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Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic 
to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenera-
tive disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. 
Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. 
The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxic-
ity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and 
antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain pro-
teostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may 
promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to 
proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may 
promote the development of strategies for both disease prevention and treatment.
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Abbreviations
8-OHdG	� 8-Hydroxyl-2′-deoxyguanine
Aβ	� Amyloid β
ABC	� ATP-binding cassette
AD	� Alzheimer’s disease
AIRAP	� Arsenite-inducible RNA-associated protein
αSyn	� α-Synuclein
ALS	� Amyotrophic lateral sclerosis
APL	� Acute promyelocytic leukemia
APP	� Amyloid precursor protein

As(V)	� Arsenate
As(III)	� Arsenite
ATP	� Adenosine triphosphate
BER	� Base excision repair
cGAS	� Cyclic GMP–AMP synthase
DDR	� DNA damage response
DDT	� DNA damage tolerance
DMAs(III)	� Dimethylarsonous acid
DSB	� Double-strand break
FET	� FUS, EWS, TAF15
FTLD	� Frontotemporal lobar degeneration
FUS	� Fused in sarcoma
GSH	� Reduced glutathione
GSSG	� Oxidized glutathione
GTP	� Guanosine triphosphate
HD	� Huntington disease
HR	� Homologous recombination
HRI	� Heme-regulated inhibitor kinase
hTERT	� Human telomerase reverse transcriptase
Htt	� Huntingtin
ICR	� Interstrand crosslink repair
IPOD	� Insoluble protein deposit
JUNQ	� Juxtanuclear protein quality control
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LRRK2	� Leucine-rich repeat kinase 2
MMAs(III)	� Monomethylarsonous acid
MMR	� Mismatch repair
NER	� Nucleotide excision repair
NHEJ	� Non-homologous end joining
NOS	� Nitric oxide synthase
NOX	� NADPH oxidase
PAR	� Poly(ADP-ribose)
PARP-1	� Poly(ADP-ribose) polymerase-1
PB	� Processing body
PD	� Parkinson’s disease
PFF	� Pre-formed fibrils
PML-NBs	� Promyelocytic leukemia nuclear bodies
PQC	� Protein quality control
RING	� Really interesting new gene
RNS	� Reactive nitrogen species
ROS	� Reactive oxygen species
SAC	� Spindle assembly checkpoint
Sb(III)	� Antimonite
SG	� Stress granule
SSB	� Single-strand break
STING	� Stimulator of interferon genes
TCR​	� Transcription-coupled DNA repair
TDP-43	� TAR DNA binding protein 43
TLS	� Translesion synthesis
Top1	� DNA topoisomerase I
TOP1cc	� DNA topoisomerase 1 cleavage complex
TORC1	� TOR complex 1
UPS	� Ubiquitin–proteasome system
UVC	� Ultraviolet C radiation
WHO	� World Health Organization
XPA	� Xeroderma pigmentosum complementation 

group A protein
ZnF	� Zinc finger

Introduction: chemistry and biology 
of arsenic and antimony

Arsenic and antimony are classified as metalloids, that is, 
chemical elements that possess physical and chemical prop-
erties that are intermediate between metals and nonmetals. 
These metalloids are present in trace amounts in the Earth’s 
crust (mean concentrations: 1–2 ppm for arsenic (13–26 µM) 
and 0.2 ppm for antimony (1.6 µM)) but can reach high local 
concentrations due to geological sources or anthropogenic 
activities [1, 2]. For example, arsenic concentrations in 
the groundwater from geological sources reaching up to 
or above 5000 ppb (67 µM) have been measured at sites 
in Bangladesh, China, Thailand, Argentina, and Australia 
[3–5], greatly exceeding the levels in drinking water (10 ppb; 
0.13 µM) recommended by the World Health Organization 
(WHO). Similarly, high antimony concentrations have been 

measured in water and sediments close to mining and smelt-
ing areas in China (up to 29,000 ppb; 240 µM), raising con-
cerns that antimony concentrations in the groundwater in 
these areas may exceed the recommended level in drinking 
water recommended by WHO (10 ppb; 0.08 µM) [2, 6, 7]

The presence of arsenic in soils and water is a major 
human health threat, and is estimated to affect up to 200 
million people worldwide [8]. Arsenic can accumulate and 
damage every organ in the human body with the highest 
concentrations present in the liver and kidney [9]. Chronic 
arsenic exposure is associated with several pathological con-
ditions including skin disorders, cardiovascular disease, dia-
betes, cancers, as well as neurological and neurodegenera-
tive disorders [3, 10–13]. Antimony has also been proposed 
to be a global health threat [7]. Chronic antimony exposure 
may affect the skin, the respiratory, cardiovascular and gas-
trointestinal systems, and possibly cause cancer [14, 15]. 
The highest concentration of antimony in humans is found 
in liver and kidney, and certain inhaled antimony compounds 
are retained in lung for long periods [7, 16].

Arsenic concentrations reported in epidemiological stud-
ies to cause adverse health effects usually range from 100 
to 1000 ppb (1.3–13 µM) and some studies suggest that it 
may already affect human health below 10 ppb (0.13 µM) [9, 
17]. The majority of the cellular studies cited in this review 
exposed various human cell lines to concentrations ranging 
from 10 to 100 µM (750–7500 ppb), corresponding to expo-
sure to high environmental arsenic concentrations. Several 
cellular studies have also used lower arsenic concentrations 
(from 30 nM up to 10 µM; 5–750 ppb) that correspond to 
low to moderate environmental arsenic. As a comparison, 
the median arsenic concentration in healthy humans is in 
the range of 30–40 ppb (0.4–0.5 µM) in kidney and liver, 
50–90 ppb (0.67–1.2 µM) in lung and skin, 10–30 ppb 
(0.13–0.4 µM) in brain, and 300–900 ppb (4–12 µM) in hair 
and nail [9]. Tissues taken from arsenic-intoxicated humans 
show much higher arsenic concentrations: 147,000 ppb 
(1.9 mM) in liver, 27,000 ppb (360 µM) in kidney, and 
11,000 ppb (146 µM) in lung and brain [9]. Mean arsenic 
concentrations in the plasma and placenta of chronically 
exposed human populations are about 10 and 100  nM, 
respectively, while urinary concentrations of exposed 
individuals can reach up to 5650 ppb (75 µM) [18–21]. 
Finally, arsenic concentrations in the plasma of individu-
als treated with arsenic trioxide (As2O3) peaks at 5–7 µM 
(400–600 ppb) [22]. Thus, most toxicity mechanisms, both 
at epidemiological and cellular level, have been studied at 
moderate to high arsenic concentrations (µM range) while 
less is known about toxicity targets and mechanisms at low 
(nM) concentrations.

