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Abstract
Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place 
an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic 
and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone 
metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The 
molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations 
of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic 
bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In 
this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of 
marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and 
validation tools for the study of MOCs.

Keywords  Bone erosive disorders · Marine natural compounds · Marine pharmacology · Osteoanabolic compounds · 
Antiresorptive compounds · Osteoporosis

Introduction

Metabolic bone disorders (MBDs) pose a significant global 
health challenge, with fragility fractures affecting a substan-
tial portion of the population, notably among the elderly [1]. 
At the heart of fragility fractures lies the disruption of bone 
remodeling, an essential homeostatic process that involves 
the removal of old or damaged bone, followed by the deposi-
tion of new bone [2]. In the first part of this review, MBDs 
are described according to their impact on bone mineral den-
sity (BMD), a physiological parameter of bone health with 
clinical relevance [3]. Since the pathophysiological mecha-
nisms that underlie changes in BMD are many and various, 
we also provide a detailed analysis of the molecular mecha-
nisms underpinning the most common MBDs. This section 
also reviews the therapeutic strategies currently available 
for treating MBDs, assessing their efficacy and limitations, 
and outlines emerging pharmaceutical options. The second 
part of this review intends to shed some light on the potential 
of marine osteoactive compounds (MOCs) as natural drugs 
to treat MBDs. It goes through the remarkable diversity of 
sourced organisms and identified compounds, and gives 
some insights on the molecular mechanisms underlying 
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MOC action and on drug development status. The final part 
of this review underscores the need for coordinated efforts 
between chemical characterization and the implementa-
tion of screening tools already available to explore marine 
organism biodiversity for bone anabolic and/or antiresorp-
tive bioactives.

The burden of metabolic bone disorders

In 2019, a meta-analysis of available data from 204 coun-
tries and territories reported a global incidence of fragil-
ity fractures around 2.3% of the total population and 15.4% 
of the elderly sub-population [1]. Bone fragility is a major 
concern for the global health system, causing severe dis-
ability and mortality worldwide, and placing an important 
financial burden on the society [4]. At the origin of fragil-
ity fractures is the dysregulation of a fundamental homeo-
static process: bone remodeling. To maintain mechanical 
properties and architectural integrity throughout life, bone 
must renew senescent and damaged structures through a 
process requiring the concerted resorption and formation 
of bone mineralized matrix. An unbalance between these 
two processes will prompt metabolic bone disorders [2]. As 
different pathologies are characterized by different causing 
mechanisms, we will start this review with a brief descrip-
tion of the mineral phenotypes and molecular mechanisms 
underlying such disorders.

Molecular mechanisms of metabolic bone 
disorders

Bone mineral density (BMD), defined as “the amount of 
mineral per cubic centimeter of bone tissue”, represents the 
gold standard in clinical practice to establish a pathologi-
cal alteration of mineral content and identify patients with 
MBDs. Based on this clinical marker, low-BMD patholo-
gies include osteomalacia [5], nutritional rickets [6], osteo-
penia, and osteoporosis [7], while high-BMD pathologies 
are genetic disorders united under the term osteopetrosis 
[8]. Finally, Paget’s disease of bone [9], primary hyper-
parathyroidism [10], and renal osteodystrophy [11] can be 
considered BMD-independent pathologies, as it has been 
demonstrated that they are not unequivocally diagnosed by 
a reduced BMD, and several manifestations of these disor-
ders are characterized by locally elevated BMD. Although 
this functional classification of MBDs may be appropriate 
in a diagnostic setting, the therapeutic approaches adopted 
will mostly depend on the pathophysiological mechanisms 
at the origin of the disease. As such, in the following section, 
we have further classified bone disorders into (i) disorders 
affecting the mineral homeostasis through the vitamin D 

(VD)–parathyroid hormone (PTH) regulatory network, (ii) 
disorders caused by an excessive osteoclast function, and 
(iii) disorders induced by a defective osteoclast function.

Disorders resulting from an altered mineral 
homeostasis

Osteomalacia and rickets are primarily caused by calcium 
or VD deficiency in adults and children, respectively [12]. 
Causes of these deficiencies are vast, e.g., reduced dietary 
intake, malabsorption in patients with gastrointestinal or 
liver disorders, or increased excretion induced by nephro-
pathologies [3]. Low levels of these essential nutrients 
drive the mineral homeostatic system to change the source 
of circulating calcium from intestinal absorption to bone 
resorption. In this situation, PTH stimulates osteoclast 
differentiation by inducing an overproduction of RANKL 
(receptor activator of nuclear factor kappa-B ligand) and 
M-CSF (macrophage colony-stimulating factor) by osteo-
blasts, osteocytes, bone marrow stromal cells, and resident 
lymphocytes [13]. The persistency of this condition leads 
to osteopenic bones in adults and bended bones in children 
[14]. Osteomalacia can be rescued in adults upon VD and 
calcium supplementation, but bone deformities in rachitic 
children are often irreversible and can only be treated by 
surgery [15].

Primary hyperparathyroidism is an endocrine disorder 
characterized by hypercalcemia (elevated blood calcium 
levels) and inappropriate PTH levels, caused by benign or 
cancerous tumors in parathyroid glands [16]. Skeletal pheno-
type is characterized by loss of cortical bone, reduced BMD 
leading to osteopenia, and an increased risk of fracture in 
both vertebral and appendicular sites [17]. In the absence of 
suitable drugs, the only efficient cure is the surgical removal 
of parathyroid tissue or glands (parathyroidectomy). If sur-
gery is not an option, a blend of calcium regulating agents, 
bone anabolic, and antiresorptive drugs may be used [16].

Renal osteodystrophy is a condition that covers skeletal 
disorders in patients suffering from chronic kidney disease 
(CKD), e.g., osteoporosis, osteomalacia, osteitis fibrosa, and 
adynamic bone disease [18, 19]. Initially, renal insufficiency 
triggers a retention of phosphorous and an accumulation of 
uremic toxins in blood, inducing a state of low bone metabo-
lism known as adynamic bone disease [18]. This condition 
may result from the acquisition of a PTH signaling resist-
ance by the bone tissue. The persistency of the adynamic 
bone condition, high level of phosphorous, and reduced cir-
culating calcitriol (1,25-hydroxyvitamin D3) induces hypoc-
alcemia and stimulates parathyroid glands, exacerbating the 
quantity of PTH in the serum. Patients eventually develop 
secondary hyperparathyroidism [19], whose histological 
landmarks are defined as osteitis fibrosa, which is charac-
terized by an increased bone turnover, increased osteoblast 
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number and activity, woven osteoid, increased osteoclast 
number and activity, overall increased bone resorption, low 
BMD, and increased fragility [18, 19].

Disorders resulting from an excessive osteoclast 
activity

Osteoporosis (OP) and Paget’s disease of bone (PDB) are 
the most common MBDs, with a prevalence of 18.3% [20] 
and 0.6% [21], respectively, and both conditions result from 
a dysfunctional and overregulated bone resorption by osteo-
clasts [2]. PDB pathophysiology involves the increased for-
mation of hyper-resorptive osteoclasts during the osteolytic 
and initial phase of the disease. In an attempt to recover the 
loss of bone mineral, the body increases bone formation, a 
compensatory mechanism which results in the production 
of an unorganized and woven bone matrix [22]. Typically, 
pagetic patients show a localized symptomatology (two 
forms—monostotic, affecting a single bone, and polyostotic, 
affecting more skeletal elements—exist) with a higher num-
ber of atypical osteoclasts characterized by a larger size, an 
increased number of nuclei, and an elevated resorptive activ-
ity. Osteoclast precursors are generally highly responsive 
to pro-osteoclastogenic signals such as RANKL and 1,25-
(OH)2D3 and resistant to apoptotic signals [23, 24]. Clini-
cal features of PDB include bone pain and increased serum 
alkaline phosphatase (ALP); microfractures and increased 
bone vascularization may also be observed [25], leading 
with time to deformations due to the weakened structure 
[23, 24]. Leading causes of PDB are still not fully under-
stood, although it appears that bone formation, despite being 
rapid and unorganized, is in fact intrinsically normal [26]. 
Genetic factors associated to the disease include a plethora 
of mutations and variants in genes associated to osteoclast 
differentiation and activation, while environmental factors 
may include epigenetic factors, exposure to certain toxins, 
and infection by paramyxoviruses [27]. No cure exists for 
PDB, and therapeutic strategies currently available to allevi-
ate disease symptoms focus on a set of antiresorptive drugs, 
mostly bisphosphonates, targeted at restoring normal levels 
of bone resorption. Anti-inflammatory drugs may also be 
implemented, as well as vitamin D and calcium supplemen-
tation, to prevent possible negative effects of the elevated 
bone resorption over parathyroid function, which may lead 
to secondary hyperparathyroidism.

