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Abstract
Postovulatory aging leads to the decline in oocyte quality and subsequent impairment of embryonic development, thereby 
reducing the success rate of assisted reproductive technology (ART). Potential preventative strategies preventing oocytes 
from aging and the associated underlying mechanisms warrant investigation. In this study, we identified that cordycepin, a 
natural nucleoside analogue, promoted the quality of oocytes aging in vitro, as indicated by reduced oocyte fragmentation, 
improved spindle/chromosomes morphology and mitochondrial function, as well as increased embryonic developmental 
competence. Proteomic and RNA sequencing analyses revealed that cordycepin inhibited the degradation of several crucial 
maternal proteins and mRNAs caused by aging. Strikingly, cordycepin was found to suppress the elevation of DCP1A protein 
by inhibiting polyadenylation during postovulatory aging, consequently impeding the decapping of maternal mRNAs. In 
humans, the increased degradation of DCP1A and total mRNA during postovulatory aging was also inhibited by cordycepin. 
Collectively, our findings demonstrate that cordycepin prevents postovulatory aging of mammalian oocytes by inhibition of 
maternal mRNAs degradation via suppressing polyadenylation of DCP1A mRNA, thereby promoting oocyte developmental 
competence.
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HPG	� Homopropargylglycine
PFA	� Paraformaldehyde
PBS	� Phosphate-buffered saline
PVA	� Poly vinyl alcohol
siRNA	� Small interfering RNA
qRT-PCR	� Quantitative real time PCR
ePAT	� Extension poly(A) test
HCD	� Higher-energy collisional 

dissociation
FDR	� False discovery rate
GO	� Gene Ontology
RNA-seq	� RNA sequencing
SEM	� Standard error of the mean
2PN	� Two pronuclei
tPNf	� Time to pronuclei fading
t2, t3, t4, t5, and t8	� Time in hours post-tPNf for the 

embryo to reach the 2-, 3-, 4-, 5-, and 
8-cell stages

tM	� Time for compaction
tB	� Time for the blastocoel to reach 

greater than or equal to half the vol-
ume of the embryo

AMPK	� AMP-activated protein kinase
DEPs	� Differentially expressed proteins
MOS	� Moloney sarcoma oncogene
KD	� Knockdown
OE	� Overexpression
ZAR1	� Zygote arrest-1
4E-T	� EIF4E-transporter protein
YBX1	� Y-box binding protein-1
4E-BPs	� EIF4E-binding proteins

Introduction

Following ovulation, oocytes arrest at the metaphase of the 
second meiosis (MII), awaiting fertilization. If fertilization 
does not occur in time, oocyte quality incrementally deterio-
rates over time, known as postovulatory aging [1, 2]. Over 
the past three decades, assisted reproductive technology 
(ART) has been extensively employed as an effective inter-
vention for infertility [3]. However, the decline in oocyte 
quality due to postovulatory aging, especially when rescue 
intracytoplasmic sperm injection (ICSI) was performed due 
to fertilization failure during in vitro fertilization (IVF) [4, 
5], impairs fertilization and developmental potential, which 
is one of the prime causes of failure in ART procedure 
[6–10].

Numerous studies have demonstrated that oxidative 
stress, altered Ca2+ homeostasis, imbalanced redox regula-
tion and mitochondrial dysfunction, induced by postovula-
tory aging, are major causes for the impaired developmen-
tal competence [7, 11–14]. However, the exact molecular 

mechanism underlying these aging-induced defects still 
remain largely unknown. Maternal effect genes (MEGs) play 
crucial roles in various processes such as oocyte maturation, 
fertilization, oocyte to embryo transition (OET) and zygotic 
genome activation (ZGA) [15–18]. Therefore, disruption 
of MEGs would affect the subsequent embryonic develop-
ment. Recent research shows that postovulatory aging leads 
to the decrease of poly(A) mRNAs [7, 19]. Moreover, pos-
tovulatory aging of mouse oocytes results in degradation 
of multiple MEG mRNAs, including Nlrp5 (NLR family, 
pyrin domain containing 5; also known as MATER), and 
Brg1 (SWI/SNF related, matrix associated, actin dependent 
regulator of chromatin) [19]. The storage of MEG mRNA 
depends on mRNA-binding proteins like MSY2 (also termed 
YBX2), which has a crucial role in regulating mRNAs sta-
bility [20–23]. Postovulatory aging can lead to the loss of 
MSY2, which may further accelerate mRNAs degradation 
[7]. Therefore, preventing this degradation may serve as a 
strategy to delay the postovulatory aging of oocytes.

Cordycepin, a natural derivative of adenosine also known 
as 3’-deoxyadenosine, possesses several biological activi-
ties, including anti-oxidant [24, 25], anti-inflammation [26], 
and anti-tumor properties [27]. Our previous study indicated 
that cordycepin can prevent radiation ulcer by inhibiting cell 
senescence via NRF2 and AMPK in rodents [28]. Addition-
ally, cordycepin can enhance male reproduction via stimu-
lating steroidogenesis in mouse Leydig cells through the 
activation of PKA pathway [29, 30]. It has been shown that 
cordyceptin possesses the ability to inhibit polyadenylation, 
thereby suppressing RNA synthesis [31]. Considering the 
fact that oocyte aging and developmental competence are 
closely related to maternal mRNA changes, we supposed 
that cordycepin may improve the quality and developmental 
potential of oocytes aging in vitro.

In this study, we showed that cordycepin inhibited the 
polyadenylation of DCP1A, which suppresses the degrada-
tion of maternal mRNAs, subsequently delaying postovula-
tory aging. Our findings provide an important approach for 
improving the quality of oocytes aging in vitro, which may 
serve as a foundational basis for optimizing assisted repro-
ductive technology (ART), especially when rescue ICSI is 
employed.

Materials and methods

Animals

Institute of Cancer Research (ICR) mice (females: 6–8 
weeks old; males: 10–12 weeks old) were employed in 
this study. The mice were housed in a temperature- and 
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light-controlled room with free access to food and water 
under a photoperiod of 12 h-light and 12 h-dark. All 
animals were treated in accordance with the guidelines 
of the Chongqing Health Center for Women and Children 
Animal Care and Use Committee (reference number: 
2021012).