Epidemiological studies on the health effects of antimony 
in environmentally relevant concentrations are scarce and 
mainly concern occupational exposure in industrial settings 
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and during treatment with antimony-containing drugs. The 
antimony concentration in the lungs of smelter workers 
exposed to antimony is about 2.6 μM, while the concentra-
tion of unexposed individuals is 0.2 μM [16]. The concentra-
tion of the pentavalent antimonial drug Glucantime® used 
to treat leishmaniasis is usually 20 mg/kg body weight per 
day, and plasma concentrations of antimony peak at 1 mM 
after injection of the drug [23]. The studies cited in this 
review usually exposed human cell lines to antimony con-
centrations ranging from 50 to 800 µM (750–7500 ppb), 
which corresponds to high exposure levels. Only few stud-
ies have explored toxicity mechanisms at low antimony 
concentrations.

Despite their toxicities, arsenic- and antimony-based 
drugs have been used for centuries in the treatment of multi-
ple diseases, and current use includes the treatment of acute 
promyelocytic leukemia (APL) and of diseases caused by 
certain protozoan parasites; however, the molecular mecha-
nisms of action of arsenic- and antimony-based drugs are in 
many cases still unclear [10, 24–26]. In spite of its in vitro 
anticancer activity, arsenic has not been shown to be effec-
tive in treating cancer types other than APL in clinical trials 
[27]. However, its efficacy in anticancer therapy may poten-
tially be increased when combined with other anticancer 
drugs [28]. Several antimony-based compounds also show 
marked in vitro antiproliferative activity against a variety of 
human cancer cells [29, 30]. While antimony-based com-
pounds have not yet been evaluated as anticancer drugs in 
clinical trials, their lower toxicity compared to arsenic-based 
compounds illustrates their future potential.

The molecular mechanisms of arsenic and antimony tox-
icity are only partially understood. In general, toxicity of 
a metal is governed by its physicochemical properties and 
ligand preferences. Arsenic and antimony are ‘hard’ transi-
tion metals that preferentially interact with oxygen in their 
higher oxidation states and sulfur in their lower oxidation 
states. The most common oxidation states are pentavalent 
and trivalent arsenic and antimony, with the trivalent states 
being more toxic than the pentavalent states [3, 7, 9, 16]. 
Typically, metals cause toxicity in vivo by interfering with 
protein and membrane functions, with nutrient uptake and 
redox reactions, and by causing DNA damage [31, 32]. At 
the cellular level, arsenic toxicity has been attributed to 
oxidative stress, changes to the epigenome, genotoxicity, 
and to altered protein function and activity. At the molecu-
lar level, pentavalent arsenate [As(V)], being chemically 
similar to phosphate, can cause toxicity by competing with 
phosphate in various biochemical reactions and by impair-
ing energy generation via disruption of adenosine triphos-
phate (ATP) production. The toxicity of trivalent arsenite 
[As(III)] is mainly attributed to its high affinity for sulfhy-
dryl groups, and binding of As(III) to reduced cysteine resi-
dues in proteins may disturb protein conformation, function, 

and interactions [32–36]. The ability of As(III) to bind to 
proteins is not only central for its toxic mode of action but 
can also contribute to its therapeutic effects. For exam-
ple, binding to cysteine residues in the oncoprotein PML-
RARα underlies the anticancer activity of arsenic trioxide in 
patients with APL [37, 38]. Similarly, As(III) binding to spe-
cific kinases and transcriptional regulators is associated with 
enhanced arsenic resistance in yeast and bacteria [39–41].

Compared to arsenic, much less is known about the 
mechanisms of antimony toxicity. It is generally assumed 
that arsenic and antimony are structurally related, and that 
they therefore act in similar ways. Like As(III), antimonite 
[Sb(III)] has been proposed to affect the cellular redox bal-
ance, to disrupt enzyme function by binding to sulfhydryl 
groups in proteins, and to cause DNA damage [15, 42–44]. 
Additionally, Sb(III) binding to proteins is not only associ-
ated with toxicity but also with antimony resistance in yeast 
and bacteria [39, 45, 46].

Metalloid toxicity is also dependent on metabolic trans-
formations. Arsenic and antimony can undergo biometh-
ylation in many microorganisms and mammalian species, 
including humans. However, the extent of biomethylation 
varies between species and may also give rise to species-
specific compounds [44, 47, 48]. In humans, arsenic meth-
ylation primarily occurs in the liver and involves the arse-
nic (+ 3 oxidation state) methyltransferase enzyme As3mt 
[48]. Whether antimony is methylated in humans is unclear 
[44]. Nevertheless, antimony can be methylated in vitro by 
the human As3mt orthologue ArsM, isolated from the red 
alga Cyanidioschyzon merolaeis [49], raising the possibility 
that methylation might occur also in humans. Methylation 
changes the properties and behavior of arsenic and antimony 
and affects their modes of action and toxicities with methyl-
ated forms considered to be more toxic than the inorganic 
forms [48]. One way methylation affects metalloids is by 
modulating their binding to proteins: inorganic As(III) can 
bind up to three cysteine residues, monomethylarsonous acid 
[MMAs(III)] can bind two cysteine residues and dimethyl-
arsonous acid [DMAs(III)] can bind only one cysteine resi-
due [33]. Studies in budding yeast (Saccharomyces cerevi-
siae), that possesses a methyltransferase enzyme involved in 
As(III) methylation [50], indicated that As(III) methylation 
also serves a signaling function in an adaptative response to 
arsenic stress [50, 51]. Thus, depending on the form of the 
metalloid and on the specific target, arsenic and antimony 
binding to proteins may cause toxicity or resistance.

Studies in the past decades have greatly expanded our 
mechanistic understanding of arsenic and antimony toxic-
ity and emphasized genotoxicity and proteotoxicity as key 
contributors to pathogenesis. Our understanding of how cells 
resist and adapt to metalloid toxicity has also increased sub-
stantially in recent years. In this review, we highlight mecha-
nisms by which arsenic and antimony cause genotoxicity 
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and proteotoxicity as well as mechanisms used by cells to 
maintain proteostasis during metalloid exposure. We also 
address how metalloid-induced proteotoxicity may promote 
neurodegenerative disease and how genotoxicity and proteo-
toxicity may be interrelated and contribute to proteinopa-
thies in a concerted way.