Osteoporosis and osteopenia are also characterized by a 
dysregulated resorptive process. It is important to highlight 
that although we have classified osteoporosis as an “exces-
sive osteoclast activity” disease, this disorder is character-
ized by a complex etiology and a variety of pathophysiologi-
cal mechanisms and, in some cases, the imbalance in bone 
remodeling is caused by a reduced bone formation [28]. Four 
main pathophysiological mechanisms have been identified 

to be at the origin of osteoporosis, and these may overlap 
in some patients: postmenopausal osteoporosis, age-related 
osteoporosis, immobilization-induced osteoporosis, and 
drug-induced osteoporosis.

Postmenopausal osteoporosis (also known as primary 
osteoporosis) is a complex and multifactorial condition. 
In premenopausal women, estrogens participate in bone 
anabolism by inhibiting osteoblast [29] and osteocytes [30] 
apoptosis, thus increasing their life spam. Estrogens also 
prevent bone resorption by inhibiting RANKL-mediated 
osteoclastogenesis [31], stimulating the production of anti-
osteoclastogenic cytokines by regulatory T cells [32], and 
inducing osteoblast-mediated osteoclast apoptosis in a par-
acrine manner [33]. Estrogens also excerpt a suppressive 
effect over thymic function, reducing the population of 
inflammatory T cells [34]. After the menopause, circulat-
ing estrogens are depleted as a result of reduced ovarian 
synthesis, and the suppressive effect they normally have over 
thymic function is diminished. As activated T cells produce 
pro-osteoclastogenic cytokines such as IL-1b and TNF-α 
[35], a chronically elevated bone remodeling is established 
at menopause, where bone resorption is not compensated by 
bone formation. This mechanism leads to an overall reduced 
BMD, increased fragility and fracture risk [36]. Age-related 
osteoporosis affects both woman and men and initiates after 
the peak of BMD at adolescence. Rate is similar in both 
genders but may be intensified in women entering meno-
pause [37]. An hypothesis for a long time [38], there is now 
a growing body of evidence that support the role of an age-
related increase in oxidative stress in the age-related dimi-
nution of BMD. In this scenario, reactive oxygen species 
(ROS) induce bone loss by stimulating osteoclast differentia-
tion [39] and osteoblast apoptosis [40].

The term secondary osteoporosis is used for disorders 
where bone loss is a consequence of other conditions or medi-
cations [41]. It includes immobilization-induced osteoporosis 
(or disuse osteoporosis) observed in patients immobilized for 
a long period following illness or injuries, but also in astro-
nauts exposed to microgravity [42]. This condition is typically 
characterized by cortical bone loss, while trabecular bone loss 
is commonly observed in other osteoporotic conditions, and 
is the consequence of a reduced mechanical load on bone, a 
physical stress mediated by the osteocytes, and altered bone 
remodeling [42]. It also includes drug-induced osteoporosis, 
a highly prevalent disorder associated with a prolonged drug 
treatment [43, 44]. Glucocorticoids are one of the best studied 
examples. They impair osteoblast differentiation by dysregu-
lating the WNT/β-catenin signaling pathway [45], and also 
stimulate osteoblast apoptosis [46]. Indirectly, glucocorticoids 
affect osteoblast function by reducing the expression of insu-
lin-like growth factor 1 (IGF-1) [47], which promotes bone 
formation by mediating the anabolic effects of the parathy-
roid hormone (PTH) [48]. Glucocorticoids can also stimulate 
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osteoclastogenesis by reducing the production of osteopro-
tegerin (OPG) by osteocytes and osteoblasts [49], further 
favoring bone loss. Therapeutic approaches for osteoporosis 
comprise a set of bone anabolic and antiresorptive therapies, 
which are used with the main objective of preventing bone 
loss, increasing bone formation, and reducing the fracture 
risk. The advantages and disadvantages correlated to each of 
the major groups of pharmacological agents currently imple-
mented will be discussed in the next section. Importantly, all 
therapeutics currently approved are characterized by long-term 
limited efficacy and side effects.

Disorders caused by an impaired osteoclast function

These pathologies are characterized by a vast group of rare, 
primary monogenic disorders gathered under the name osteo-
petrosis, also known as the marble bone disease. Osteopetrosis 
is characterized by a defective bone resorption, increased bone 
mass and high BMD, and is associated with bone fragility and 
an increased risk of fractures, and, in some cases, with defec-
tive bone marrow, kidney, and nervous and immune systems 
[50]. There are two prevalent forms of osteopetrosis, which are 
distinguishable based on their inheritance modality. A more 
prevalent, milder, and typically late-onset form (arising late 
during childhood) known as autosomal dominant osteopetrosis 
(ADO), and a more rare, aggressive and early-onset form (aris-
ing early after birth) associated with severe phenotypes and 
poor prognosis, known as autosomal recessive osteopetrosis 
(ARO) [50]. ARO can be subdivided into osteoclast-poor and 
osteoclast-rich forms, depending on whether the mutation at 
the origin of the disease affects a gene linked to osteoclast dif-
ferentiation or resorptive function [50]. In addition, a rare form 
of X-linked osteopetrosis (XLO) has also been described [51]. 
Mutations in genes that are central to osteoclast function have 
been associated with the etiology of osteopetrosis, in particular 
those involved in the acidification of bone microenvironment 
(TCIRG1, CNCL7), degradation of the extracellular matrix 
(CTSK), and cell differentiation (RANK, RANKL, CSF1R, 
NEMO, RELA) [52]. There are currently no pharmaceutics 
to efficiently treat osteopetrosis, and therapeutic approaches 
are only aimed at managing symptoms and relieve pain, e.g., 
supplementation of vitamin D and calcium in patients with 
hypercalcemic seizures, transfusion of red blood cells and 
platelets in patients with bone marrow failure, transplantation 
of hematopoietic stem cells in patient suffering from the most 
severe forms of osteopetrosis [50].

What is on the menu? Current therapeutic 
strategies, their efficacy, and limitations

Therapeutic solutions currently available to treat MBDs 
fail to meet the clinical demand. Drugs lack either effi-
cacy or are only effective for a limited time window, or 
trigger long-term use-associated side effects, affecting 
their compatibility with the needs of patients with life-
lasting chronic conditions. In the following sections, we 
will briefly present therapeutics currently in use, their 
efficacy, and limitations. Figure 1 exemplifies the main 
groups of bone erosive disorders, therapeutic approaches, 
and molecular targets.

