bacteria, for 
sequences able to generate peptides homologous to the one 

we had described in silico as optimal candidate for the for-
mation of “shared TCR/peptide/HLA A03 complexes”, we 
found that sequences from three bacteria (Ruminococcus, 
Rickettsiales and Cyanobacteria) were all good candidates 
[73]. Thus, sources of candidate epitopes, HLA restricting 
element and TCR could all be found in the appropriate ana-
tomic district of N-STEMI patients at disease.

Therefore, we suggest that T cell recognition restricted 
to small peptides irrespective of the source of the peptide 
itself, opens the way to the possibility that more than one 
microbial agent leads to activation of a converging TCR 
repertoire and to disease, confounding the picture about the 
role of microbial agents in the determination/triggering of 
the disease (Fig. 4).

The pathogenic effect of this allo-specific response is 
probably linked to the “ectopic”, non-“physiologic” distri-
bution of one or more microbial agents, as the emigration 
of gut microbiota from the gut, an immunomodulatory anti-
inflammatory district, or in general from the periphery to 
the cardiac endothelium or the Epicardial Adipose Tissue, 
considered the “lymph node of the heart”, a site devoid of 
anti-inflammatory properties. This hypothesis was suggested 
also for Multiple Sclerosis (MS), showing immuno-histol-
ogy evidence of anti-EBV CD8-mediated response within 
the brain of MS patients [42]. The fact that a massive EBV 
reactivation occurs in MS patients following a bone-marrow 

Fig. 3  Two microbial agents for one disease. Panels 1 and 2 show 
how two microbes may lead to a single autoimmune disease, one acti-
vating the T cell response and the other inducing the B cell response 
(1) or modifying the antigen processing or presentation by B cells (2). 

Panel 3 illustrates the possibility that microbial agents modify the 
activation, processing and presenting ability and secretory behavior 
of macrophages rather than B cells
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transplantation without recurrence of disease [170] points 
to the relevance of the need for microbial agents and T cells 
to traffic to an appropriate site in order to drive a complex 
disease, as it will be discussed below.

Microbial agents‑dependent inflammatory diseases 
development: two models of regulation of T cells 
trafficking and homing to target organs

Modulation of trafficking properties of pathogenic T cells 
can explain the clinical course of many multifactorial dis-
eases that alternate periods of flare and quiescence. It has 
been reported that infections often precede such flares [9, 
171–178]. The pathogenesis of flares of diseases in fact may 
rely on the migration of previously activated T cells to the 
sites where they can exert a pro-inflammatory role leading 
to the clinical symptoms. To summarize, T cells need to be 
activated/reactivated, egress from the lymph nodes, cross the 
endothelia and finally home to the target site. A large array 
of ordinated cell–cell and cell-soluble molecules interactions 
are needed for each of these processes to occur. On the T 
cell side, the main molecules involved are integrins (LFA-
1, mainly), selectins, chemokine receptors and CD44. All 
these molecules, together with the other involved in these 
processes, have been widely studied, not only to understand 
mechanisms underlying immune/dis-immune disorders, but 
also to find potential new targets of therapy for different 
diseases.

As we describe below, microbial agents can regulate the 
expression of these molecules, both in cis-with respect to 
antigen recognition, by cognate-dependent mechanisms, i.e., 
depending on the recognition of the microbial agent by the 
TCR and on activation of dendritic cells, DC, and in trans, 

i.e., by cognate-independent mechanisms, with microbial 
derived motives interacting directly with T cells.

The cognate recognition of a peptide/MHC complex on 
the surface of a DC leads to numerous effects in the T cells 
that regulate directly or indirectly their trafficking (cis-regu-
lation). The first molecule regulated by the cognate interac-
tion is LFA-1, normally expressed in a low-binding affinity 
conformation. Upon TCR interaction with the peptide/MHC 
complex, its conformation is modified into a high-binding 
affinity form, leading to a stabilization of the immune syn-
apsis, further promoting T cell activation. At the same 
time, LFA-1 is relevant for the firm adhesion of T cells to 
endothelia during the extravasation process; T cell activation 
regulates various ligands of the selectins, responsible of the 
rolling—extravasation phases—with the same mechanisms 
involved in the diapedesis of all leukocytes.

Another example of cis-regulation of T cell trafficking by 
microbes is operated by CD103 (α7β4 integrin) on  CD8+ T 
cells. This molecule is required for the crossing of endothe-
lia by (T) cells. Suarez-Ramirez and co-workers [179] have 
observed that the expression of CD103 is regulated by 
TGF-β secretion, by the APC, that is in turn dependent on 
TLR4 [180].