How arsenic and antimony cause 
genotoxicity

Over the past decades, a large number of epidemiological 
studies documented a strong association between environ-
mental, occupational, and medical exposure to arsenic and 
cancers of the skin, lung, and urinary bladder [52, 53]. Arse-
nic exposure has also been linked to the development of 
kidney, liver, and prostate cancer [53–56]. Consequently, 
arsenic, and its inorganic compounds, is classified as a group 
1 human carcinogen [53]. Paradoxically, arsenic exhibits 
a weak mutagenic potential, even at toxic concentrations, 
and its carcinogenic properties failed to be reproduced in 
experimental animals for many years, obscuring its mecha-
nisms of carcinogenesis [57, 58]. More recent studies, using 
transplacental/early-life or whole-life exposure approaches, 
found that inorganic arsenic has the ability to induce several 
types of cancer in mice [58–60]. Additionally, arsenic is a 
well-established co-carcinogen that potentiates the carci-
nogenic effects of ultraviolet radiation and benzo[a]pyrene 
present in tobacco smoke, and enhances the mutagenicity 
and clastogenicity of known genotoxins, such as cisplatin, 
methyl methanesulfonate, N-methyl-N-nitrosourea, and 
phleomycin [17, 61, 62]. Several, mutually non-exclusive, 
mechanisms of arsenic-elicited carcinogenesis have been 
proposed, reflecting arsenic’s multifaceted effects at the 
cellular level: these include (a) induction of oxidative stress 
resulting in increased oxidative DNA damage; (b) biotrans-
formation of inorganic arsenic to methylated forms with 
higher genotoxicity; (c) inhibition of DNA repair mecha-
nisms via transcriptional repression of genes encoding DNA 
repair enzymes and by modulating their enzymatic activity; 
(d) non-genotoxic epigenetic dysregulation (DNA methyla-
tion, post-translational histone modifications, miRNA) and 
aberrant activation of signal transduction pathways, which 
lead to expression changes of tumor suppressor genes and 
proto-oncogenes at the level of transcription initiation and 
alternative splicing, ultimately resulting in stimulation of 
cell proliferation and inhibition of apoptosis [17, 52, 63, 64]. 
Moreover, studies in budding yeast indicated that arsenic 
can generate DNA damage independently from oxidative 
stress, suggesting that additional modes of arsenic genotox-
icity exist [62].

The genotoxic and carcinogenic potential of antimony 
is much less studied. The few available epidemiological 

studies of occupational and environmental exposure to anti-
mony found either no association with cancer incidence or 
an increased risk of lung cancer [44, 65]. However, a rodent 
inhalation study revealed that Sb(III), in form of antimony 
trioxide, has the potential to induce lung and adrenal gland 
tumors as well as lymphomas [66]. Consequently, Sb(III) is 
currently categorized as probably carcinogenic to humans 
(group 2A) [67]. Like for arsenic, the carcinogenic proper-
ties of Sb(III) may result from induction of oxidative stress, 
inhibition of DNA repair mechanisms and changes in gene 
expression, leading to increased oxidative DNA damage and 
stimulation of cell proliferation [44]. Additionally, studies 
in S. cerevisiae revealed that Sb(III) also disrupts telomere 
maintenance and causes topoisomerase I (Top1)-dependent 
replication-associated DNA damage [68].

Up to now, the molecular mechanisms of metalloid-
induced DNA damage and carcinogenesis remain elusive 
and still under debate. This section will highlight how 
As(III) and Sb(III) cause genotoxicity by partly distinct 
mechanisms.

Arsenic and antimony‑induced genotoxic effects 
in mammalian cells

As(III) is inactive or extremely weak in its ability to induce 
gene mutations [63]. Moreover, there is no solid evidence 
for the reactivity of As(III) with DNA. However, it is well 
known that in cultured human cells, long-term exposure 
to As(III) at moderate to high concentrations (≥ 5  μM 
for 16–24 h) causes oxidative modifications of DNA and 
oxidative damage-related lesions, such as 8-hydroxyl-2′-
deoxyguanine (8-OHdG), DNA breaks and DNA–protein 
crosslinks, as well as sister chromatid exchanges and chro-
mosomal aberrations, including micronuclei and aneuploidy 
[52, 63]. Accordingly, several studies showed that As(III) 
increases production of reactive oxygen species (ROS) and 
reactive nitrogen species (RNS), whereas As(III)-induced 
oxidative DNA damage can be attenuated by the addition 
of antioxidants [69, 70]. Elevated levels of urinary 8-OHdG 
in individuals chronically exposed to high As(III) con-
centrations further supports the notion that high doses of 
As(III) cause DNA damage by increasing oxidative stress 
[71] (Fig. 1). Interestingly, induction of ROS production 
and increased oxidative DNA damage was also observed in 
the breast cancer cell line MCF-7 exposed to non-cytotoxic 
concentrations of As(III) (2 μM for 4 h) [72]. However, iden-
tical conditions did not increase ROS production in mouse 
embryonic fibroblasts (3T3) and three human cell lines 
(HeLa, HEK 293, HEMn-LP), providing evidence against 
the oxidative stress theory of arsenic carcinogenesis during 
chronic exposure to low levels [73].

Oxidation of bases in DNA and single-strand breaks 
(SSBs) are formed directly from hydroxyl radical attack. 
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Additionally, SSBs can be generated during the repair of 
oxidized bases by base excision repair (BER). Furthermore, 
replication of DNA containing unrepaired SSBs results in 
the formation of double-strand breaks (DSBs) leading to 
chromosomal aberrations and genomic instability. Indeed, 
As(III) at concentrations of 5–50 μM induced replication-
dependent DSBs in cultured AA8 Chinese hamster ovary 
cells, which activated the DNA damage response (DDR) 
followed by homologous recombination (HR) repair [74]. 
Moreover, in HR-deficient cells, DSBs were detectable 
already at 1 μM As(III) [74]. Additionally, closely spaced 
SSBs can also generate DSBs in the absence of replication, 
but this requires very high levels of oxidative damage and/
or region-specific accumulation of such lesions. How As(III) 
generates oxidative stress-dependent DNA damage is not 

well understood. Metalloids are not redox-active elements, 
like iron (Fe) or copper (Cu), so it seems that they must 
induce ROS production indirectly. Early studies showed that 
ROS generated in As(III)-treated cells are mainly produced 
by membrane-bound NADPH oxidase (NOX), due to expres-
sion upregulation of NOX complex components [75, 76]. 
Interestingly, depletion of NOX components in leukemic 
cells led to nearly complete inhibition of ROS production by 
As(III) [76]. Other studies showed that As(III) at the concen-
trations of 15–10 µM also targets mitochondria, leading to 
the release of the superoxide anion and its subsequent reac-
tion with nitric oxide to produce the less reactive and more 
stable peroxynitrite, which has the capacity to act throughout 
the cell [77, 78]. 2 μM As(III) was also able to increase the 
levels of nitric oxide by upregulating the expression of nitric 