Vitamin D and calcium supplementation

The central roles of calcium [53] and VD [54] in bone 
health are long-time known. Still, there is no consensus 
on the dose that should be recommended to healthy indi-
viduals and patients with increased fracture risk [55, 56], 
nor whether benefits accompanying the supplementation 
of calcium and VD outweigh associated risks [57]. Cal-
cium supplementation has little or no effect on the reduc-
tion of fracture risk in healthy individuals [58] but can 
reduce fracture risks and increase BMD in postmenopausal 
women [59, 60]. It has been associated with an increased 
risk of cardiovascular disease [61], although this associa-
tion was refuted in a recent meta-analysis of the clinical 
data [62]. The source of calcium is certainly an important 
aspect and several studies reported that natural sources of 
calcium are more efficient in preventing bone loss than 
synthetic analogs [63]. VD supplementation, alone or in 
combination with calcium, has little or no effect on the 
reduction of fracture risk or increase of BMD in healthy 
individuals [64, 65] but is associated with a reduced risk 
of falls in elderly [66] and a reduced bone loss in post-
menopausal women [67]. However, several studies high-
lighted that the supplementation of VD or calcium alone 
cannot rescue bone loss once it has already occurred [68, 
69]. The combination of calcium and VD was also not 
associated with an increased risk of cardiovascular disease 
or mortality [62]. Recently, alfacalcidol [1-α-(OH)D3], a 
vitamin D3 analog, was found to be more effective for the 
treatment, rather than the prevention, of postmenopausal 
osteoporosis, glucocorticoid-induced osteoporosis (GIOP), 
and osteomalacia, when compared to cholecalciferol [70].

In relation to their application to diseases other than 
osteoporosis, VD and calcium supplementation represent 
the primary tool for the prevention and treatment of oste-
omalacia and nutritional rickets, and have demonstrated 
to be a rapid and effective therapy to restore BMD and 
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Fig. 1   Molecular mechanisms 
of bone metabolic disorders 
(red boxes and arrows) and 
therapeutic treatments (green 
boxes and arrows) currently 
available. A complex network 
of organs, tissues, and signals 
intervein to control bone 
metabolism and a large number 
of emerging therapeutic targets 
are being described. Symbols: 
continuous lines with pointed 
arrowheads indicate process 
upregulation; continuous lines 
with blunt arrowheads indicate 
process downregulation; dashed 
lines with pointed arrowheads 
indicate an intermitted stimula-
tion causing process upregula-
tion. UV, ultraviolet radiation; 
Ca/PO4, inorganic calcium and 
phosphate ions; 7-DHC, 7-dehy-
drocholesterol; VD3, vitamin D3 
(also known as cholecalciferol); 
25(OH)D3, 25-hydroxyvitamin 
D3 (also known as calcifediol); 
1,25(OH)2D3, 1,25-dihydroxy-
vitamin D3 (also known as 
calcitriol); PTH, parathyroid 
hormone; E2, estradiol; SOST, 
sclerostin; WNT, canoni-
cal Wnt signalling pathway; 
LRP5/6, low-density lipoprotein 
receptor-related protein 5/6; 
RANK, receptor activator of 
nuclear factor κB; RANKL, 
RANK ligand; H + , proton; 
H + -ATPase, vacuolar-type 
proton-ATPase; TRAP, tartrate-
resistant acid phosphatase; 
MMPs, matrix metalloprotein-
ase protein family members; 
CTSs, Cathepsins protein family 
members
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serum biomarkers but also to relieve symptoms [71]. How-
ever, the restoration of bone density and healing of bone 
fractures may take time (months) and bone loss may be 
irreversible at some particular sites [72]. VD and calcium 
supplementation at low doses is also used in the treatment 
of primary and secondary hyperparathyroidism [73], to 
restore plasma levels and prevent the deficiency of both 
molecules in patients with abnormal PTH production or 
renal insufficiency. In hyperparathyroidic patients under-
going parathyroidectomy, VD and calcium supplementa-
tion is used to prevent post-surgery hypocalcemia [74]. 
VD supplementation also finds application in the treatment 
of Paget’s disease of bone, to counteract hypovitaminosis 
D, which appears to be frequent in pagetic patients [75], 
but also to prevent flu-like symptoms commonly observed 
in patients treated with bisphosphonates [76]. Treatment 
with high doses of calcitriol was tried in ARO patients 
to stimulate osteoclast differentiation but resulted in poor 
outcomes [77]. As such, its use is currently not supported 
by clinicians [78]. Nowadays, calcium and cholecalciferol 
supplementation is encouraged for osteopetrotic patients 
to prevent the hypocalcemic seizures that are frequently 
associated with this condition due to the immobility of 
calcium from the bone [78].

Vitamin K supplementation

The term vitamin K (VK) collectively refers to a group of 
fat-soluble compounds found in animals and plants, rep-
resented by three main vitamers: phylloquinone (VK1), 
menaquinones (VK2), and menadione (VK3). The central 
role of vitamin K in animal physiology has been largely asso-
ciated with its function as cofactor of the γ-carboxyglutamyl 
carboxylase (GGCX), a cytosolic enzyme which catalyzes 
the carboxylation of Glu into Gla residues and the func-
tionalization of the vitamin-K-dependent proteins (VKDPs) 
[79], which include proteins important for bone matrix 
organization and mineralization such as the bone Gla pro-
tein (BGLAP or osteocalcin), matrix Gla protein (MGP), 
and Gla-rich protein (GRP or UCMA) [79]. Vitamin K also 
regulates bone metabolism in a GGCX-independent manner 
by binding the pregnane X receptor (PXR, SXR or NR1I2), 
which controls the expression of genes involved in osteo-
blastogenesis, osteoclastogenesis, and extracellular matrix 
formation and mineralization, ultimately affecting bone 
mechanical properties [79]. Because VK plasma levels in 
healthy individuals are low and detection is rather difficult, 
little data are available on the pathology and epidemiology 
of VK deficiency [79]. VK deficiency has been associated 
with cardiovascular disorders including neonatal bleeding 
[80], and vascular calcification in patients suffering from 
CKD [81]. In patients with end-stage CKD, VK deficiency 
is also associated with bone loss in the osteopenic range and 

increased fracture risk [82]. Other chronic disorders lead-
ing to secondary VK deficiency have also been associated 
with skeletal comorbidities. For instance, patients suffering 
from Crohn’s disease have a lower BMD associated with 
VK deficiency possibly due to intestinal malabsorption [83]. 
Despite accumulating evidence on the central role of VK 
in bone health, its supplementation in postmenopausal and 
osteoporotic patients did not significantly improve BMD and 
incidence of fractures [84]. Interestingly, some studies sug-
gest that a combined treatment with VK, VD, and calcium 
may provide a protective effect against bone loss [85, 86].

Supplementation of n‑3 polyunsaturated fatty acids 
(PUFAs)

Polyunsaturated fatty acids (PUFAs) are important regula-
tors of bone metabolism [87]. Fatty acids derivatives, such 
as eicosanoids and docosanoids are formed upon PUFA 
oxidation by cyclooxygenases, lipoxygenases, and epoxy-
genases, and act as anti- and pro-inflammatory molecules, 
respectively, regulating the equilibrium of bone remodeling 
[88]. For example, prostaglandin E2, a pro-inflammatory 
cytokine derived from arachidonic acid, can promote osteo-
clastogenesis and inhibit osteoblastogenesis [88]. PUFAs 
can also impact directly on bone cells, with n-3 PUFAs 
inducing proliferation of bone marrow mesenchymal stem 
cells while stimulating osteoblast differentiation, and n-6 
PUFAs stimulating osteoclastogenesis [88]. PUFA deri-
vates are also natural ligands of the peroxisome proliferator-
activated receptor gamma (PPARγ), which is an important 
molecular switch that deviates the fate of mesenchymal stem 
cells (MSCs) from osteogenesis towards adipogenesis [88]. 
Multiple animal studies conducted in ovariectomized (OVX) 
rats and mice showed that dietary supplementation with n-3 
PUFAs decreased osteoclastogenesis [89], reduced bone loss 
[90], and promoted chondrocyte-to-osteoblast transdifferen-
tiaton [91].