Oocyte collection and postovulatory aging

Female mice were injected intraperitoneally with 10 IU 
of pregnant mare serum gonadotropin (PMSG; Sigma-
Aldrich, St. Louis, MO, USA), followed by injection of 
10 IU of human chorionic gonadotropin (HCG; Sigma-
Aldrich) 48 h later. The superovulated mice were killed 
13–15 h after hCG injection and cumulus-oocytes com-
plexes were collected from the oviduct ampulla, placed in 
37 ℃ M2 (M7167, Sigma-Aldrich, MO, USA) medium, 
then cumulus cells were removed by 0.3% hyaluronidase 
(H4272, Sigma-Aldrich) treatment in M2 medium. Fresh 
MII oocytes, collected at 13–15 h post-hCG with the 
first polar body, were selected for the next experiments. 
They were placed in CZB (M1650, Nanjing Aibei, China) 
medium under mineral oil (Vitrolife, Göteborg, Sweden), 
at 37 °C with 5% CO2 in the air for in vitro aging. The 
fresh oocytes without any treatment were used as control 
in the study.

In human, immature GV oocytes were immediately sub-
jected to in vitro culture in 50 μL of G1-PLUS (Vitrolife) 
medium, maintained at 37 °C with 5% CO2 in the air for 
16 h. Then, the MII oocytes with the first polar body were 
cultured in G1-PLUS medium with DMSO (1:500) or 
with cordycepin (400 μM) for 24h to mimic postovulatory 
aging. The patients who donated embryos were between 20 
and 35 years old without a history of genetic diseases or 
smoking. The Institutional Review Board (IRB) of Chong-
qing Health Center for Women and Children approved this 
study (reference number: 2022-RGI-13). Donor couples 
provided signed informed consent at the Center for Repro-
ductive Medicine in The Women and Children’s Hospi-
tal of Chongqing Medical University before voluntarily 
donating the oocytes.

Drug treatments

Cordycepin (MCE, New Jersey, USA) and U0126 (MCE) 
was dissolved in DMSO (Sigma-Aldrich) to prepare a stock 
solution (200mM) and diluted to working concentration with 
medium before using. The concentrations of cordycepin 
used in the experiment were 200 μM, 400 μM and 800 

μM respectively and the concentrations of U0126 used 
in the experiment were 1 and 3 μM. The culture medium 
containing 0.2% DMSO servered as the negative control in 
this study.

Intracytoplasmic sperm injection 
and embryo culture

The injection pipettes had an internal diameter of 8–10 μm 
at the tip and were siliconized before use. We used a Piezo 
sperm injection instrument (PiezoXpert, Eppendorf, Ger-
many). Groups of 15 to 20 oocytes were placed in M2 medium 
with cytochalasin B (5 μg/mL, Sigma-Aldrich). The sperm 
tails were removed by Piezo pulses, and only one randomly 
selected sperm head was injected into each oocyte. After 15 
min of recovery, the surviving zygotes were washed 3 times 
in KSOM (Sigma-Aldrich) medium covered with mineral oil 
and incubated at 37 °C with 5% CO2 in the air. Six hours after 
intracytoplasmic sperm injection (ICSI), pronucleus formation 
was examined.

Parthenogenetic activation

Oocytes were activated by SrCl2 treatment for 6 h, using a 
calcium-free CZB medium containing 10 mM SrCl2 (Sigma-
Aldrich) and 5 mg/mL cytochalasin B. At the end of the 6 h 
culture, oocytes were observed under an inverted microscope 
for activation. Oocytes showing one or two pronuclei were 
considered activated.

Time‑lapse monitoring of embryo 
morphokinetics

For time-lapse imaging the Vitrolife Embryoscop System 
(Vitrolife) was used. T0 is the time point when two pronuclei 
fading (tPNf). Time t2 is interval from syngamy (2PN fading) 
to the 2 cell stage. Times at t3, t4, t5, t8, tM, tBL are the times 
of division into 3-, 4-, 5-, and 8-cell embryos, morula, and 
blastocysts, respectively.

Detection of protein synthesis

Oocytes were incubated in CZB medium containing 100 mM 
L-homopropargylglycine (HPG) for 1 h and then fixed for 
30 min at room temperature in 4% paraformaldehyde (PFA, 
Sigma-Aldrich). HPG signals were detected using a Click-iT 
HPG Alexa Fluor Protein Synthesis Assay Kit (Life Tech-
nologies). Mean intensity of the HPG signal was measured 
across the middle of each oocyte and quantified using ImageJ 
software.
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Immunofluorescence staining and confocal 
microscopy

After removing the ZP with 0.5% HCl in phosphate-buff-
ered saline (PBS, pH 7.4), oocytes were fixed with 4% 
PFA in PBS-PVA for 30 min and then washed 3 times with 
wash buffer (PBS containing 0.1% Tween 20 and 0.01% 
Triton X‐100). After that, oocytes were permeabilized for 
20 min with 0.5% Triton X-100 in PBS at room tempera-
ture. Then, samples were blocked with 3% BSA in PBS for 
1 h and incubated with primary antibody (anti-α-tubulin 
(FITC) antibody, Sigma-Aldrich, F2168, 1:500 dilution; 
anti-AMPK alpha 1 (phospho T183) + AMPK alpha 2 
(phospho T172) antibody, Abcam, ab133448, 1:200 dilu-
tion; anti-MOS antibody, Abcam, ab171937, 1:200 dilu-
tion; anti-p-MAPK3/1 antibody, Cell Signaling Technol-
ogy, 4370S, 1:200 dilution; anti-DCP1A antibody, Abcam, 
ab183709, 1:200 dilution) at 4 °C overnight. After wash-
ing 3 times with wash buffer, samples were incubated with 
second antibody (anti-rabbit IgG (H + L) cross-adsorbed 
secondary antibody, Alexa Fluor™ 488, Invitrogen, 
A11008, 1:500 dilution) for 1 h at room temperature. Then 
samples were counterstained with 10 μg/ml of Hoechst 
33,342 (Sigma-Aldrich) for 10 min. Finally, samples were 
mounted on glass slides and observed under a laser scan-
ning confocal microscope. MitoTracker Red CMXRos (200 
nM, Life Technologies CA, USA) was applied to detect 
mitochondrial distribution in oocytes. The MII oocytes 
were collected and moved to the pre-warmed MitoTracker 
solution with Hoechst 33,342 for 30 min at 37 ◦C with 5% 
CO2 in the air, protected from light. After washing three 
times with M2 medium, the oocytes were transferred to 
M2 medium on confocal dishes and observed under a laser 
scanning confocal microscope (SP8, Laica, Germany).

To measure fluorescence intensity, signals from both 
control and treatment oocytes were obtained using identi-
cal immunostaining procedures and confocal microscope 
parameters. Regions of interest (ROI) were defined using 
ImageJ (NIH, Bethesda, MD, USA), and the mean fluo-
rescence intensity per unit area within the ROI was cal-
culated. The mean values from all measurements were 
employed to compare the final average intensities between 
the control and treatment groups.