Fig. 1   How arsenic and antimony cause genotoxicity. Both in yeast 
and mammalian cells, As(III) and Sb(III) induce oxidative stress to 
varying degrees. This results in elevated levels of oxidative DNA 
damage, including oxidized bases and single-strand breaks (SSBs), 
which can also arise indirectly from incomplete repair of oxidized 
bases by base excision repair. SSBs can be converted to double 
strand breaks (DSBs) during replication or when SSBs are closely 
spaced. In addition, As(III) and Sb(III) increase the formation of pro-
tein–DNA adducts such as topoisomerase 1 (TOP1) DNA–protein 
crosslinks, either in a DNA oxidative damage-dependent manner or 
by interfering with TOP1 enzymatic activity. The presence of DNA–
protein crosslinks leads to generation of replication-associated DSBs 
and single-stranded DNA (ssDNA) gaps. In budding yeast, oxidative 
stress and replication-independent DNA damage were also observed 

after metalloid treatment. In addition, As(III) and Sb(III) not only 
induce DSBs and ssDNA gaps, but also inhibit repair of these lesions 
by interfering with DNA damage repair pathways such as homolo-
gous recombination (HR), non-homologous end joining (NHEJ) and 
DNA damage tolerance (DDT). As(III) and Sb(III)-mediated dis-
ruption of the actin and microtubule cytoskeleton may also interfere 
with various aspects of DNA damage repair and cause chromosome 
aberrations. Finally, both metalloids perturb homeostasis of telomeres 
by oxidation of guanine-rich telomeric repeats, possibly by directly 
binding to telomeric DNA or by interfering with the function of tel-
omere-associated proteins. This leads to telomere uncapping resulting 
in telomere erosion and fusion of chromosome ends. The figure was 
created with BioRender.com
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oxide synthase (NOS) in human keratinocytes [79]. Other 
types of ROS generated by As(III) via NOX or mitochon-
dria, such as H2O2, are too reactive and unstable to penetrate 
the nucleus and induce oxidative DNA damage [80]. Methyl-
ated forms of arsenic are a potential source of ROS that can 
be generated within the nucleus. It has been demonstrated 
that the reaction between molecular oxygen and DMAs(III) 
produces dimethylarsenic peroxyl radical and superoxide 
anion radical [81]. Importantly, methylation of As(III) and 
subsequent generation of dimethylarsenic peroxyl radical 
likely contributes to induction of DNA breaks in lung cells 
of rodents and human alveolar epithelial type II (L-132) cells 
[82]. Finally, in human CD4 T lymphocytes, As(III) at the 
cytotoxic concentration of 5 μM has recently been shown to 
induce the accumulation of topoisomerase 1-DNA covalent 
cleavage complexes (TOP1cc) [83], which, in turn, can stall 
replication fork progression leading to generation of DSBs. 
Importantly, TOP1cc can be trapped on DNA due to inhibi-
tion of TOP1 activity or by various DNA lesions, including 
oxidative DNA damage [84].

Another source of DNA damage, such as chromosomal 
aberrations and aneuploidy in cells exposed to As(III), may 
be dysfunctional telomeres (Fig. 1). Epidemiological stud-
ies reported both lengthening and shortening of telomeres 
in individuals chronically exposed to As(III) [85]. A pos-
sible mechanism for As(III)-induced telomere lengthening 
involves the upregulation of the telomerase catalytic subunit 
(hTERT) and telomere binding proteins such as TRF1 and 
TRF2, subunits of the telomere sheltering complex [85]. 
Thus, As(III) may partially contribute to carcinogenesis 
by promoting telomere elongation, which is crucial for the 
maintenance and viability of human cancer cells. Paradoxi-
cally, As(III)-induced downregulation of both hTERT and 
TRF2 was also observed and associated with telomere short-
ening. Since telomere sequences are rich in guanine, which 
is particularly sensitive to oxidative damage, it has been 
proposed that As(III) may cause telomere attrition through 
oxidative stress [85]. Importantly, 4 μM As(III) induced 
increased ROS levels in glioblastoma cells (U87 line) fol-
lowed by translocation of telomerase from the nucleus to 
the cytoplasm, telomere shortening, and accumulation of 
γH2AX (histone H2AX variant phosphorylated on Ser139, 
which serves as a sensitive marker of DNA damage and 
repair) that co-localized with TRF1, strongly suggesting that 
the telomeres are sites of As(III)-generated DNA damage 
in an oxidative stress-dependent manner [86]. Activation of 
DDR at telomeres and erosion of telomeres accompanied by 
downregulation of TRF2 expression were also observed in 
human CD4 T lymphocytes exposed to 5 μM As(III) [83]. 
A study in CD1 mouse embryos revealed that 30 μM As(III) 
induced telomere erosion and end-to-end chromosome 
fusions, which was prevented by co-administration of an 
antioxidant [87]. Interestingly, telomerase-deficient mouse 

embryos with shortened telomeres exhibited decreased 
resistance to As(III) [87]. Moreover, prostate cancer cells 
(PC-3 line) characterized by very short telomeres were about 
10- to 100-fold more sensitive to As(III) compared to human 
cell lines with longer telomeres [88]. Another study also 
reported an association between longer telomere lengths 
and increased resistance to As(III) in human cells in vitro 
[89]. In PC-3 prostate cancer cells, cytotoxic concentrations 
of As(III) (0.23–0.45 μM) triggered telomere dysfunction, 
manifested by telomere-associated accumulation of γH2AX 
and telomere degradation, possibly by directly binding to 
telomeric TTA​GGG​ repeats, resulting in displacement of 
hTERT from telomeres [88]. Importantly, telomeric DNA 
damage was observed in the absence of oxidative DNA 
damage in PC-3 cells, suggesting that oxidative stress-
independent telomere dysfunction may be a key source of 
As(III)-induced genotoxicity in cells with short telomere 
length [88].