The relative consumption of n-3 and n-6 PUFAs can 
also regulate the composition of bone cell membranes in 
fatty acids [92]. In this regard, dietary strategies that reduce 
n-6/n-3 ratio have been proposed for the treatment of bone 
erosive disorders. Two recent meta-analyses of randomized 
controlled trials conducted in human patients confirmed that 
the supplementation of n-3 PUFAs, with α-linolenic acid 
(ALA) being more potent than EPA and DHA, was able to 
slightly increase BMD, reduce resorption markers and, in 
the case of ALA, slightly increase bone formation markers 
in a short term. A stronger effect was observed in postmeno-
pausal women [93, 94]. It is worth noting that the positive 
effects of PUFA supplementation reported in these studies 
are very low when compared with the effect of pharmaceu-
ticals used to treat osteoporosis.
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Extracellular calcium‑sensing receptor modulators

Extracellular calcium-sensing receptor (CaSR) is a central 
regulator of PTH secretion by the parathyroid glands in 
response to variations of calcium levels in the serum of 
higher vertebrates, and is, therefore, a key target in drug 
discovery for disorders characterized by the dysregula-
tion of calcium mineral homeostasis [95]. CaSR activa-
tors, also known as calcimimetics, are molecules acting as 
CaSR agonists or allosteric activators. By binding CaSR, 
they inhibit PTH secretion and re-equilibrate parathyroid 
function in patients suffering primary, secondary, and ter-
tiary hyperparathyroidism. Several calcimimetic drugs are 
used to treat hyperparathyroidism following parathyroid 
hyperplasia, parathyroid cancer, chronic kidney disease, 
and kidney transplant [95, 96]. Among those, cinacalcet 
has been approved for the treatment of patients with sec-
ondary and primary hyperparathyroidism that cannot or 
refuse to undergo parathyroidectomy. Evidences from case 
studies and randomized controlled trials highlighted the 
efficacy of cinacalcet in lowering PTH and serum calcium 
levels, in accordance with results in mammalian models 
[96]. Cinacalcet also improved bone turnover markers and 
bone histology but exhibited a poor ability, or none, in 
increasing BMD [127, 128]. Few calcimimetics are cur-
rently being evaluated in drug discovery pipelines, mainly 
because in vitro high-throughput technologies are miss-
ing and screening is limited to whole animal testing [95]. 
Calcilytics, allosteric antagonists of CaSR stimulating the 
secretion of PTH by the parathyroid glands, have been pro-
posed to treat patients suffering from primary osteoporosis 
after several studies reported the osteoanabolic potential of 
transient PTH exposure [95]. Despite promising results in 
OVX rats [97], calcilytics did not confirm their potential 
in human and no reasonable advantage over PTH analogs 
was found. As a result, clinical trials for most of candidate 
calcilytics were discontinued [95, 96].

Antiresorptive agents

Antiresorptive drugs inhibit bone resorption either by 
impairing osteoclast differentiation, recruitment or activ-
ity, or by promoting osteoclast apoptosis [98]. Estrogens 
are potent inhibitors of bone resorption and have been 
used in hormonal replacement therapy following meno-
pause to increase BMD and reduce fracture risks [31]. 
Unfortunately, estrogen treatment was associated with an 
increased risk of breast and uterine cancers and cardiovas-
cular diseases, and has progressively slipped out the list of 
potential treatments for postmenopausal OP [99]. Selective 
estrogen receptor modulators (SERMs) are drugs that can 

specifically modulate the activity of bone specific isoforms 
of the estrogen receptor; thus, they trigger the beneficial 
effect of estrogens over bone without increasing the risk 
of breast and uterine cancer [98]. Two SERMs currently 
approved for the treatment of postmenopausal OP, ralox-
ifene and bazedoxifene, have demonstrated a mild positive 
effect on reducing fracture risk [31]. However, they have 
also been associated with both mild and rare but severe 
cardiovascular side effects [31]. Testosterone replacement 
therapy has proven to be effective in increasing BMD in 
men with osteopenia and osteoporosis [100], although sev-
eral studies have associated it with an increased risk of 
cardiovascular diseases [101].

The peptide hormone calcitonin is a potent inhibitor of 
osteoclast activity [102], and both human and salmon cal-
citonins have been used as an antiresorptive treatment for 
OP, PDB, and hypercalcemia, in both injectable and nasal 
spray forms [103]. However, several studies associated the 
use of calcitonin with an increased risk of prostate cancer 
in men, prompting the removal of calcitonin from the list of 
approved therapies for osteoporosis by the European Medi-
cine Agency (EMA) in 2012 [104]. Nowadays, calcitonin 
therapy is limited to pagetic patients and short treatments 
are recommended.

Cathepsin K  (CTSK), a cysteine protease primarily 
involved in the degradation of bone extracellular matrix 
and produced in large quantities by active osteoclasts, has 
also been targeted by antiresorptive drugs. CTSK inhibitor 
odanacatib was assessed in clinical trials [105], and avail-
able data indicated a reduction of bone resorption markers 
and an increase of BMD in a dose-dependent manner [106]. 
However, positive effects quickly disappeared once the treat-
ment was discontinued [107]. Because odanacatib was also 
associated with an increased risk of stroke in osteoporotic 
woman, all trials were discontinued [108].

Bisphosphonates are chemically stable analogs of inor-
ganic pyrophosphate (PPi) with antiresorptive properties. 
They have been successfully used for nearly 4 decades to 
treat bone remodeling disorders including postmenopausal 
OP, age-related and immobility-induced OP, GIOP, PDB, 
and hyperparathyroidism [16, 98, 109, 110]. Although the 
implementation of bisphosphonates in clinical practice 
largely preceded the full understanding of their mechanism 
of action, an intense research effort during the last 2 decades 
shed some light over the molecular basis of bisphospho-
nate action on bone cells. Briefly, bisphosphonates bind to 
hydroxyapatite crystals at active sites of bone remodeling 
sites, then are incorporated into osteoclasts following bone 
resorption, where they inhibit the post-translational modi-
fication of proteins involved in cell function, ultimately 
leading to cell death [111]. Because of their high affinity 
for calcium, bisphosphonates tend to accumulate in bone, 
being released by osteoclasts only at active remodeling sites. 
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Therefore, bisphosphonates are typically administered on 
a weekly, monthly or even yearly basis. Bisphosphonates 
commonly used to treat bone related disorders—alen-
dronate, risedronate, ibandronate, and zoledronate—are 
able to decrease bone resorption up to 70% and reduce the 
incidence of vertebral and non-vertebral fractures in women 
with osteoporosis up to 62% and 40%, respectively [130].

Denosumab is a RANKL monoclonal antibody approved 
for the treatment of postmenopausal OP, age-related OP, and 
GIOP [112], but also PDB, primary and secondary hyper-
parathyroidism. Denosumab binds to RANKL with a high 
affinity, mimicking the activity of the endogenous OPG and 
preventing its ligation to RANK receptor at the osteoclast 
surface, therefore inhibiting the major signaling cascade 
involved in osteoclast differentiation [113]. Denosumab is a 
potent inhibitor of bone resorption that can reduce the inci-
dence of vertebral, non-vertebral, and hip fracture in osteo-
porotic patients of 68%, 20%, and 40%, respectively, thus has 
an efficacy similar to that of bisphosphonates and osteoana-
bolic drugs [113]. As for other antiresorptive agents, patients 
treated with Denosumab experience a steep increase in BMD 
in the first 6–12 months after the beginning of the treatment, 
but while bisphosphonate treatment has been associated with 
a steady BMD after this first period, Denosumab produces 
a slow but continuous increase in mineral density [114]. 
Denosumab has also shown some efficacy in rescuing bone 
remodeling markers in both old and juvenile pagetic patients 
[115, 116], and in patients with hyperparathyroidism [117].