In situ hybridization to study abundance 
of poly(A)‑mRNA

Oocytes were fixed, permeabilized and blocked as previ-
ously described. Assessment of polyadenylated mRNAs 
was performed by in situ hybridization with single strand 

5’-FITC-oligonucleotide(dT)20 probe (Sangon) in fixed 
oocytes (4% w/v PFA), 60 min at room temperature 
(RT); permeabilization in 0.5% Triton X-100 for 15 min 
at RT, hybridization with 1 mM single strand 5’-FITC-
oligonukleotide(dT)20 probe for 1 h at 42°C, followed by 
0.1% w/v BSA, 0.01% w/v Tween-20, 60 min at RT).

In vitro transcription and preparation 
of mRNAs for microinjection

The cDNA for Dcp1a was subcloned into T7-driven vectors. 
All sequences were validated by Sanger sequencing before 
use (Sangon). To prepare mRNAs for microinjection, the 
expression vectors were linearized and in vitro transcribed 
using T7 mMESSAGE mMACHINE Ultra Kit (Life Tech-
nologies, AM1344), according to the manufacturer’s man-
ual. Poly(A) tails (~ 200—250 bp) were added to transcribed 
mRNAs using the Poly(A) tailing kit (Life Technologies, 
AM1350) and were recovered by the MEGAclear Kit (Life 
Technologies, AM1908) and resuspended in nuclease-free 
water.c

Microinjection

mRNAs or siRNAs were injected into cytoplasm of MII 
oocytes using a Narishige microinjector (Japan). Each 
oocyte was injected with 5–10 pL samples. The concentra-
tion of mRNAs was adjusted to 200 ng/µL and the siRNAs 
used were 10 μM. siRNAs targeting Dcp1a and the nega-
tive control were designed and synthesized by GenePharma 
(Shanghai, China) (Table S1). After injection, oocytes were 
washed and cultured in CZB medium at 37 °C with 5% CO2 
in the air.

RNA isolation and reverse transcription

Total RNA was extracted from 50 oocytes using the Arc-
turus PicoPure RNA Isolation Kit (Applied Biosystems, 
12,204–01) according to the manufacturer’s manual, fol-
lowed by reverse transcription to cDNA using the Prime-
Script RT Master Mix (Takara, RR036A).

Quantitative real time PCR (qRT‑PCR)

qRT-PCR was performed with the CFX96 Real-Time PCR 
Detection System (Rio-rad) using TB Green Premix Ex 
Taq (Takara, RR420A). The data were calculated using the 
2−ΔΔCt method with normalization to β-actin. All primers 
were provided by Sangon Biotech (Shanghai, China) and 
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are listed in Table S1. After incubation for 5 min at 95 °C, 
cDNAs were amplified using 45 cycles of 5 s at 95 °C, 30 
s at 60 °C and 15 s at 72 °C. Each sample was measured in 
triplicate.

mtDNA copy number analysis

Using the MALBAC single-cell WGA (Takara) method, we 
amplified the total DNA from five oocytes according to the 
manufacturer's protocol. Then, we directly used the ampli-
fied DNA for qRT-PCR with mtDNA-specific primers ND5 
(Table S1). To normalize the mtDNA data, we compared 
them to the β-actin results (Table S1). Subsequently, qRT-
PCR was performed as described in the qRT-PCR methods 
subsection.

Extension poly(A) test

To measure poly(A) tail length in oocytes, extension poly(A) 
test (ePAT) was performed according to Amrei J. et al. [32]. 
Total RNA of 200 oocytes was denatured in the presence of 
1 μL 100 mM PAT-anchor primer (Table S1) at 80 °C for 5 
min. Then RT-master mix (4 μL 5 × Superscript III Buffer, 
Life Technologies; 1 μL 100 mM DTT, Life Technologies; 
4 μL 2.5 mM dNTPs, Life Technologies; 1 μL RNaseOUT, 
Life Technologies; 5 U Klenow polymerase, New England 
Biolabs) was added and the samples were incubated at 25 
°C for 1 h followed by inactivation at 80 °C for 10 min and 
cooling down to 55°C for 1 min. Subsequently, reverse tran-
scription was performed by adding 1 μL Superscript III (Life 
Technologies), incubation at 55°C for 1 h and inactivation at 
80°C for 10 min. PCR was conducted using Taq PCR Reac-
tion Mix (Takara) under the following conditions: initial 
denaturation at 93°C for 5 min, amplification by 35 cycles 
of 30 s at 93°C, 60 s at 60°C, 60 s at 72°C, and 72°C for 
10 min. The ePAT-anchor primer and the following gene-
specific primers were used in Table S1. Extension PAT-
fragments with variable poly(A) tail lengths were detected 
on a 2% agarose gel.

Western blot

Oocytes were lysed with in the radioimmunoprecipitation 
assay (RIPA, Beyotime, Shanghai, China) lysis buffer with 
Phenylmethanesulfonyl fluoride (PMSF, Beyotime) and 
heated for 5 min at 95°C. Total oocyte proteins were sepa-
rated on SDS-PAGE with a 5% stacking gel (10 ml; 6.9 ml 
ddHO, 1.3 ml 1M pH 8.8 Tris–HCl, 1.7 ml 30% acrylamide 
(acryl:bis acryl = 29:1), 100 μl 10% SDS, 100 μl 10% ammo-
nium persulfate, and 10μl TEMED) and a 12% separating 

gel (10 ml; 3.3 ml ddHO, 2.5 ml 1.5 M pH 8.8 Tris–HCl, 
4.1 ml 30% acrylamide (acryl:bis acryl = 29:1), 100 μl 10% 
SDS, 100 ul 10% ammonium persulfate, and 4 μl TEMED) 
at 120 V for 1.5 h and then electrophoretically transferred 
to Polyvinylidene fluoride (PVDF) membranes (Millipore). 
Membranes were blocked in TBST containing 5% defatted 
milk (Biorad) for 30 min. After probing with primary anti-
bodies (anti-MOS antibody, Abcam, ab171937, 1:1000 dilu-
tion; anti-β-ACTIN antibody, GeneTex, GTX109639, 1:2000 
dilution; anti-p-MAPK3/1 antibody, Cell Signaling Tech-
nology, 4370S, 1:2000 dilution; anti-MAPK3/1 antibody, 
Cell Signaling Technology, 4695S, 1:2000 dilution; anti-
DCP1A antibody, Abcam, ab183709, 1:1000 dilution), the 
membranes were washed in TBST, incubated with an HRP-
linked secondary antibody (HRP-conjugated anti-rabbit IgG, 
Cell Signaling Technology, 7074S, 1:2000 dilution; HRP-
conjugated anti-mouse IgG, Cell Signaling Technology, 
7076S, 1:3000 dilution) for 1 h, followed by three washes 
with TBST. Chemiluminescence was performed with ECL 
Plus (Servicebio, Wuhan, China) and signals were captured 
by Protein Simple imaging system.