Unlike for As(III), there are limited data on the geno-
toxic potential of Sb(III). Sb(III) did not induce mutations 
either in bacterial assays or in cultured mammalian cells 
[44], although one early report showed a positive response to 
SbCl3 in the Bacillus subtilis Rec-assay [90]. Many studies 
in mammalian cell cultures or rodents have shown no clas-
togenic effects of Sb(III) [44, 68]. Moreover, 50 μM SbCl3 
did not induce any detectable DSBs in HeLa S3 cells after 
8 h treatment [91]. On the other hand, exposure of HepG2 
and LS-174 T human cancer cell lines to high concentra-
tions of SbCl3 (100–500 μM) resulted in the induction of the 
DNA damage marker γH2AX [92]. Some historical studies 
reported clastogenic activity of Sb(III), such as induction 
of micronuclei, sister chromatid exchange and chromo-
somal aberrations [44, 68]; however, these studies have 
recently been inspected according to the applicable stand-
ards and have turned out to be mostly inconclusive and of 
poor quality [44]. A more recent analysis of the genotoxic 
properties of antimony compounds by the ToxTracker assay 
revealed that low concentrations of Sb(III) (0.2–0.5 μg/mL 
or 0.3–0.8 μM) have the potential to induce oxidative stress-
derived DNA damage but has no ability to directly damage 
DNA or interfere with replication [93]. 1 μg/mL (8 µM) of 
Sb(III) also activated the unfolded protein response suggest-
ing induction of protein stress [93]. Very high concentrations 
of Sb(III) (105 μg/mL; 860 μM) strongly disrupted redox 
homeostasis in human THP-1 macrophages, leading to a 
50% decrease in intracellular free glutathione (GSH) levels, 
due to the formation of Sb(GS)3 conjugates as a mean of 
Sb(III) detoxification, and due to Sb(III)-mediated inhibi-
tion of glutathione reductase catalyzing the regeneration of 
GSH from oxidized GSSG [94]. SbCl3 at the concentration 
of 60 μM was demonstrated to cause death of rat hepato-
cytes by generating ROS [95]. Furthermore, in zebrafish 
liver, high concentrations of Sb(III) (16.58 and 33.16 mg/L) 
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induced oxidative stress resulting in the accumulation of oxi-
dative DNA damage but not DNA–protein cross-links [96]. 
In summary, Sb(III) appears to exhibit an indirect genotoxic 
mode of action involving increased oxidative stress at rela-
tively high concentrations, but further research is needed to 
firmly establish Sb(III) as a genotoxin for animals, including 
humans.

Studies of arsenic and antimony genotoxicity 
in budding yeast

S. cerevisiae is an excellent model organism to study vari-
ous aspects of DNA damage response, DNA repair path-
ways, and mechanisms of DNA damage induction by chemi-
cal agents [97–99]. Studies using either wild-type yeast or 
mutants devoid of As(III)/Sb(III) detoxification transporters 
Acr3 and Ycf1 revealed that both As(III) and Sb(III) exhibit 
genotoxic properties at subcytotoxic concentrations [62, 68]. 
1 h exposure to As(III) triggered phosphorylation of histone 
H2A on Ser129 (an equivalent of human γH2AX, which 
is a sensitive DNA damage marker also in yeast) [97–99], 
starting from 250 μM in wild type and 50 μM in the dou-
ble mutant acr3Δ ycf1Δ [62, 68]. For Sb(III), high levels 
of H2A phosphorylation were observed after 1–2 h treat-
ment with 200–500 μM in ycf1Δ cells [62, 68]. In contrast 
to mammalian cells, subcytotoxic or cytotoxic concentra-
tions of both As(III) (0.5–1 mM) and Sb(III) (0.2–5 mM) 
induced low levels of ROS and only a small increase in oxi-
dative DNA damage [62, 68]. Moreover, a BER-defective 
mutant showed a very mild sensitivity to either metalloid, 
strongly suggesting that As(III) and Sb(III) have weak poten-
tial to generate oxidative stress-dependent DNA damage in 
budding yeast. Also, cells defective in nucleotide excision 
repair (NER) showed wild type resistance to both metal-
loids, which indicates that As(III) and Sb(III) do not gener-
ate bulky DNA adducts in yeast. In contrast, HR- and DNA 
damage tolerance (DDT)-defective yeast mutants devoid 
of DSB and replication-associated damage repair, respec-
tively, were substantially As(III) and Sb(III) sensitive. Con-
sequently, As(III) and Sb(III)-treated S phase cells showed 
increased accumulation of SSBs and ssDNA gaps, as well 
as Rad52 DNA repair nuclear foci, which indicate ongoing 
DNA repair by HR [62, 68] (Fig. 1). For Sb(III), the lev-
els of SSBs, ssDNA regions and Rad52 foci were partially 
reduced in cells lacking Top1, but not by the addition of a 
ROS scavenger [68]. This indicates that a subset of Sb(III)-
induced replication lesions may be generated due to the 
formation of Top1-DNA adducts, but independently from 
oxidative stress (Fig. 1). Interestingly, induction of Top1-
induced DNA fragmentation by As2O3 (1–2 μM for 72 h) 
has also been reported in human leukemia NB4 cells, but in 
an oxidative stress-dependent manner and accompanied by 
apoptosis activation [100].

Sensing of DSBs or ssDNA gaps by the upstream kinases 
of the DDR, Mec1 and Tel1, results in phosphorylation 
of histone H2A and hyperphosphorylation of the effector 
kinase Rad53, which serve as sensitive markers for these 
types of DNA damage [97]. Importantly, both As(III) and 
Sb(III) induce high levels of H2A and Rad53 phosphoryla-
tion, not only in S phase but also in G2/M phase, suggest-
ing DSB induction in the absence of replication and ele-
vated oxidative stress (Fig. 1). In G1 phase-synchronized 
cells devoid of the Ku complex, that binds to and protects 
DSBs from resection and thus prevents activation of DDR 
in G1, H2A and Rad53 phosphorylation was also observed 
after As(III) and Sb(III) treatment. However, the presence 
of DSBs was detectable only at a very high concentration 
of As(III) (25 mM) [62, 68]. Thus, it remains to be estab-
lished what types of DNA lesions are mainly responsible 
for As(III)-induced activation of DDR in yeast at subcyto-
toxic concentrations. Moreover, no presence of DSBs was 
detected upon Sb(III) treatment of yeast cells [68]. Instead, 
Sb(III) negatively affects telomere stability, since mutants 
devoid of proteins involved in telomere maintenance, such as 
Cdc13, Tel1, and Yku70, were found to be highly sensitive 
to Sb(III) [68]. Importantly, Sb(III) sensitivity of the cdc13-
1 mutant was strongly supressed by deletion of the PIF1 or 
EXO1 genes encoding nucleases contributing to resection 
of uncapped telomeres. The cdc13-1 mutant also showed 
high sensitivity to As(III), which suggests that both metal-
loids are able to disrupt homeostasis of telomeres leading 
to DDR activation [68] (Fig. 1). The fact that metalloid-
induced DNA damage in yeast cells is largely independ-
ent of oxidative stress and also observed in the absence of 
replication, suggests that both As(III) and Sb(III) might also 
exhibit in situ DNA damage activity. We hypothesize that 
both metalloids might generate low levels of sequence- or 
chromosome site-specific DSBs, which are not detectable 
by standard techniques.