Furthermore, chemokine receptors (CR) on T cells are 
also finely regulated by TCR. A paramount model for the 
role of CR in the organ-specific T cell trafficking is the 
involvement of CXCR3 in the T cells homing to the Central 
Nervous System (CNS). Indeed, the expression of CXCR3 
accompanies the infiltration of CNS by T cells in a large 
variety of disease of infectious origin [181–184], as well 
as in multifactorial diseases such as Alzheimer’s Disease 
(AD) [185] and MS [186]. The pattern of CR expressed by 
T cells depends on their naïve/experienced status, and on 

Fig. 4  Tissue specific microenvironment modulates the pro- and anti-
inflammatory attitude of T cells (when in Rome do like Romans do). 
Microbial agents participate to immune system modulation in the 
immuno-regulatory environment of the gut, for example amplify-
ing the production of TGFβ [211]. Yet, the same or similar species 

of microbial agents ectopically located act as detrimental and nega-
tive stimulator of immune system when spread to “non-modulatory” 
tissues (such as the hearth in the figure), breaking immune tolerance 
and generating a pro-inflammatory environment and inducing pro-
inflammatory cytokines such as TNFα [169, 212, 213]
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the secretory and effector phenotypes [107], that in turn 
are in part dictated by the activation of DC by infectious 
agents, via Pathogens’ Associated Motif Pattern Receptors 
[106]. It is however interesting to note that CNS infiltration 
is not absolutely dependent on CXCR3 expression [184], and 
therefore other molecules can bypass the role of CXCR3 in 
T cell homing to the CNS.

The cis-regulation of trafficking via modulation of the 
repertoire of CR appears to be deterministically dependent 
on the infectious agent that had originally led to DC activa-
tion and T cell priming. It predicts that re-infections with the 
same agent will lead to the re-activation of antigen-specific 
T cells that will maintain the same trafficking properties. On 
the other hand, infection by other unrelated agents will not 
interfere with this loop, unless cross-mimicry exists between 
the initial and the subsequent infectious agents (Fig. 5).

Since the first reports of the presence of several TLRs on 
human [187] and mouse [188] T cells, the possibility was 
raised that microbial agents act directly on T cell. The first 
lines of evidence showed a role for TLRs in the co-stimula-
tion of naïve T cells and on promotion of pro-inflammatory 

cytokines secretion. In 2013, however, we first demonstrated 
that TLR2 expressed on T cells modifies their trafficking 
out of lymph nodes, following activation in vivo [104], and 
that it also regulates the distribution of CNS infiltrates [106] 
(trans-regulation of T cell trafficking). We later showed that 
all TLRs expressed by T cells were able to modulate levels 
and alternative splicing of the mRNA specific for CD44 var-
iants in mouse and human T cells, possibly via the β-catenin 
pathway [107]. The repertoire of CD44 variants elicited and 
the need for concurring TCR engagement depended on the 
TLR engaged. The type of CD44 variant in turn dictated the 
trafficking properties of activated T cells within the CNS. 
The same role for CD44 variants has been shown in regulat-
ing the migration of cancer cells [189–194].

Along these results, we suggest that microbial agents can 
modify the trafficking properties of antigen-experienced T 
cells also in trans-, i.e., in an antigen-independent manner, 
by acting directly via TLRs expressed by previously acti-
vated T cells. In fact, an “unwanted” modification of previ-
ously primed T cells trafficking can occur by subsequent 
encounters with unrelated microbes. Again, more than one 

Fig. 5  Cis-and trans-regulations of T cell trafficking are modulated 
by microbial agents. In the left panel, microbial agents can modify 
T cell proliferation and phenotype via APC activation and T-lym-
phocyte priming (cis-regulation of trafficking). Trans-regulation on 

the right panel: different microbial agents can directly modulate the 
expression of adhesion molecules, such as CD44 variants, and the 
migration to target tissue(s) (trans-regulation of trafficking)
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microbial agent concurs in the determination of a multifacto-
rial disease, one by priming pro-inflammatory T cells, others 
leading to clinical flares through the modulation of traffick-
ing. As said above, such a sequential role for multiple and, 
in this case, even variable microbial agents result in con-
founding the role of infection/colonization in the etiology 
of multifactorial/complex diseases (Fig. 5).