Quantitative proteomics analysis and MS 
data Analysis

About 750 oocytes per group were used in the TMT-based 
quantitative MS assay and lysed with RIPA buffer. The 
TMTsixplex Isobaric Label Reagent Set (catalog number 
90061) from Thermo Fisher Scientific was used for the MS 
assay, which was performed on a Q-Exactive HF mass spec-
trometer equipped with a Nanospray Flex source. Samples 
were separated using a C18 column (15 cm × 75 µm) on an 
EASY-nLCTM 1200 system with a flow rate of 300 nL/min 
and a linear gradient of 75 min (0 ~ 63 min, 5–45% B; 63 ~ 65 
min, 45–90% B; 65 ~ 75 min, 90%B; mobile phase A = 0.1% 
FA in water and B = 0.1% FA in ACN). Mass spectra in the 
range of 350–1500 m/z were obtained with a resolution of 
60,000 and an AGC target value of 3e6 in full MS scans. The 
20 most intense peaks in MS were subjected to higher-energy 
collisional dissociation (HCD) with a collision energy of 
32, and MS/MS spectra were obtained with a resolution of 
45,000 with an AGC target of 2e5 and a max injection time 
of 80 ms. The Q Exactive HF dynamic exclusion was set for 
30.0 s, and the MS assay was run using positive mode. The 
raw data was searched against the sample protein database 
using ProteomeDiscoverer (v.2.4). The database search was 
carried out with Trypsin digestion specificity, and the pres-
ence of Alkylation on cysteine was taken into account as 
a fixed modification in the database searching. For protein 
quantification, a labeling method was utilized. To ensure 
accuracy, a global false discovery rate (FDR) of 0.01 was 
established, and protein groups considered for quantification 
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needed a minimum of 2 peptides. Different expressed pro-
teins were identified using the t-test function in python, 
proteins with foldchange > 1.2 or foldchange < 0.8333 and 
P-value < 0.05 were identified as Different expressed pro-
teins. Gene Ontology (GO) enrichment analysis was carried 
out using Metascape, with a P-value < 0.05 [33].

RNA‑sequencing and RNA‑seq data 
processing

RNA sequencing (RNA-seq) libraries (three replicates/
group) were prepared as previously described [34]. Oocytes 
were washed three times with 0.1% PBS-PVA.

solution to avoid possible contamination; we used 
the Phusion Hot Start II High-Fidelity PCR Master Mix 
(F-565S, Thermo Fisher) to prepare libraries according 
to the instructions of the manufacturer of the NEBNext 
Ultra II DNA Library Prep Kit (E7805S, New England 
Biolabs, MA, USA). The libraries were sequenced on a 
NovaSeq 6000 platform (Illumina, CA, USA) according 
to the instructions of the manufacturer. To analyze RNA-
seq data, we used Fastp to remove adapter sequences and 
low-quality bases from the raw sequence reads. Trimed 
reads were aligned to the mouse reference genome (mm10) 
using HISAT2 (version 2.1.0) [35]. Read count of genes 
were then calculated using FeatureCounts (version 2.0.1) 
[36] based on the GRCm38.101 annotation file which was 
downloaded from the Ensembl database. For each gene we 
normalized it’s reads count by Mitochondrial mRNA using 
the following methods: 1,000,000*gene_fragment_counts/
mito_mRNA_read_counts.

Statistical analyses

Data are presented as mean ± standard error of the mean 
(SEM), unless otherwise stated. The normality of the vari-
able distribution was checked with the Shapiro–Wilk test. 
Comparisons between two groups were performed by two-
tailed Student’s t-test, multiple comparisons among more 
than two groups were analyzed by one‐way ANOVA test 
using GraphPad Prism version 8 (GraphPad Software, San 
Diego, CA, USA). Differences were considered significant 
at P < 0.05.

Results

Cordycepin reduces fragmentation rate 
and improves developmental competence 
of postovulatory aging oocytes

To investigate the potential role of cordycepin in enhanc-
ing the quality of postovulatory aging oocytes, the integ-
rity of ovulated mouse oocytes aging for 24 h in vitro, with 
or without cordycepin supplementation was evaluated. The 
majority of oocytes in the fresh group exhibited normal 
morphologies, while the aging oocytes displayed a higher 
degree of fragmentation (Fig. 1A). Quantitative analysis 
revealed a significant increase in the fragmentation rate of 
oocytes in aging group compared to fresh group (Fig. 1B). 
When oocytes were cultured with increasing concentra-
tions of cordycepin (200, 400, and 800 μM), fragmentation 
rate was significantly reduced and notably cordycepin at 
400 μM showed best effect (Fig. 1B). Thus, cordycepin 
at 400 μM was utilized in subsequent experiments. In 
both parthenogenetic activation and intracytoplasmic 
sperm injection (ICSI) experiments, we demonstrated 
that cordycepin supplementation improved the develop-
mental competence of oocytes aging in vitro (Fig. 1C and 
1D; Figure S1). Time-lapse monitoring showed that the 
interval from zygote to blastocyst was longer in aging 
oocytes compared to young oocytes; cordycepin signifi-
cantly reduced the time to blastocyst formation in aging 
oocytes (Fig.  1E and 1F). Collectively, these finding 
suggest that cordycepin can protect postovulatory aging 
oocytes from fragmentation and improve their develop-
mental competence.

Cordycepin improves the spindle/
chromosome morphology, mitochondrial 
distribution and reduces AMPK activation 
in oocytes aging in vitro

Spindle integrity is essential for accurate chromosome 
alignment and serves as a crucial indicator of oocyte 
quality. Consequently, we investigated spindle/chromo-
some organization in aging oocytes. In fresh oocytes, 
we observed a typical barrel-shape spindle with well-
aligned chromosomes (Fig. 2A). Immunostaining images 
revealed a range of disorganized spindle apparatuses with 
misaligned chromosomes in aging oocytes. Quantitative 
analysis indicated that the percentage of spindle/chromo-
some defects was increased in aging oocytes but reduced 
after cordycepin supplementation (Fig. 2A-2B). Mitochon-
dria serve as another indicator of oocyte quality. Thus, we 
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Fig. 1   Effect of cordycepin supplementation on the integrity and 
developmental potential of postovulatory aging oocytes. A Represent-
ative images of fragmented oocytes of fresh, aging and cordycepin-
treated groups. Red arrows: fragmented oocytes. Scale bar, 100 μm. 
B The rate of fragmentation was recorded in fresh (n = 123), aging 
(n = 167) and cordycepin-treated (n = 433) oocytes. Cordycepin was 
supplemented to the culture medium with concentrations at 200 μM 
(n = 143), 400 μM (n = 142) or 800 μM (n = 148), respectively. C 
Representative images of 2-cell embryos and blastocysts from fresh, 
aging and cordycepin-treated groups. Scale bar, 100 μm. D The rate 
of 2-cell embryos and blastocysts were recorded in fresh (n = 122), 
aging (n = 169) and cordycepin-treated (n = 179) groups. E Repre-
sentative time-lapse images of fresh (n = 123), aging (n = 167) and 
cordycepin-treated (n = 433) embryos at the indicated stages. 2PN, 