However, the question remains whether the mechanisms 
of As(III) and Sb(III) genotoxicity observed in budding yeast 
may be similar in human cells. Compared to mammals, yeast 
cells are more resistant to both metalloids, in part due to the 
presence of efficient detoxification pathways mediated by the 
plasma membrane As(III)/Sb(III) efflux transporter Acr3 and 
the ATP-binding cassette (ABC) transporter Ycf1, which 
sequesters As(III)/Sb(III)-glutathione conjugates into the 
vacuole [101]. Indeed, the use of yeast mutants lacking these 
transporters allowed to decrease concentrations of As(III) 
and Sb(III) exerting genotoxic effects by five- and tenfold, 
respectively [62, 68]. Members of the Acr3 family are absent 
in animals; however, mammalian cells express a wide pleth-
ora of plasma membrane-localized ABC transporters, which 
pump free or glutathione-conjugated arsenic species, includ-
ing inorganic As(III), MMAs(III) and dimethylarsinic acid 
[DMAs(V)] out of the cells, enabling arsenic clearance from 
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the whole body [101]. Upregulation of these transporters is 
the key mechanism of acquired high-level As(III) resistance 
observed in cancer cells [101]. Both yeast and mammals can 
also limit intracellular accumulation of As(III) and Sb(III) 
by downregulating expression or activity of aquaglycerop-
orins and sugar transporters, which serve as entry pathways 
for As(III) and Sb(III) in all kingdoms of life [101]. On the 
other hand, these channels and transporters were also shown 
to extrude methylated forms of arsenic in mammalian cells. 
Interestingly, it has been recently demonstrated that budding 
yeast also produce MMAs(III) and DMAs(III), which con-
tribute to the toxic effects of inorganic As(III) exposure [50, 
51]. Whether the production of methylated As(III) species 
increases DNA damage in yeast cells remains to be investi-
gated. Higher resistance of yeast cells to As(III) and Sb(III) 
compared to human cells may also be explained by the fact 
that budding yeast lacks certain DNA repair proteins and 
cycle regulators, such as the poly(ADP-ribose) polymerase-1 
(PARP-1) protein, BRCA1 and p53, which are known to be 
targeted by these metalloids (see below). On the other hand, 
Chinese hamster ovary (CHO-K1) cells, often used in metal-
loid genotoxicity studies, are about 10 times more resistant 
to As(III) than human fibroblasts [102]. Even human cell 
lines can vary greatly in susceptibility to As(III) [88]. Dif-
ferences in arsenic resistance between animal species may 
be due to the length of telomeres [87], antioxidant capacity 
[102] and dissimilar rates and patterns of arsenic methyla-
tion [103, 104]. Nevertheless, it should be emphasized that 
DNA damage caused by As(III) and Sb(III) in all model 
organisms and cell lines is observed mainly at species-
appropriate subcytotoxic and cytotoxic concentrations and 
it remains to be determined whether or how the genotoxic 
potential of As(III) and Sb(III) contributes to the develop-
ment of cancer in humans during chronic exposure to low 
levels of metalloids.

Inhibition of DNA repair by arsenic and antimony

It is well documented that low concentrations of As(III) 
potentiates DNA damage induced by several physical and 
chemical agents in mammalian cells via indirect or direct 
inhibition of DNA repair pathways, and thus may contribute 
to genomic instability and, ultimately, cancer (Fig. 1). A 
number of studies reported that As(III) treatment results in 
decreased expression of several DNA repair genes involved 
in BER and NER, as observed in mammalian cell lines and 
in cells isolated from individuals chronically exposed to 
As(III) [17, 105]. As(III)-induced downregulation of gene 
expression likely involves changes in DNA methylation and 
histone modification patterns. For example, 1 μM As(III) 
reduces expression of the DSB repair BRCA1 gene by induc-
ing hypermethylation of its promoter in MCF7 breast cancer 
cells [106], while dose-dependent decrease in expression 

of several BER genes (MPG, PARP1, XRCC1) in human 
keratinocytes (HaCaT cells) treated with subcytotoxic and 
cytotoxic concentrations of As(III) (2.5–10 μM) was associ-
ated with the H3K9me2 heterochromatin mark enrichment in 
their promoter regions [107]. Decreased expression of some 
mismatch repair (MMR) genes, such as MLH1 and MSH2, 
due to promoter DNA hypermethylation was observed in 
HaCaT cells treated with 0.1–0.5 μM As(III) [108] and in 
peripheral blood mononuclear cells isolated from humans 
chronically exposed to As(III) in drinking water [109].

As(III) can also directly impact the activity of DNA repair 
proteins. As(III) has been shown to bind to zinc finger (ZnF) 
motifs, which are common in DNA-binding proteins, includ-
ing transcription factors and DNA repair proteins, as well as 
in so-called Really Interesting New Gene (RING) domain 
proteins such as E3 ubiquitin ligases [110]. Mass spectrome-
try analysis revealed that As(III) selectively displaces Zn(II) 
from C3H1 and C4 ZnF motifs, but not from the more com-
mon C2H2 motif, and that As(III) is coordinated by three 
cysteine residues [111]. In contrast, MMAs(III) binds to two 
cysteines and can thus interact with all types of ZnF motifs 
[112]. Arsenic-bound ZnF motif-containing peptides display 
an altered conformation, suggesting that As(III) binding may 
affect the function of ZnF proteins [113]. Supporting this 
view, in vivo assays indicated that very low concentrations 
(0.01–2 μM) of As(III) and MMAs(III) inhibit the activ-
ity of PARP-1, which contains two C3H1-type ZnFs [111, 
114–116]. Interestingly, it has been suggested that As(III) 
binding to the ZnFs of PARP-1 per se does not exert an 
inhibitory effect: instead, the As(III)-bound cysteines in 
PARP-1 are highly susceptible to oxidation by ROS, which 
ultimately leads to its inactivation [117, 118]. In addition, 
As(III)-induced ROS or RNS may also be responsible for 
oxidation/S-nitrosylation of PARP-1 resulting in Zn(II) 
loss and inhibition of its activity [119, 120]. PARP-1 acts 
as a sensor of SSBs and DSBs, which stimulate PARP-
1-mediated synthesis of poly(ADP-ribose) (PAR) and the 
attachment of PAR chains onto itself and other proteins 
involved in the cellular response to DNA damage and DNA 
metabolism. The presence of PAR chains at the site of DNA 
damage facilitates repair processes by chromatin relaxation 
and by recruiting proteins involved in SSB repair, removal 
of bulky adducts by NER, removal of abortive TOP1cc, 
and DSB repair by HR and non-homologous end-joining 
(NHEJ) [121]. Inhibition of PARP-1 activity by 2 μM As(III) 
strongly perturbs the repair of H2O2- and ultraviolet radia-
tion-induced DNA damage in human keratinocytes (HaCaT 
cells) [115, 116, 122]. Another function of PARP-1 is to 
downregulate repair of DSBs by HR and therefore, PARP-1 
inhibition increases the level of sister chromatid exchanges 
[121], which is a hallmark of genomic instability frequently 
observed in human cells upon As(III) exposure [123]. 
Importantly, mouse embryonic fibroblasts lacking PARP-1 
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exposed to 11.5 μM As(III) exhibited elevated levels of 
DNA damage, micronuclei induction, telomere attrition and 
increased cell death [124]. This suggests that, in addition 
to inhibiting DNA repair, As(III) may itself induce DNA 
lesions that are repaired by PARP-1-dependent pathways.