Opportunities and challenges

The role that microbial agents play in the determination and 
recurrences of multifactorial common diseases opens the 
way to new therapeutic approaches, but also poses signifi-
cant technologic and scientific challenges [195].

Traditionally, host-microbial interaction studies classi-
cally focus on the definition of the cellular and molecular 
mechanisms of pathogenesis, the identification of micro-
bial virulence factors and host responses accountable for 
the emergence of the signs and symptoms of disease. The 
impact of microbial agents and of silent infections should be 
evaluated in the context of the complex interplay between 
microbes and their hosts, with a proper assessment, in the 
short and long terms, of the immunological consequences 
on host homeostasis. Modulation of innate and adaptive 
immune responses by asymptomatic infections may in 
fact have beneficial consequences on the human host hav-
ing broad immunological and biological implications on 
development of effective and lasting immune responses. As 
said above, early life exposure, to microorganisms is able 
to prime the immune system, generating different conse-
quences in the further individual host–pathogen interactions 
and impacting on memory and cell polarization [136–138] 
(Fig. 6).

Differentiation of specific T cells populations is affected 
by microbial-fermented products as is the case of butyrate, 
produced by groups of gut bacteria as Clostridia, that 
induces regulation of Treg cells [196], thus contributing 
to establish immunological homeostasis in the gut. Inter-
estingly, microbiota-derived butyrate was shown to curb 
autoimmune responses in a model of RA by inducing fol-
licular regulatory T cells (TFR) [197] and supplementation 
of short-chain fatty acids (SCFAs) ameliorated microbiota-
driven allergic lung inflammation by inhibiting T cell and 
DC-dependent processes [198].

Similarly, vaccines and vaccination strategies may influ-
ence the host-microbial interaction and its consequences. 
For instance, immunity elicited by vaccines can be effective 
in preventing infection, or rather may only prevent disease 
and these differences can impact on the ability of a given 
vaccine to reduce the corresponding microbial circulation 
in the community. In this regard, it has been observed that 
there is a higher burden of Bordetella pertussis (Bp) infec-
tion in vaccinated subjects than previously anticipated [199], 

with asymptomatic or pauci-symptomatic infections more 
frequent among those immunized with the acellular pertussis 
(aP) vaccine compared to those immunized with the inacti-
vated whole cell pertussis (wP) vaccine or those previously 
infected with Bp [200, 201]. Interestingly, in Japan, where 
vaccination with the aP vaccine is completed with four doses 
within 24 months of age, adolescents show antibody titers 
higher than elementary school children [202], supporting 
the hypothesis that Bp asymptomatic infections at school age 
are responsible for the observed boosting effect. Immunity 
elicited by these asymptomatic infections among vaccinated 
subjects seems to protect against subsequent Bp infections, 
similarly to what observed following natural infection or 
vaccination with wP [199].

These observations highlight the many consequences that 
vaccines may have in the dynamic host–microbe interactions 
at cellular and tissue level, with a yet unexplored impact on 
the innate and adaptive immune responses (immunopheno-
types, T cell trafficking, etc.) and shall be properly consid-
ered if we aim to design immunological therapeutic inter-
ventions to prevent or treat multifactorial diseases.

A first opportunity is of course to prevent the occurrence 
of “infection-induced” complex diseases, by means of vac-
cination against the drivers. Such a possibility poses several 
challenges to immunologists and public health researchers 
as well.

First, how to identify the driving microbial agents. We 
suggest that in some cases the scientific community can pro-
ceed to a sort of “reverse immunology” approach, studying 
the TCR distribution first, by single-cell sequencing the tar-
get organs or the draining lymphoid tissues. If some TCR 
sequences appear to be shared by a fraction of patients, the 
next step would be to determine if a common HLA allele or 
alleles with a similar binding groove is/are also shared by 
the cohort. Then, by means of one of the methods recently 
proposed [20, 73, 99, 100, 203, 204], it will be possible to 
determine the epitope recognized and from that the micro-
bial agents involved.

A second challenge would be how to vaccinate without 
posing the risk of accelerating the development of the dis-
ease itself rather than preventing it. Thus, a careful definition 
of a molecular target must be performed, avoiding the induc-
tion of an immune response towards the very molecule that 
is the target of the pathogenic immune response.

Finally, it must be understood that this approach will be 
limited in its success to the cohort of subjects that share the 
same HLA predisposing alleles and a wide fraction of cases 
will not be prevented anyway. Thus, a careful consideration 
of costs and benefits by public health researchers must be 
assessed.