two pronuclei; tPNf, time to pronuclei fading; t2, t3, t4, t5, and t8, 
time in hours post-tPNf for the embryo to reach the 2-, 3-, 4-, 5-, 
and 8-cell stages, respectively; tM, time for compaction; tB, time 
for the blastocoel to reach greater than or equal to half the volume 
of the embryo. Scale bar, 200 μm. F Comparison of time kinetic 
parameters of embryonic development among fresh (n = 18), aging 
(n = 20) and cordycepin-treated (n = 24) groups. Data of (B) and (D) 
were presented as mean percentage (mean ± SEM) from four inde-
pendent experiments, and data of (F) ware from three independ-
ent experiments. Number of mice used in (B), (D) and (F) were 32, 
20, and 9, respectively. Statistical analysis were performed with 
one-way ANOVA with Tukey's post hoc test. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001
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examined mitochondrial distribution in oocytes. In fresh 
oocytes, mitochondria congregated around chromosomes 
and were homogeneously distributed throughout the cyto-
plasm. In contrast, aging oocytes exhibited a strikingly 
increased proportion of mitochondria that entirely or par-
tially lost their normal distribution around chromosomes 

and displayed an aggregated distribution pattern in the 
cytoplasm. Quantitative analysis revealed that more than 
54% of aging oocytes displayed this abnormal distribution, 
whereas cordycepin supplementation reduced the occur-
rence to 33% (Fig. 2C and 2D). Furthermore, we observed 
that cordycepin rescued the reduction in mtDNA copy 
number in aging oocytes compared to controls (Fig. 2E).

A previous study has demonstrated that the AMP-acti-
vated protein kinase (AMPK) pathway is activated in pos-
tovulatory aging oocyte [10]. Therefore, we evaluated the 
effect of cordycepin on AMPK activation in aging oocytes 
and found that it significantly decreased the level of active 
AMPK induced by postovulatory aging (Fig. 2F and 2G). 
These observations suggest that cordycepin supplementation 
could partially rescue the aging-induced defects in spindle/
chromosomes organization, mitochondrial distribution and 
reduce AMPK activation.

Identification of target effectors 
of cordycepin in aging oocytes 
by proteomics analysis

To explore the underlying mechanisms by which cordycepin 
improves the quality of aging oocytes, we conducted a 
proteomics analysis (Fig.  3A). Unsupervised hierarchi-
cal clustering revealed high intragroup consistency and 
effectively differentiated the fresh, aging, and cordycepin 
groups (Fig. 3B), indicating distinct protein expression pat-
terns across these three groups. A total of 789 differentially 
expressed proteins (DEPs) were identified between aging 
and fresh oocytes, including 508 upregulated and 281 down-
regulated proteins in aging oocytes (Fig. 3C; Table S2). In 
addition, cordycepin supplementation resulted in 38 upregu-
lated and 78 downregulated proteins compared to the aging 
oocytes (Fig. 3D; Table S3). Gene Ontology (GO) analysis 
of DEPs revealed that proteins enriched in cell cycle-related 
pathways exhibited upregulation in aging oocytes compared 
to fresh group, but displayed downregulation in cordycepin-
treated oocytes (Fig. 3E). Intriguingly, our findings indicated 
that mRNA stabilization was markedly impacted during pos-
tovulatory aging, including the activation of mRNA degra-
dation. However, this degradation was effectively inhibited 
by cordycepin supplementation (Fig. 3E).

Cordycepin prevents degradation 
of maternal proteins and mRNAs in aging 
oocytes

To investigate the effect of cordycepin on preservation of 
maternal mRNA stability in aging oocytes, we performed 
RNA sequencing (RNA-Seq). Inhibition of total mRNA 

Fig. 2   Effect of cordycepin on the spindle/chromosome morphology, 
mitochondrial distribution and AMPK activation in aging oocytes. 
A Representative images of spindle morphologies and chromosome 
alignment in fresh, aging and cordycepin-treated oocytes. Oocytes 
were immunostained with α-tubulin-FITC antibody to visualize the 
spindles and counterstained with Hoechst to visualize the chromo-
somes. Scale bar, 50 μm. B The rate of aberrant spindle with mis-
aligned chromosomes was recorded in fresh (n = 61), aging (n = 42) 
and cordycepin-treated (n = 40) oocytes. C Representative images of 
the mitochondrial distribution in fresh, aging, and cordycepin-treated 
oocytes. Scale bar, 50 μm. D The rates of abnormal distribution of 
mitochondria in fresh (n = 42), aging (n = 33) and cordycepin-treated 
(n = 39) oocytes. E mtDNA copy numbers of fresh (n = 15), aging 
(n = 15), and cordycepin-treated (n = 15) oocytes. F Representative 
images of pAMPK in fresh, aging, and cordycepin-treated oocytes. 
Scale bar, 50 μm. (G) Fluorescence intensity of pAMPK signals was 
measured in fresh (n = 15), aging (n = 15) and cordycepin-treated 
(n = 17) oocytes. Data of (B), (D), (E) and G were presented as mean 
percentage (mean ± SEM) from three independent experiments. In 
(B), (D) and (G), a total of 15 mice were used; In (E), 6 mice were 
used. Statistical analysis were performed with one-way ANOVA with 
Tukey's post hoc test. **P < 0.01, ***P < 0.001, ****P < 0.0001
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decay was observed when cordycepin was supplemented 
during aging (Fig. 4A), which was verified by immunofluo-
rescence using poly(dT)20-oligonucleotides (Fig. 4B and 
4C). Global translation activity was assessed using homo-
propargylglycine (HPG), a methionine analogue. HPG 
signals decreased during postovulatory aging but were 
restored by cordycepin (Fig. 4D and 4E). Then, our focus 
was directed towards the examination of upregulated pro-
teins in oocytes treated with cordycepin. We identified 11 
maternal proteins that were significantly inhibited from deg-
radation by cordycepin during postovulatory aging. These 
included several important maternal effect proteins such as 
ZAR1 [18], YBX1 [37, 38] and MOS [39], in conjunction 
with mRNA-binding proteins like 4E-T [40], CAPRIN2 
[41], ESRP1 [42] and THRAP3 [43] (Fig. 4F and 4G). 
Herein, the gene expression patterns corresponding to the 
11 cordycepin-inhibited decay proteins was similar to the 
proteomic results (Figure S2A and S2B).