The xeroderma pigmentosum complementation group A 
(XPA) protein, which contains the C4-type ZnF, is another 
As(III)-targeted DNA repair protein [111, 122]. XPA plays 
a central role in NER by coordinating the assembly of core 
NER factors at the site of DNA damage [125]. Initially, 
it was suggested that As(III) does not interfere with the 
binding of XPA to UV-irradiated oligonucleotides [126]. 
Another group reported that As(III) disrupts the binding of 
XPA to DNA oligomers crosslinked with mitomycin C only 
at very high concentrations (0.5–2 mM) [127]. Moreover, 
MMAs(III) was found to exhibit much higher affinity for the 
XPA ZnF compared to As(III) [128]. However, more recent 
reports demonstrated that As(III) at the concentrations of 
0.5–2 μM was able to decrease XPA binding to chromatin 
in human keratinocytes (HEKn cells) [122] and XPA and 
PARP-1 displayed similar affinities for As(III) [129].

Finally, As(III) can bind to the RING finger domain of 
E3 ubiquitin ligases, such as RNF20–RNF40, FANCL, and 
RAD18, leading to inhibition of DSB repair, DNA inter-
strand crosslink repair (ICR), and replication bypass of UV-
induced DNA lesions by translesion synthesis (TLS), respec-
tively [130–132]. This suggests that As(III) may interfere 
with the function of RING-type E3 ubiquitin ligases in the 
cell, possibly disrupting not only DNA repair pathways but 
also ubiquitin-dependent protein degradation. As(III) bind-
ing to ZnF proteins may also stimulate their degradation, 
as shown for the histone acetyltransferase TIP60 in human 
HEK293T cells treated with 2–5 μM As(III) [133] and the 
oncogenic PML-RARα fusion protein in APL cells at the 
therapeutic concentration of 1 μM [37]. Notably, TIP60 
activity is not only important for gene regulation but also 
for facilitating DSB repair by HR [134].

Less is known about the effect of Sb(III) on DNA repair. 
In A549 human lung adenocarcinoma cells, SbCl3 at sub-
cytotoxic and cytotoxic concentrations (0.25–0.5  mM) 
was shown to specifically inhibit the repair of ultraviolet 
C (UVC) radiation-induced cyclobutane pyrimidine dimers 
by NER. This was associated with reduced expression of 
the NER protein XPE and the displacement of Zn(II) from 
XPA, which resulted in decreased binding of XPA to chro-
matin [135]. In vitro, Sb(III) binds to a CCCH-type peptide 
with high affinity, but also to CCHC-type ZnF peptides [136, 
137]. Non-cytotoxic concentrations of Sb(III) (1–8 μM) have 
also been shown to trigger degradation of the RING finger 
PML-RARα oncoprotein in the APL cell line NB4 [138, 
139]. Thus, similar to As(III), Sb(III) may have the potential 
to inhibit C3H1 and C4-type ZnF proteins involved in DNA 
repair. In line with this notion, an early report demonstrated 

that high concentrations of Sb(III) (0.2–0.4 mM) signifi-
cantly inhibited DSB repair in Chinese hamster ovary cells 
(CHO-K1) [140].

More recently, it has been shown that non-cytotoxic 
concentration of Sb(III) (10 μM) also inhibited the repair 
of radiation-induced DSBs in human HeLa S3 cells in all 
phases of the cell cycle, suggesting that Sb(III) impairs DSB 
repair by both NHEJ and HR [91]. Importantly, Sb(III) did 
not interfere with the initial steps of DDR, but decreased the 
recruitment of the HR repair proteins BRCA1 and RAD51 to 
sites of DSBs [91]. BRCA1 is likely a direct target of Sb(III) 
due to the presence of a RING domain within BRCA1, 
and since As(III) has been reported to release Zn(II) from 
BRCA1 [132]. 0.2 mM Sb(III) also inhibited DSB repair 
in budding yeast by impairing NHEJ-dependent processes 
such as fusion of unprotected telomeres and re-joining of a 
linearized plasmid, and by negatively affecting the repair of 
phleomycin-induced DSBs [68].

The cytoskeleton as a target for arsenic 
and antimony cytotoxicity

It is well established that As(III) can cause aneuploidy, 
which is a driving force in many types of cancer [141, 142]. 
Early reports suggested that As(III) may induce chromo-
some missegregation by disrupting the mitotic spindle. 16 h 
exposure of mouse fibroblasts (Swiss 3T3 line) to high con-
centrations of As(III) (20 μM) resulted in morphological loss 
of microtubules [107], while low concentrations of As(III) 
(0.01–0.1 μM for 24 h) distorted the microtubules of the 
spindle apparatus and induced aneuploidy in human lym-
phocyte cultures [143–145]. As(III) also inhibited guano-
sine triphosphate (GTP)-induced polymerization of tubulin 
at 1 mM, while MMAs(III) and DMAs(III) caused inhibition 
at 10 μM, as demonstrated by the acellular tubulin assembly 
assay [146]. A more recent study reported that 20–40 μM 
As(III) inhibited the in vitro assembly of microtubules 
and a significant number of rat lung fibroblasts (RFL6 cell 
line) exposed to 10 μM As(III) for 24 h exhibited damage 
to spindle microtubules [147]. In mammalian cells, As(III) 
has been proposed to interfere with tubulin polymeriza-
tion and microtubule formation by binding to two vicinal 
cysteine residues (Cys12 and Cys213) within the β-tubulin 
monomer, thereby preventing GTP binding, which is indis-
pensable for the formation of tubulin polymers [145]. In 
contrast, G2 phase-enriched human fibroblasts exposed to 
5 μM As(III) for 24 h exhibited derangement of the spindle 
apparatus and chromosome loss, but no inhibition of spin-
dle formation was observed [148]. Similarly, another study 
found that disruption of mitosis by 5 μM As(III) in three 
human cell lines was not dependent on direct inhibition of 
tubulin polymerization but instead involved heat shock-like 
perturbation of centrosome function, resulting in centrosome 
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fragmentation, and multi-polar spindle and mitotic arrest 
[149]. In budding yeast, subtoxic concentrations of As(III) 
[150, 151] and Sb(III) [68] also distort the morphology of 
the microtubule cytoskeleton, likely by inhibiting the chap-
eronin TRiC/CCT complex required for tubulin folding but 
not by inhibiting tubulin polymerization [151]. However, it 
is important to emphasize that yeast tubulin lacks the Cys12 
residue, which was proposed to be targeted by As(III) in 
human tubulin. Perturbation of the spindle assembly check-
point (SAC) resulting in metaphase arrest bypass is another 
possible mechanism of As(III)-induced aneuploidy [141]. 
For example, arsenic-induced squamous cell carcinomas are 
characterized by increased expression of microRNA-186, 
which negatively modulates expression levels of SAC regu-
lators [152]. Moreover, human keratinocytes overexpress-
ing microRNA-186 exhibited increased levels of aneuploidy 
during chronic exposure to low concentrations of As(III) 
(100 nM for 8 weeks) [152, 153].