Bisphosphonates and Denosumab have been correlated to 
mild and frequent but also rare and severe side effects, rais-
ing concerns among clinicians. Among those more severe 
but rare, atypical femur fracture was reported in 1 patient 
out of 250 (frequency increases with the duration of the 
treatment), and osteonecrosis of the jaw was observed in 
1 patient every 4000 [118]. Among those less severe but 
frequent upper gastrointestinal side effects, increased risk 
of esophageal cancer (still uncertain), musculoskeletal pain 
and flu-like symptoms were reported for bisphosphonates 
[115]. Denosumab may reduce bone turnover, a secondary 
effect that should be considered when treating CKD patients 
because of the risk of facilitating the development of ady-
namic bone disease [115]. Serum levels of calcium and VD 
must be monitored before and during Denosumab treat-
ment due to increased susceptibility to hypocalcemia [115]. 
Furthermore, Denosumab treatment has been associated to 
increased risk of adverse effects to infections, presumably 
due to its immunosuppressive properties [119].

Despite their positive effect, last-generation antiresorp-
tive drugs are characterized by a limited long-term efficacy. 
Indeed, although they can prevent further loss of mineral, 
they do not rescue the irreversible deficit in bone volume 
that occurs in metabolic bone disorders [114]. Several 
authors have proposed that the increase in BMD observed 

following the treatment with antiresorptive agents may only 
be an artefact resulting from the secondary mineralization 
of already-existing mineral matrix, and may not be associ-
ated with the deposition of new ECM and increase in bone 
volume, which are needed for structural improvement and 
protection against fragility fractures [114]. Furthermore, a 
discontinuation of antiresorptive therapy is typically associ-
ated with a re-increase in bone resorption and subsequent 
mineral loss [120]. As such, clinicians and researchers are 
currently evaluating the co-application or the sequential 
application of antiresorptive and osteoanabolic agents (see 
below).

Osteoanabolic agents

Osteoanabolic drugs have the capacity to impact on the for-
mation and mineralization of the extracellular matrix orches-
trated by osteoblasts. It is increasingly admitted that only 
an osteoanabolic approach can ultimately compensate for 
the loss of bone volume observed in low-BMD disorders 
[114]. Yet, there is a surprising scarcity of bone anabolic 
compounds available to patients.

Among the few drugs used to restore bone mineral 
density, strontium ranelate was long considered the most 
promising osteoanabolic compound after several stud-
ies reported increased BMD and reduced fracture risk 
in treated patients [121]. However, its association to 
increased cardiovascular events and myocardial infarction 
in postmenopausal women led to the discontinuation of 
its production [122], and nowadays its use is not approved 
any longer by the European Medicine Agency. Two other 
osteoanabolic drugs are available for osteoporotic patients 
in Europe: teriparatide, the synthetic analog of the pep-
tidic parathyroid hormone (PTH), and abaloparatide, the 
analogue of the parathyroid hormone-related peptide 
(PTHrP). The dualistic action of PTH on bone metabo-
lism and the anabolic effect of an intermittent treatment 
with PTH—rather than the classical catabolic effect asso-
ciated with the continuous exposure to PTH—is known 
for a long time [123]. Early studies identified osteoblastic 
lineage as the primary target for PTH regulation of bone 
homeostasis [124] and that exposure to low dosage of 
PTH for short periods indeed triggers the proliferation of 
osteoblast precursors [125]. Subsequent studies revealed 
that PTH stimulates osteoblast differentiation by stimulat-
ing pro-osteogenic WNT signaling pathway and inhibit-
ing pro-adipogenic PPARγ signaling pathway in MSCs 
[126, 127]. PTH also inhibits apoptosis in osteoblastic 
cells, contributing to more cells being available for bone 
formation and mineralization [128]. The pro-resorptive 
effect of constantly elevated serum levels of PTH (e.g., 
during the development of hyperparathyroidism) was 
attributed to the stage-specific capacity of PTH to induce 
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the expression of RANKL and inhibit OPG expression 
throughout osteoblast differentiation [129]. The PTH syn-
thetic analogue teriparatide (hPTH 1–34) is composed of 
PTH bioactive region (amino acids 1 to 34). It is currently 
approved worldwide for the treatment of postmenopausal 
OP, age-related OP, and GIOP, and can reduce up to 80% 
of vertebral fracture and 50% of non-vertebral fractures in 
osteoporotic patients, representing one of the most effec-
tive treatment currently available [114, 130]. Teripara-
tide can also alleviate bone phenotypes associated with 
genetic disorders such as osteogenesis imperfecta [131]. 
Despite an excellent short-term efficacy, the long-term 
use of teriparatide has faced several limitations, e.g., the 
necessity of parenteral administration (which affect the 
patient’s compliance with the treatment due to side effects 
related to repetitive injections), and secondary effects such 
as decreased BMD in the radius, dizziness, leg cramps, 
headache and hypercalcemia [130]. Due to the dualistic 
effect of PTH on bone and a short-term efficacy, teripara-
tide will trigger an osteoanabolic effect for 12–24 months 
(period known as the anabolic window), then a catabolic 
effect characterized by increased osteoclast activity and 
bone resorption. Unfortunately, bone loss will occur even 
if treatment is discontinued [114, 132]; thus, teriparatide 
treatment is frequently followed by an antiresorptive ther-
apy [114, 132].

When compared to PTH, PTHrP triggers a similar 
osteoanabolic action but has a milder pro-resorptive effect 
and a lower tendency to induce hypercalcemia. This could 
be related to the different affinity of PTH and PTHrP for 
different conformational status of the receptor PTHR1, 
influencing the receptor kinetic with consequence a milder 
stimulation of the downstream signaling cascade [130]. 
Based on the superior performances of PTHrP, the syn-
thetic analog abaloparatide (PTHrP 1–34) was recently 
developed. It is not yet approved for the treatment of osteo-
porotic patients in Europe but several studies have high-
lighted the similar effect of teriparatide and abaloparatide 
in increasing BMD, and a very similar or higher effect in 
preventing vertebral and non-vertebral osteoporotic frac-
tures [130]. Abaloparatide was also claimed to have a bet-
ter anabolic window than teriparatide due to a lower pro-
resorptive effect over time [132]. However, this claim is 
only supported by clinical evidence of a delayed increase 
in serum resorption marker C-terminal telopeptide of type 
1 collagen (CTX) following Abaloparatide treatment and 
challenged in several studies [114]. It is worth to mention 
that the administration of teriparatide and abaloparatide to 
patients with a high risk of cancer, e.g., pagetic patients, is 
discouraged in the USA as it may favor the development 
of osteosarcoma, a warning based on studies performed 
in rats [133]. Yet, in 35 years of approved clinical use of 
teriparatide (abaloparatide was only approved in 2017), no 

concrete evidence of an increased incidence of osteosar-
coma in humans was reported [134].

Co‑administration and sequential administration 
of osteoanabolic and antiresorptive drugs

Because monotherapies have shown some limitations, the 
efficacy of combinational therapies—i.e., the co-adminis-
tration or sequential administration of antiresorptive drugs 
and osteoanabolic agents—has been evaluated, reviewed in 
[135], and results are contrasted. The co-administration of 
bisphosphonates and Denosumab did not clearly improve 
outcomes of monotreatments [98], while the combination 
bisphosphonate and estrogen only resulted in a slightly 
better BMD [135]. A recent meta-analysis of randomized 
controlled trials indicated that patients co-treated with 
teriparatide and antiresorptive agents showed an improved 
BMD gain and a reduced risk of fracture [136]. Sequential 
treatment with antiresorptive agents was only beneficial if 
the second treatment was done with a more potent antire-
sorptive; in that case, effect of the first treatment could be 
maintained [135]. Sequential treatments with different types 
of drugs have proven to be more effective. Consequently, a 
treatment with bisphosphonates or Denosumab following 
an initial treatment with bone anabolic drug could prevent 
bone loss commonly observed after monotherapies of osteo-
anabolic agents, and maintain or further increase gains in 
BMD [98]. However, this ideal setup has not been applied 
yet in clinics, where most patients are typically treated first 
with an antiresorptive drug, then with another antiresorptive 
drug or an osteoanabolic agent, whenever fracture risk is 
consistently high. Available evidence shows that the posi-
tive effect of teriparatide is higher in naïve patients (that 
never received an antiresorptive agent before) than in those 
receiving the treatment following an antiresorptive therapy, 
suggesting that the reduced rate of bone remodeling induced 
by antiresorptive may be blunting the remodeling-based gain 
in BMD triggered by osteoanabolic drugs [114]. However, 
the substitution of an antiresorptive therapy by an anabolic 
therapy appears to be overall beneficial to patients, at least 
regarding gain and maintenance of BMD, although the effect 
of this therapeutic sequence on fracture risk has yet to be 
evaluated [135].