The moloney sarcoma oncogene (MOS), one of the 
cordycepin-inhibited decay proteins, plays crucial roles 
in the maintaining MII arrest and facilitating maternal-to-
zygotic transition through the MOS-MAPK3/1 pathway 
[44]. Here, immunofluorescence and Western blot analyses 
showed that the MOS protein level declined during aging 
but restored by cordycepin supplementation (Figure S3). 
Next, we examined MAPK3/1 activation by staining for 
phosphorylated MAPK3/1 (p-MAPK3/1). The p-MAPK3/1 
signal decreased after aging and was rescued by cordycepin 
(Figure  S4A and S4B), which was also confirmed by 

Western blot (Figure S4C and S4D). To further investi-
gate the involvement of MOS-MAPK3/1 in the effect of 
cordycepin on improving aging oocyte quality, a MAPK3/1 
specific inhibitor (U0126) was employed in aging oocytes. 
Cordycepin was only able to restore the p-MAPK3/1 level in 
the presence of 1 μM, but not 3 μM of U0126 (Figure S4E 
and S4F). Furthermore, we discovered that cordycepin par-
tially reduces fragmentation rate and improves developmen-
tal competence of aging oocytes in the presence of 1 μM, 
but not 3 μM, of U0126 (Figure S4G and S4H). In sum-
mary, these findings indicate that cordycepin can effectively 
prevent the degradation of maternal proteins and mRNAs 
induced by postovulatory aging.

Cordycepin‑mediated inhibition 
of maternal mRNAs degradation is achieved 
through the DCP1A polyadenylation 
suppression

The decapping complex plays an essential role in the deg-
radation of maternal mRNAs during oocyte maturation. 
Intriguingly, proteomic results showed that DCP1A, a 
key protein in the decapping complex, exhibits a marked 
elevation during postovulatory aging, but was inhibited by 
cordycepin (Fig. 5A). This trend of DCP1A levels across 
the three groups was further verified by both immunofluo-
rescence and Western blot analyses (Fig. 5B-5E). In contrast 
to the protein levels, the relative transcript levels of DCP1A 

Fig. 3   Proteomics analysis of cordycepin-treated oocytes compared 
to aging oocytes. A Schematic diagram of the proteomics analysis. 
B Unsupervised clustering result of samples based on proteomics 
data. C Volcano plot of the DEPs in aging compared to fresh oocytes 

(downregulated, blue; upregulated, red). D Volcano plot of the DEPs 
in cordycepin-treated oocytescompared to aging oocytes (downregu-
lated, blue; upregulated, red). (E) gene ontology (GO) analysis of the 
two sets of DEPs
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Fig. 4   Cordycepin inhibits the degradation of maternal proteins and 
mRNAs in aging oocytes. A Box plot showing the polyadenylated 
mRNA levels in fresh, aging, and cordycepin-treated oocytes through 
RNA-Seq. The box indicates the upper and lower quantiles, the thick 
line in the box indicates the median and whiskers indicates 2.5th and 
97.5th percentiles. B Representative images of polyadenylated mRNA 
in fresh, aging, and cordycepin-treated oocytes. Scale bar, 50 μm. C 
Fluorescence intensity of polyadenylated mRNA signals was meas-
ured in fresh (n = 16), aging (n = 17) and cordycepin-treated (n = 17) 
oocytes. D HPG fluorescent staining showing the protein synthesis 
activity in fresh, aging, and cordycepin-treated oocytes. Scale bar, 50 
μm. E Fluorescence intensity of HPG signals was measured in fresh 

(n = 23), aging (n = 27) and cordycepin-treated (n = 26) oocytes. F 
Venn diagrams showing the overlap in proteins that were significantly 
degraded during postovulatory aging (fold change (fresh/aging) > 1.2) 
and upregulated in this process when cordycepin supplemented (fold 
change (cordycepin-treated/aging) > 1.2). G 11 maternal proteins that 
were significantly inhibited from degradation by cordycepin dur-
ing postovulatory aging. Data of (A), (C) and (E) were presented 
as mean percentage (mean ± SEM) from three independent experi-
ments. In (C) and (E), a total of 9 mice were used. Statistical analysis 
were performed with one-way ANOVA with Tukey's post hoc test. 
****P < 0.0001
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were not changed (Fig. 5F). Therefore, we postulated that 
the alterations in DCP1A protein level was modulated via 
cytoplasmic polyadenylation. To assess the length of the 
poly(A) tail of DCP1A mRNA, we performed an extension 
poly(A) test (ePAT). As expected, we observed a lengthen-
ing of the poly(A) tail for DCP1A mRNA in aging oocytes 
compared to controls, while this lengthening was inhibited 
by cordycepin (Fig. 5G). These observations indicate that 
cordycepin decreases the protein level of DCP1A via poly-
adenylation suppression.

To further substantiate the notion that cordycepin inhibits 
maternal mRNAs degradation through suppressing the ele-
vation of DCP1A protein, we performed DCP1A knockdown 
(KD) and overexpression (OE) (Fig. 6A). The effectiveness 
of DCP1A KD or DCP1A OE was confirmed through qPCR 
and immunofluorescence (Figure S5). It was observed that 

DCP1A KD significantly decreased the rates of fragmenta-
tion, spindle anomalies and abnormal mitochondrial distri-
bution (Fig. 6B and 6C; Figure S6A-6E). Concurrently, the 
total mRNA abundance (Fig. 6D and 6E), along with the 
mRNA levels of 11 cordycepin-inhibited decay maternal 
genes, exhibited a notable increase in KD-aging oocytes 
(Fig. 6F). Furthermore, the HPG signals displayed a mark-
edly elevation in DCP1A-KD aging oocytes compared to 
the aging oocytes (Fig. 6G and 6H). Upon DCP1A over-
expression, we demonstrated that the beneficial effects of 
cordycepin on reducing fragmentation, spindle anoma-
lies, abnormal mitochondrial distribution, and improving 
developmental competence of aging oocytes were inhibited 
(Fig. 6I-K; Figure S6F-I). Overexpression of DCP1A also 
prevented the cordycepin-induced increase in total mRNA 
abundance and HPG signals in aging oocytes (Fig. 6L-6O). 