Treatment by antimicrobial therapy would of course 
be a second opportunity. Several observational papers 
have examined the effect of antibiotic treatments on the 
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diseases we are focusing on in this work, mostly show-
ing a favorable effect on the diseases progress. Prolonged 
(> 14 days) treatment with antibiotics of various classes 
associated with a lower incidence of MS in the following 
3 years [205]. In the same disease, the tetracycline Mino-
cycline is in a phase 3 trial, and halved progression of 
Clinically Isolated Syndrome to MS for at least 6 months 

[206]. Treatment with tetracyclines was also able to reduce 
the risk of myocardial infarction [207], although in that 
publication no further distinction between STEMI and 
N-STEMI was examined. According to the evidence about 
the role of periodontopathic bacteria, several antibiotics 
have been reported to be useful in the treatment of RA, as 
reviewed in [208].

Fig. 6  Every cloud has a silver lining. Examples of main potential 
pathogenetic effects of microbe-immune interactions. The upper 
boxes show some of the possible predisposing and environment 
derived factors contributing both to homeostasis and immune dys-
regulation. Left side of the figure displays that the combination of 
these factors can guarantee the health/homeostasis with a “normal” 

distribution of microbiota(s) and balanced immune responses. On 
the other hand, as shown in the right side of the figure, these factors 
can determine different impacts on microbial-immune responses and 
consequently have the potential to cause/enhance/exacerbate chronic 
disease. EAT: Epicardial Adipose Tissue. ACS: Acute Coronary Syn-
drome
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The use of antibiotic has however to be taken with cau-
tion, especially in a preventive setting. In fact, the epide-
miological danger of antibiotic resistance will be one of the 
most important health emergencies of the very near future. 
The damage generated by any adverse effects of prolonged/
preventive antibacterial therapies could also outweigh its 
benefits, possibly overcoming the risk of developing a com-
plex disease. Preventive antibiotic therapy may also perturb 
the microbiota, leading to a more pro-inflammatory status 
and thereby accelerating inflammatory diseases. An intrigu-
ing observation was that subjects that had been treated with 
antibiotics were at higher risk to develop RA, although with 
the caveat that this observation may rather reflect a higher 
incidence of infections leading to the development of RA, 
rather than a direct effect of the antibiotic itself [209].

Interfering with specific mechanisms involved in T cell 
trafficking can provide another opportunity in the treatment 
of complex diseases. One main advantage of this approach 
is that it does not need to identify the specific microbial 
agent driving the disease. It however requires that thera-
peutic agents (be them antibodies or small molecules) must 
be precisely tailored on their targets to avoid side effects 
that can be dramatic. As an example, antibody against the 
binding site of CD44, shared by all CD44 variants, has 
been shown to be an excellent tool to prevent experimental 
MS, but cannot be used in humans due to life-threatening 
side effects [210]. However, we have shown that v8- and 
v7-CD44 isoforms are selectively enriched in cells from the 
CNS fluid, and only the v7-variant is associated with active 
inflammatory flares. Thus, it is likely that a therapy tailored 
on CD44v7 may actually be more effective and less danger-
ous than a total blockade of CD44 [107].

Conclusion

We show here how that the role of infectious agents lies on a 
blurred edge between asymptomatic infections and trigger-
ing of complex diseases, and that the assessment of their role 
in the development of multifactorial disease is concealed by 
the complexity of T cell recognition and trafficking regula-
tion (Fig. 6). It is becoming clear that the etiology of infec-
tious diseases cannot be simply “reduced” to the role of a 
microbe, but it is rather the results of a complex interaction 
between the microbe and the host, with the disease being 
usually the least likely outcome. Yet, the host–microbe 
interaction taking place during symptomatic or asympto-
matic infection, with the possibility to shape immunophe-
notype and cell trafficking, can have a relevant and even 
dominant role in the determination and clinical course of 
several common “multifactorial” diseases. The technological 
advances of the latest 10 years have provided tools power-
ful enough to study this complex network. At present, given 

the ever-increasing evidence in this field briefly summa-
rized here, the biomedical community is possibly required 
to be open to a cultural framework shift, in which microbial 
agents re-gain the central stage in many and largely preva-
lent human diseases. Resources and expertise should con-
sequently be oriented toward the molecular identification of 
biologic agents and the fine characterization of mechanisms 
of pathogenesis, to pave the way for new therapy targets and 
tools.
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