Dual‑action agents

Romosumab is a human monoclonal anti-sclerostin anti-
body, whose use was approved in USA and EU in 2019 
for osteoporotic patients presenting a high risk of frac-
ture. Sclerostin is produced by osteocytes and serves as a 
master regulator of bone formation through its binding to 
LRP5/6 receptors and the subsequent inhibition of WNT/β-
catenin canonical signaling pathway, which is paramount 
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for osteoblast differentiation and metabolism [137]. Rom-
osumab also increases OPG expression and consequently 
inhibits osteoclast differentiation [132]. Therefore, Romo-
sumab action on sclerostin promotes bone anabolic and 
antiresorptive effects, which is the rationale for consider-
ing Romosumab as a dual-action drug. Clinical trials have 
demonstrated that Romosumab treatment induces a rapid 
increase in bone formation markers, an increase in BMD 
and an equally rapid decrease in bone remodeling markers 
[132]. A number of randomized controlled trials have high-
lighted the capacity of Romosumab to reduce the incidence 
of fragility fractures to an extent comparable, if not supe-
rior, to the effect of bisphosphonates and teriparatide [114, 
132]. Romosumab is characterized by a short and powerful 
anabolic window that triggers a rapid increase in bone for-
mation during the first months of treatment. However, after 
few months, Romosumab anabolic window dissipate and is 
substituted by a mild antiresorptive mechanism [114, 132]. 
As such, Romosumab treatment, similar to single-action 
osteoanabolic drugs, needs to be followed by the treatment 
with antiresorptive agents [138]. Common adverse effects 
of Romosumab include headache, arthralgia, and immune 
reactions at the injection site. An increased risk of cardio-
vascular events such as myocardial infarction, stroke, and 
cardiovascular death have been associated with Romosumab 
treatment [138]. Little is known about Romosumab long-
term associated side effects.

Emerging therapeutic approaches for bone 
disorders

Our knowledge on the molecular determinants of bone 
metabolism has greatly improved during the last decades, 
widening the spectrum of potential druggable targets to treat 
MBDs. Among the molecular regulators recently identified 
for the treatment of bone-eroding diseases, antiresorptive 
agents such as H+-ATPase suppressors and Src proto-onco-
gene inhibitors are promising candidates, as important fac-
tors involved in osteoclastic function [139]. Novel potential 
targets for osteoanabolic agents include intermediates of the 
WNT/β-catenin pathway such as DKK-1, GSK-3, and Sirt1, 
activators of the soluble guanylate cyclase (sGC), and bone 
morphogenetic proteins (BMPs). Hydrogen sulfide donors 
(H2S), kynurenine pathway blockers, and modulators of the 
osteoblast–osteoclast crosstalk (e.g., compounds impact-
ing RANKL signaling, cell–cell interaction proteins such 
as Semaphorins Sema3a and Sema4D, and sphingosine-
1-phosphate) are also promising candidates for the devel-
opment of next-generation dual-action drugs [139].

The identification of crosstalk in cellular signaling path-
ways central to bone and other tissues and organs has opened 
the possibility to implement therapeutic strategies with a 
more holistic approach. Therefore, drugs targeting muscle, 

fat, and blood vessels are gaining momentum in the treat-
ment of MBDs. For example, activin receptor regulators, 
a key component of the extracellular matrix involved in 
osteoclastic differentiation is being studied in animal mod-
els [139]. Myokines, factors produced by skeletal muscles, 
are being described for having a control over bone metab-
olism and might represent druggable targets for MBDs 
[139]. Since adipocytes and osteoblasts have a common 
origin, drugs able to shift the equilibrium from adipogen-
esis to osteogenesis in MSCs, such as TGFβ- and PPARγ-
modulators, are also being evaluated [139]. Similarly, the 
existence of a crosstalk between endothelium and bone has 
shed some light on the possibility for angiogenesis regula-
tors to be targeted by therapeutically approaches for MBDs. 
Among those, intermediates of the Notch signaling pathway 
and regulators of bone vascularization such as SLIT3 and 
SHN3 are being evaluated [139]. A crosstalk between gut 
microbiome and bone health have been identified and the 
capacity of probiotics and prebiotics to promote bone health 
has been evidenced [139, 140]. Gut microbiome has also 
been linked to drug efficacy [141]. Because oxidative stress 
and inflammation are important factors in the development 
of MBDs, antioxidant and anti-inflammatory compounds 
are increasingly being evaluated for their positive impact 
on bone health [142, 143]. Finally, the interaction between 
bone and immune system suggests that immunostimulants 
may also have a beneficial effect on bone [144].

Nowadays, recent advancements in the fields of molecu-
lar biotechnologies such as gene therapy, gene silencing, 
and regenerative medicine have led to the development 
of innovative biotechnological approaches for treating 
metabolic bone disorders. Among those, a recombinant 
RANKL-based vaccine has shown to be able to prevent 
osteoporosis in OVX mice [145]. An adenovirus-delivered 
microRNA-based gene silencing method was able to pre-
vent bone loss in a mice osteoporotic model by silencing 
RANK and CTSK expression [146]. In addition, a gene 
delivery system that enhances the specific bone delivery 
and distribution of miRNA was also developed [147]. Stem 
cell transplantation technologies can also be applied to the 
treatment of metabolic bone disorders. In this regard, the 
transplantation of MSCs has shown promising results in 
pre-clinical studies, and clinical trials are currently being 
conducted in osteoporotic patients [148]. MSCs-derived 
extracellular vehicles (EVs) have also drawn some atten-
tion because of their osteogenic potential [149]. Hemat-
opoietic stem cells transplantation, a well-established 
life-saving therapeutic option for malignant infantile 
osteopetrosis [150], has been recently applied to the treat-
ment of patients suffering from the less-severe autosomal 
dominant form of osteopetrosis [151, 152]. A combina-
tional strategy based on the transplantation of autolo-
gous hematopoietic stem cells where the disease-causing 
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mutation was previously corrected through gene therapy 
delivered via lentivirus transformation has been adopted 
with success in an osteopetrotic mice model [153].

Marine natural products as alternative 
players in MBD therapeutic strategies

Historically, natural products (NPs) have played a central 
role in the advancement of pharmacology, and they are 
still today the basis of many contemporary pharmaceutics. 
Although their use in pharmaceutical research has slowed 
down in the early 1990s due to technical limitations related 
to a poor compatibility with high-throughput screening 
approaches, recent biotechnological advances and the 
advent of the “omic” sciences have placed them back in 
screening pipelines for novel drugs [154, 155]. In addi-
tion, the diversity of the bioactivities found in NPs, but 
also their chemical novelty, and effectiveness in leading to 
the discovery of first-in-class medications (i.e., drugs that 
perform through novel and unique mechanisms of action), 
are features that have contributed to their leading role in 
drug discovery. As such, only 24.6% of all drugs approved 
by FDA in the last 4 decades were purely synthetic, while 
the remaining were either fully natural (4.6%), naturally 
derived (18.9%), biological (isolated from an organism/
cell line or produced in a surrogate host; 18.4%), biologi-
cally produced vaccines (7.5%), natural product mimics 
or synthetic compounds whose bioactive portion is natu-
rally derived (25.7%) [156]. In this new era of NP-inspired 
drugs, the marine environment is increasingly seen as a 
valuable reservoir of bioactives because of its vast yet 
largely unexplored biodiversity in contrast to the much 
more explored terrestrial environment [157].