Fig. 5   Cordycepin inhibits the translation activities of DCP1A 
through the polyadenylation suppression. A Protein levels of 
DCP1A examined by proteomics in fresh, aging, and cordycepin-
treated oocytes. B Representative images of DCP1A in fresh, aging, 
and cordycepin-treated oocytes. Scale bar, 50 μm. C Fluorescence 
intensity of DCP1A signals was measured in fresh (n = 24), aging 
(n = 33) and cordycepin-treated (n = 27) oocytes. D Protein levels 
of DCP1A examined by western blot analysis in fresh, aging, and 
cordycepin-treated oocytes. 200 oocytes for each sample were col-
lected and immunoblotted for DCP1A and β-ACTIN. E Quantitative 

analysis of DCP1A protein levels by Western blot. F Quantitative 
RT-PCR results showing the expression level of the Dcp1a gene in 
fresh, aging, and cordycepin-treated oocytes. G Changes in poly(A)-
tail length of Dcp1a mRNA in fresh, aging, and cordycepin-treated 
oocytes. Data of (C), (E) and (F) were presented as mean percentage 
(mean ± SEM) from three independent experiments. Number of mice 
used in (C), (D) and (F) were 6, 90, and 24, respectively. Statistical 
analysis were performed with one-way ANOVA with Tukey's post 
hoc test. **P < 0.01, ***P < 0.001, ****P < 0.0001
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Fig. 6   Cordycepin inhibits maternal mRNAs degradation through 
suppressing the elevation of DCP1A protein. A Schematic presenta-
tion of the Dcp1a knockdown (KD) and overexpression (OE) experi-
mental protocol. B Representative images of fragmented oocytes in 
aging and Dcp1a knockdown groups. Scale bar, 100 μm. C The rate 
of fragmentation was recorded in aging (n = 122) and the DCP1A-
KD aging (n = 127) oocytes. D Representative images of polyade-
nylated mRNA in aging and DCP1A-KD aging oocytes. Scale bar, 
50 μm. (E) Fluorescence intensity of polyadenylated mRNA sig-
nals was measured in aging (n = 15) and DCP1A-KD aging (n = 15) 
oocytes. F Quantitative RT-PCR results showing the expression 
level of the 11 maternal genes in aging and DCP1A-KD aging 
oocytes. G HPG fluorescent staining showing the protein synthesis 
activity in aging and DCP1A-KD aging oocytes. Scale bar, 50 μm. 
H Fluorescence intensity of HPG signals was measured in aging 
(n = 18) and DCP1A-KD aging (n = 16) oocytes. I Representative 
images of fragmented oocytes and blastocysts in aging, cordycepin 
and cordycepin + DCP1A-OE groups. Scale bar, 100 μm. J The 
rate of fragmentation was recorded in aging (n = 94), cordycepin 
(n = 116) and cordycepin + DCP1A-OE (n = 83) oocytes. K The rate 

of blastocysts was recorded in aging (n = 118), cordycepin (n = 120) 
and the cordycepin + DCP1A-OE (n = 127) groups. L Representa-
tive images of polyadenylated mRNA in aging, cordycepin and 
cordycepin + DCP1A-OE oocytes. Scale bar, 50 μm. M Fluorescence 
intensity of polyadenylated mRNA signals was measured in aging 
(n = 19), cordycepin (n = 22) and cordycepin + DCP1A-OE (n = 21) 
oocytes. N HPG fluorescent staining showing the protein synthesis 
activity in aging, cordycepin and cordycepin + DCP1A-OE oocytes. 
Scale bar, 50 μm. O Fluorescence intensity of HPG signals was meas-
ured in aging (n = 17), cordycepin (n = 17) and cordycepin + DCP1A-
OE (n = 17) oocytes. P Quantitative RT-PCR results showing the 
expression level of the 11 maternal genes in aging and DCP1A-OE 
aging oocytes. Data of (C), (E), (F), (H), (J), (K), (M), (O) and (P) 
were presented as mean percentage (mean ± SEM) from three inde-
pendent experiments. Number of mice used in (C), (E) & (H), (F), 
(J) & (K), (M) & (O) and (P) were 12, 9, 18, 27, 12 and 18, respec-
tively. In (C), (E), (F), (H) and (P), statistical analysis were per-
formed with Student's t test (two-tailed); and in (J), (K), (M) and (O) 
one-way ANOVA with Tukey's post hoc test was used for statistical 
analysis. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Furthermore, the expression levels of these cordycepin-
inhibited decay maternal genes were decreased in DCP1A-
OE aging oocytes compared to the aging oocytes (Fig. 6P). 
These results suggest that cordycepin suppresses the eleva-
tion of DCP1A protein by inhibiting polyadenylation during 
postovulatory aging, subsequently impeding the degradation 
of maternal mRNAs and ultimately enhancing the quality of 
aging oocytes.

Cordycepin inhibits the elevation of DCP1A 
and the degradation of maternal mRNAs 
in human postovulatory aging oocytes

The observation that cordycepin reduces DCP1A protein 
level and inhibits maternal mRNAs degradation prompted 
us to investigate the potential existence of a similar mecha-
nism in human postovulatory aging oocytes. We performed 
immunostaining of DCP1A in human aging oocytes and 
found that, similar to results observed in mice, DCP1A sig-
nal increased during postovulatory aging but was inhibited 
by cordycepin (Fig. 7A and 7B). Furthermore, total mRNA 
abundance and HPG signals were markedly reduced in 

Fig. 7   Cordycepin inhibits the elevation of DCP1A and the degrada-
tion of maternal mRNAs in human aging oocytes. A Representative 
images of DCP1A in human fresh, aging, and cordycepin-treated 
oocytes. Scale bar, 50 μm. B Fluorescence intensity of DCP1A 
signals was measured in human fresh (n = 15), aging (n = 15) and 
cordycepin-treated (n = 13) oocytes. C Representative images of 
polyadenylated mRNA in human fresh, aging, and cordycepin-treated 
oocytes. Scale bar, 50 μm. D Fluorescence intensity of polyade-
nylated mRNA signals was measured in human fresh (n = 16), aging 
(n = 14) and cordycepin-treated (n = 16) oocytes. E HPG fluorescent 

staining showing the protein synthesis activity in human fresh, aging, 
and cordycepin-treated oocytes. Scale bar, 50 μm. F Fluorescence 
intensity of HPG signals was measured in human fresh (n = 11), 
aging (n = 9) and cordycepin-treated (n = 11) oocytes. Data of (B), 
(D) and (F) were presented as mean percentage (mean ± SEM) from 
three independent experiments. Number of patients used in (B), 
(D) and (F) were 18, 21 and 15, respectively. Statistical analysis 
were performed with one-way ANOVA with Tukey's post hoc test. 
***P < 0.001, ****P < 0.0001
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human aging oocytes relative to fresh oocytes, while display-
ing comparable levels between cordycepin-treated oocytes 
and fresh oocytes (Fig. 7C-7F). Therefore, the mechanism 
of cordycepin-mediated inhibition of maternal mRNAs 
degradation during postovulatory aging may be conserved 
between mice and human.