Animals as first‑choice resources in marine 
pharmacology

Terrestrial plants (25%) and microorganisms (13%) are tradi-
tionally the main contributing organisms for bioactives used 
in disease management, in particular for bone erosive disor-
ders [158–160]. However, animals are the primary source of 
compounds from the marine environment. A comprehensive 
review on this topic has estimated that approximately 75% 
of the marine compounds were isolated from invertebrates, 
the major phyla being Porifera (marine sponges) with 32%, 
and Cnidaria (e.g., corals, jellyfishes, anemones, and sea 
fans) with 16%. Other important groups such as Mollusca 
(mollusks) contributed with 5%, Echinodermata (e.g., star-
fish, sea urchins, and sea cucumbers) with 5%, and Chordata 
(e.g., tunicates and vertebrates) with 4% [161]. Despite a 
large untapped biodiversity, marine microorganisms contrib-
uted 22–34% of the total bioactive compounds discovered in 
the marine environment [161].

Marine osteoactive compounds (MOCs)

Compounds isolated from marine organisms hold a great 
potential for the treatment of MBDs [162]. Still, limited 
research effort has been put on the discovery of marine 
compounds with osteoactive properties. This section will 
review the literature data on the isolation of marine osteo-
active compounds from 1999 to 2023. Note that only com-
pounds with pharmacological applications will be presented 
here; marine-derived biomaterials with applications in bone 
regeneration, fracture healing, and tissue engineering will be 
overlooked since it has already been reviewed [163–166]. 
Our survey identified a total of 101 marine osteoactive com-
pounds (Fig. 2B), of which 54 (53.5%) are antiresorptive, 34 

Fig. 2   Survey of the literature available in Google Scholar regarding marine osteoactive compounds (MOCs) discovered since 1999 (A), and 
their distribution based on their mechanism of action on bone (B)
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(33.7%) are osteoanabolic, 12 (11.9%) have a dual-action, 
and 1 (0.9%) is anti-osteonecrotic (Table 1). Our survey also 
revealed an overall scarcity of studies, with only 90 papers 
published between 1999 and 2023 about the isolation of new 
MOCs. However, the last 2 decades have seen a steadily 
increase in these studies (Fig. 2A), which is in agreement 
with the overall increment of all-type marine bioactives 
reported previously [157]. As such, a significant increase 
in the research effort aiming at the discovery of osteoac-
tive compounds from marine organisms is anticipated in the 
upcoming years. The taxonomic distribution of the organ-
isms contributing to MOCs is shown in Fig. 3. Animals (46 
compounds, mostly from invertebrates) are the largest con-
tributors (Fig. 3A), followed by algae (22, mostly from large 
pluricellular brown algae), fungi (20, all from ascomycetes), 
and bacteria (14, mostly from cyanobacteria). The distribu-
tion of MOCs at Phylum level (Fig. 3B) revealed that fungi 
(Ascomycota) and sponges (Porifera) provided the highest 
number of MOCs (20% and 17%, respectively), followed by 
brown macroalgae (Ochrophyta, 14.9%), corals (Cnidaria, 
12.9%), cyanobacteria (10.1%), Chordata (6.9%) and Mol-
lusca (5.9%). Dinoflagellates (Dinoflagellata), green- and 
red algae (Chlorophyta and Rhodophyta), crustaceans 
(Arthropoda) and worms (Anellida) collectively accounted 
for the remaining MOCs (4%). This data, although limited 
to a reduced set of compounds, validates the suitability of 
marine organisms as sources of natural bioactives for marine 
pharmacology.

Interestingly, MOC distribution resembles the tendency 
previously described for all-type marine bioactives [161], an 
indication that a similar sampling effort was directed toward 
these groups. Also of interest, ten of the fungi-related MOCs 
were isolated from species that live in close symbiotic rela-
tionships with marine sponges (5), corals (3), seaweeds (1), 
and mangroves (1).

Future perspectives

Underexplored groups as promising sources 
of MOCs

Many groups of marine organisms are underrepresented in 
the current screening scenario. Among those, marine algae 
have provided a plethora of bioactive compounds [254], and 
several studies support the idea that they represent a promis-
ing source of pharmacologically relevant osteoactive com-
pounds. In this regard, mineral-rich extracts prepared from 
the red coralline algae Lithothamnion spp. have pro-mineral-
ogenic properties that partly rescue bone loss in osteoporotic 
animal models [255]. Extracts prepared from green (Codium 
fragile and Cladophora rupestris) [303 and red (Plocamium 
cartilagineum and Ceramium secundatum) [256] macroalgae Ta
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also showed pro-mineralogenic activity in fish osteochon-
droprogenitor cells and pro-osteogenic activity in zebrafish. 
Red (Dichotomaria obtusata) and brown (Padina pavonica) 
macroalgae triggered pro-osteoblastogenic signals in mouse 
bone marrow MSCs [257] and human primary osteoblasts 
[258]. Recently, calcium-chelating peptides derived from 
several species of marine microalgae could rescue osteo-
porotic phenotypes in zebrafish [259]. It is worth mentioning 
that the large-scale production of algal biomass is supported 
by a well-established and technologically advanced industry. 
Of special interest, microalgae have been long cultivated for 
nutritional, biotechnological, and industrial applications and 
are being used for the production of food, dietary supple-
ments, cosmetics, pharmaceuticals, biofuel, fertilizers, but 
also for wastewater treatment [260]. Following important 
biotechnological advancements that improved growth condi-
tions and allowed the establishment of genetically modified 
strains optimized for growth and compound biosynthesis 
[261], microalgae are expected to become highly relevant 
species for marine pharmacology in the upcoming years. 
In this regard, ethanolic extracts prepared from two spe-
cies of microalgae (Skeletonema costatum and Tetraselmis 
striata) were recently shown to contain potent osteoactive 
compounds [262].

Marine invertebrates such as mollusks, gastropods, and 
echinoderms are also promising sources of osteoactive 
compounds. Among the mollusks, bivalves such as mus-
sels, oysters, clams, and scallops have originated peptides, 
polysaccharides, and glycoproteins with antioxidant and 
anti-inflammatory activity, and lipids and polyunsaturated 
fatty acids with strong anti-inflammatory and anti-arthritic 
properties [263]. Osteoanabolic [250] and antiresorptive 
compounds have also been isolated from bivalves. Among 
those, the nacre, also known as mother of pearl, has both 
osteoinductive and antiresorptive properties [264, 265]. Fer-
mented extracts of the oyster Crassostrea gigas have also 
a dual-action activity, stimulating osteogenic differentia-
tion via Wnt and IGF pathways [266, 267] and suppress-
ing osteoclast differentiation, thus preventing OVX-induced 
bone loss in mouse [268]. Similarly, aqueous extracts of the 
bivalve Pisidium coreanum showed anti-osteoclastogenic 
activity and were able to rescue osteoporosis in OVX mice 
[269]. Among the gastropods, methanolic extracts of the 
brown dwarf turban (Turbo brunneus) and the sea snail 
Euchelus asper prevented bone loss [270] and improved 
osteoporotic phenotype [271], respectively, in OVX mice. 
Echinoderms such as sea urchins, starfish and sea cucum-
bers are at the origin of about 5% of all the marine bioac-
tives discovered so far [161]. In the context of this review, 

Fig. 3   Taxonomic distribution 
of the species that produced the 
marine osteoactive compounds 
(MOCs) reported in the litera-
ture from 1999 to 2023 (A) and 
the number and type of MOCs 
described by Phylum (B)
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polyhydroxylated naphthoquinones extracted from the sea 
urchin Evechinus chloroticus increased ECM mineralization 
in human osteosarcoma cells when administered together 
with calcium chloride, but decreased it when administered 
alone [272]. Sea cucumbers also hold a great deal of poten-
tial with both osteoanabolic [273] and antiresorptive [274] 
extracts identified.

Among chordates, ascidians such as sea squirts are well-
known sources of compounds with anticancer, antimicrobial, 
and antioxidant activities, some of which are being currently 
evaluated in clinical trials [275]. Compounds with osteoac-
tive properties have also been isolated from ascidians [199, 
236], and extracts with antioxidant and anti-inflammatory 
activities have recently been found to also exhibit pro-oste-
ogenic properties [276]. In vertebrates, bone-derived gelatin 
from the saffron cod (Eleginus gracilis) and skin-derived 
gelatin from the blue shark (Prionace glauca) have shown 
protective properties against bone loss in OVX rats [277, 
278], while bone powder from tuna (Thunnus spp.) could 
reduce bone loss in a GIOP mice through the co-regulation 
of NF-κB and Wnt/β-catenin pathways and the modulation 
of gut microbiota composition and metabolism [279].

Finally, dichloromethane and ethanolic extracts of halo-
phyte plants Salicornia herbacea and Spergularia marina, 
respectively, were reported to have anti-adipogenic and pro-
osteoblastogenic activities in vitro [280, 281]. Recently, 
polyphenols-rich extracts of Spartina alterniflora and Sali-
cornia fragilis were found to have pro-mineralogenic activ-
ity in fish osteochondroprogenitor cells and pro-osteogenic 
activity in zebrafish [282].

The availability of animal models and screening 
tools is not fully exploited

The global interest for underexplored marine organisms as 
a source of osteoactive compounds has steadily increased in 
the last 2 decades following the demonstration that they pro-
duce osteoanabolic and antiresorptive compounds. However, 
the discovery of novel MOCs is only achievable through a 
coordinated effort that should aim at the fractionation of 

the extracts, isolation, and identification of the osteoactive 
compounds, together with the validation of their biological 
activity and the elucidation of their mechanisms of action. 
In this aspect, animal models are increasingly available for 
compound validation, although only 28% of the compounds 
listed here were validated in an animal model of metabolic 
bone disorders (Fig. 4), while the vast majority, i.e., 72%, 
were only tested in vitro, mainly using rodent cell lines. Of 
the compounds that were validated using in vivo disease 
models, 25 were tested in animal models of osteoporosis, 3 
were tested in mouse models of arthritis, and 1 was tested 
in a model of bisphosphonate-related osteonecrosis of the 
jaw. None were tested in animal models of VD-deficiency, 
hyperparathyroidism, Paget’s disease of bone, or osteopet-
rosis. Of the compounds tested in animal models of osteo-
porosis, 18 were tested in rodent models of ovariectomy-
induced osteoporosis, 4 were tested in mouse models of 
LPS-induced bone loss, 1 in a mouse model of D-galac-
tose-induced osteoporosis, and 2 in a zebrafish model of 
glucocorticoid-induced osteoporosis. In this context, rodents 
and in particular the mouse, are the preferred animal models 
in biomedical research due to their genetic similarity with 
humans, small size, short lifespan, and relatively low main-
tenance cost compared to other mammalian models [283]. 
A large variety of mouse models mimicking skeletal disor-
ders are available. The ovariectomized rat and mouse, aim 
at resembling mechanistically the pathophysiology of post-
menopausal osteoporosis and are considered gold-standard 
in vivo models to validate the efficacy of compounds and 
drugs with anti-osteoporotic potential [284]. Mouse models 
that resemble age-related osteoporosis [285], male senile 
osteoporosis [286], and GIOP [287] are also available to 
researchers but none of these models have yet been imple-
mented to evaluate the efficacy of MOCs. A rat model of 
bisphosphonate-related osteonecrosis of the jaw [288] has 
been successfully used to validate the anti-necrotic potential 
of a salmon sperm-derived polydeoxyribonucleotide [253]. 
Great achievements have also been obtained in the modeling 
of disorders of mineral homeostasis, including vitamin D 
deficiency [289], primary hyperparathyroidism [290], and 

Fig. 4   Distribution of the 
marine osteoactive compounds 
(MOCs) based on the animal 
disease model used for valida-
tion. BRONJ, bisphosphonate-
related osteonecrosis of the jaw; 
GIOP, glucocorticoid-induced 
osteoporosis
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renal osteodystrophy [291] using rodents. Models have also 
been developed for bone genetic disorders such as PDB 
[292] and osteopetrosis [293].

However, rodent models have technical disadvantages 
that limit the throughput of screening pipelines for drug 
discovery. When compared to fish and invertebrate models, 
rodent systems bring the complexity and the genetic proxim-
ity that better resemble humans but are also expensive and 
more time-consuming. As such, they may be better suited for 
secondary screenings that aim at validating compound osteo-
activity, rather than for primary screenings that mostly serve 
at funneling down the number of compounds. Teleost fish, 
in particular the zebrafish (Danio rerio) and the Japanese 
medaka (Oryzias latipes), are becoming extremely relevant 
in bone research and can model many human skeletal dis-
eases [294, 295]. These small teleosts offer several technical 
advantages that make them well suited for drug screening, 
e.g., smaller size, cost-effectiveness, shorter life span, and 
higher fecundity when compared to mammalian models. 
Moreover, the translucency of embryonic stages throughout 
development and the amenability to gene editing has enabled 
the generation of a vast array of transgenic and mutant lines 
that can be used for in vivo-cell tracking and disease mod-
eling [296]. Furthermore, teleost ability to regenerate bone 
and cartilage tissues offer a different approach for evaluating 
the osteoactivity of drugs and compounds [297]. As such, a 
large numbers of drug screening tools have been developed 
in the latest years based on teleost fish [298, 298], offering 
a cost-effective, medium- and high-throughput alternative 
to mammalian-based systems and at the same time provid-
ing a level of biological complexity which cannot be yet 
achieved by in vitro systems. Importantly, several zebrafish 
and medaka models of human bone disorders are available, 
including osteoporosis [299], osteopetrosis [300], and PDB 
[301]. However, teleost models such as zebrafish pose vari-
ous challenges, including the higher evolutionary distance 
with humans compared to classical mammalian models, 
that oftentimes reflects into physiological and anatomical 
differences [302]. Though, the great advantages offered by 
these animal models make them very efficient intermedi-
ate points between exploratory screening and functional 
validation of novel osteoactive compounds. Owning to this 
variety of animal models, it is expected that, in the coming 
years, the research community working in the field of marine 
osteoactive compounds will fill the gap in terms of in vivo 
validation of MOCs.

Conclusion

Metabolic bone disorders and fragility fractures are major 
causes of reduced welfare, suffering, and morbidity, as 
well as a tremendous sink of resources for the global 

health systems. Because most of the drugs currently avail-
able are associated with undesirable side effects, there is 
an unmet demand for effective medications to address 
metabolic bone disorders. Oceans are increasingly con-
tributing to pharmaceutical research and drug discovery 
and may hold the solutions to resolve this pressing issue 
through the production of novel and innovative osteoac-
tive compounds by marine organisms. Our survey of the 
literature on marine osteoactive compounds identified 
101 compounds with antiresorptive, osteoanabolic, or 
anti-osteonecrotic activities, including compounds with 
dual activity. It also revealed that marine invertebrates, 
such as sponges and cnidarians, and microorganisms, 
such as fungi and cyanobacteria, are major contributors 
of MOCs, and that future research efforts should explore 
the untapped biodiversity of marine organisms, such as 
microalgae, mollusks, holothurians, ascidians, and fishes. 
To achieve these goals, a cooperative effort between the 
chemical characterization of marine-derived compounds 
and the exploitation of drug screening and validation tools 
currently available will be necessary.
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