Discussion

Postovulatory aging, starting from ovulation and progress-
ing continuously, is a significant factor contributing to the 
impairment of oocyte quality and the failure of human ART 
procedures, especially when rescue ICSI were employed [45, 
46]. Although several drugs such as melatonin and coen-
zyme Q10 have shown the ability in delaying postovulatory 
aging, they are not used clinically and the precise molecular 
mechanisms governing the aging pathway remain insuffi-
ciently elucidated [47–50]. In this study, we demonstrate 
the effectiveness of cordycepin in improving the quality of 
postovulatory aging oocytes by primarily inhibiting the deg-
radation of maternal proteins and mRNAs.

Maternal proteins are essential for acquisition and main-
tenance of oocyte developmental competence, affecting a 
variety of events such as oocyte maturation, fertilization, 
OET, zygotic gene activation (ZGA), and embryonic devel-
opment [17, 18, 51, 52]. Recent findings reveal that posto-
vulatory aging leads to reduction in the abundance of several 
maternal proteins, including BRG1 and MATER [7]. Our 
proteomic analysis has identified a substantial downregula-
tion of numerous proteins in aging oocytes. To explore the 
mechanism underlying the cordycepin-mediated effects on 
aging oocytes, we focused on proteins that decreased during 
aging, but restored following cordycepin supplementation. 
These were then referred to as “cordycepin-inhibited decay 
proteins”. MOS, one of cordycepin-inhibited decay proteins, 
activates the MAPK3/1 signaling cascade during oocyte 
maturation. Deficiency of MOS or MAPK3/1 in mice and 
human results in oocyte MII arrest failure, spindle abnor-
mality, and early embryo developmental arrest [39, 53–55]. 
The findings from our investigation revealed that cordycepin 
supplementation increased levels of MOS and p-MAPK3/1 
in aging oocytes. In addition, inhibition of p-MAPK3/1 sup-
pressed the recovery of fragmentation and developmental 
competence by cordycepin, suggesting a possible partial 
involvement of MOS degradation inhibition in cordycepin-
mediated restoration of quality in aging oocytes. Therefore, 
our findings suggest that cordycepin might improve the 
quality of aging oocytes through the inhibition of maternal 
proteins degradation.

Oocyte maturation instigates a shift from mRNA stability 
towards instability, leading to the degradation of thousands 
of diverse mRNAs [56]. In the absence of transcriptional 

activity during this process, the regulation of mRNAs deg-
radation principally determines the abundance of corre-
sponding proteins [31, 57]. Therefore, we speculated that 
cordycepin inhibits the degradation of maternal mRNAs 
during postovulatory aging. Here, immunofluorescence 
of poly(dT)20-oligonucleotides and HPG verified that total 
mRNA abundance and global translation activity decreased 
in aging oocytes, but restored after cordycepin supplemen-
tation. Recent studies have demonstrated the important 
role of mRNA-binding proteins in maintaining mRNAs 
stability. Here, several mRNA-binding proteins such as 
zygote arrest-1 (ZAR1), eIF4E-transporter protein (4E-T) 
and Y-box binding protein-1 (YBX1) were identified as 
cordycepin-inhibited decay proteins. ZAR1 is one of the 
first reported mammalian maternal effect genes; its knockout 
results in compromised translational activation of maternal 
mRNAs encoding important meiosis and OET factors [18, 
58, 59]. 4E-T, a type of eIF4E-binding proteins (4E-BPs), 
are required to protect the deadenylated target mRNA from 
degradation by blocking decapping [40]. YBX1, a member 
of Y-box binding proteins, serves an important role in mater-
nal mRNA degradation, alternative splicing, and transcrip-
tional activity required for early embryonic development 
[37, 38, 60]. Consequently, these observed degradation of 
mRNA-binding proteins during aging could further acceler-
ate mRNAs degradation. Despite the confirmed inhibition of 
maternal mRNAs degradation by cordycepin, the underlay-
ing mechanisms remain elusive.

Cordycepin, an analogue of nucleoside, partakes in 
RNA synthesis. Due to the absence of a 3’-hydroxyl moi-
ety, cordycepin incorporates into sites ordinarily occupied 
by nucleic acids, thereby inhibiting polyadenylation [61]. 
In eukaryotic cells, functional mRNA possesses a 5’-cap 
structure and a 3’-poly(A) tail that regulate translation and 
mRNA stability [62–64]. Hence, mRNAs degradation typi-
cally encompasses the deadenylation of the 3’- poly(A) tail 
and decapping of the 5’-cap [64, 65]. Given the properties 
of cordycepin in polyadenylation inhibition, we propose that 
it might suppress the elevation of certain proteins impli-
cated in directing mRNA degradation, thereby inhibiting 
maternal mRNAs degradation during oocyte aging. We 
therefore screened for proteins displaying increased level 
in aging oocytes but inhibited by cordycepin. Notably, we 
identified DCP1A, a recognized protein responsible for 
mRNA decapping [63]. Previous study has demonstrated 
that DCP1A dramatically increases during oocytes matura-
tion via cytoplasmic polyadenylation, a crucial process for 
proper maternal mRNAs degradation and OET [66]. We 
speculate that DCP1A mRNA is continuously being poly-
adenylated during postovulatory aging, leading to a rise in 
DCP1A protein and the abnormal degradation of maternal 
mRNAs. Our ePAT and protein level analyses verify the 
inhibition of polyadenylation and the increase of DCP1A 
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by cordycepin during aging. In addition, DCP1A knock-
down and overexpression revealed that cordycepin-mediated 
inhibition of maternal mRNAs degradation is executed via 
the suppression of DCP1A polyadenylation. Most notably, 
we also observed the restoration of DCP1A, global mRNA 
abundance, and translation activity by cordycepin in human 
aging oocytes. This suggests that the mechanism by which 
cordycepin enhances the quality of aging oocytes appears 
conserved among mammals.

Conclusion

In summary, we demonstrate that cordycepin, a natural 
nucleoside analogue, prevents oocytes from aging by over-
coming the abnormal maternal mRNA degradation, through 
suppressing the polyadenylation of DCP1A (Fig. 8). This 
finding may provide an effective approach to prevent pos-
tovulatory aging of oocytes in human ART. Future clinical 
investigations are needed to define the effects of cordycepin 
on human oocyte developmental competence.
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