Like tubulin, actin has been identified as an As(III)-bind-
ing protein in human cells [145, 154]. As(III)-induced dis-
ruption of the actin cytoskeleton was demonstrated at 2.5 μM 
in mouse fibroblasts (Swiss 3T3 line) [143–145], 5 μM in 
human acute leukemia cells (HL-60 line) [155] and 10 μM in 
mouse endothelial cells (SVEC4-10 line) [156]. In budding 
yeast, both As(III) [150, 151] and Sb(III) [68] at subtoxic 
concentrations also triggered reorganization of the actin 
cytoskeleton. Similar to tubulin, it has been suggested that 
As(III) interferes with actin folding by inhibiting the chap-
eronin TRiC/CCT complex [151]. Interestingly, other stress 
conditions, including oxidative stress, cause similar rear-
rangements of the actin cytoskeleton that may result from 
the formation of an intramolecular disulfide bond between 
conserved Cys374 and Cys285 residues or an intermolecular 
disulfide bond with Cys374 of another actin molecule [157, 
158]. Importantly, the yeast act1-Cys285A,C374A mutant 
failed to reorganize the actin cytoskeleton in response to 
acute oxidative stress and exhibited increased sensitivity 
to oxidative stress [157]. This suggests that stress-induced 
rearrangement of the actin cytoskeleton may serve as an 
adaptive/protective stress response. Indeed, in yeast cells, 
As(III)-induced depolarization of the actin cytoskeleton was 
transient, followed by a recovery of the polar actin distribu-
tion accompanied by resumption of growth [150, 151]. The 
phenotype of yeast cells expressing the mutant actin lacking 
Cys285 and Cys374 in the presence of As(III) and Sb(III) 
has not been reported.

There is increasing evidence pointing to an important 
contribution of nuclear actin filaments in DSB repair by 
modulating chromosome movements and clustering of repair 
sites [159]. On the other hand, the interphase cytoplasmic 
microtubule network participates in trafficking of DNA 
repair factors to the nucleus [160] and facilitates DNA repair 
by promoting changes in nuclear morphology and chromatin 

organization as well as mobility of DNA lesions in mam-
malian cells [161]. Whether As(III) and Sb(III) exert their 
negative effects on DNA repair by disrupting nuclear actin 
filaments or interphase cytoplasmic microtubules, remains 
to be investigated both in yeast and human cells.

In conclusion, both As(III) and Sb(III) appear to exhibit 
similar complex and indirect genotoxicity mechanisms, 
including replication-associated DNA damage mediated 
by oxidative stress and DNA–protein crosslinks as well as 
telomere dysfunction, which are exacerbated by metalloid-
induced inhibition of key DNA repair pathways. Moreover, 
recent data obtained in a yeast model suggest that As(III) 
and Sb(III) may also have the ability to damage DNA inde-
pendently of oxidative stress, replication or DNA–protein 
adducts. Although genotoxicity of As(III) at cytotoxic 
concentrations is evident in in vitro studies and in exposed 
humans, less is certain with regards to how As(III) contrib-
utes to carcinogenesis during long-term exposure to environ-
mental relevant concentrations. As(III)-induced aneuploidy, 
which is also observed at low concentrations of As(III), may 
be another driving force of As(III)-induced genomic insta-
bility and also proteome imbalance. Low doses of As(III) 
inhibit expression and activity of key proteins involved 
in genome maintenance and cell cycle regulation, such as 
PARP-1 [111, 114–116] and p53 [162, 163]. In addition, 
different cell types or ages may vary in their telomere length, 
as well as their antioxidant, DNA repair, arsenic methylation 
and detoxification capacities, which may greatly influence 
susceptibility to As(III)-induced malignant transformation. 
Given the strong co-carcinogenic properties of As(III) and 
environmental pollution, co-exposure to other toxic metal-
loids and heavy metals, such as antimony and cadmium, and 
other pollutants, is also expected to promote carcinogenesis. 
Finally, it has recently been revealed that As(III) exhibits 
immunotoxic and immunosuppressive effects [164]. Some of 
these mechanisms may also be relevant for Sb(III), but both 
the genotoxic and carcinogenic properties of this metalloid 
require further extensive research.

How arsenic causes proteotoxicity

Proteotoxic stress has emerged as an important contributor 
to the toxicity of arsenic. Traditionally, As(III) toxicity has 
been attributed to its interactions with sulfhydryl groups in 
folded native proteins, altering their function, regulation, and 
interactions [33, 36]. Recent studies revealed an additional 
mode of toxic action in which As(III) targets non-native 
proteins, thereby impairing their proper folding. Specifi-
cally, As(III) was shown to interfere with the refolding of 
chemically denatured proteins in vitro, with protein folding 
in vivo, and to cause misfolding and aggregation of nascent 
proteins in living cells.
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Protein folding and quality control is crucial for cell 
physiology and survival. To perform their biological func-
tion, most proteins must first adopt their native conforma-
tion, i.e., their folded three-dimensional structure. Protein 
folding takes place on the ribosome during translation, in 
the cytoplasm after ribosomal release, or in organelles such 
as the endoplasmic reticulum and mitochondria. If the cor-
rect native fold is not attained or lost, proteins can misfold 
and aggregate. Protein misfolding can occur due to muta-
tions, external stress conditions, errors during transcription 
and translation, and during cellular aging [165, 166]. Pro-
tein misfolding and aggregation is detrimental for cells and 
organisms and is a feature of many human diseases includ-
ing metabolic, oncological, and neurodegenerative disorders 
[167]. To ensure a functional proteome (protein homeostasis 
or proteostasis), cells use protein quality-control (PQC) sys-
tems (Fig. 2) that encompass (a) molecular chaperones that 
assist in the folding of proteins into their native conforma-
tion and in the disaggregation, refolding, sequestration, and 
degradation of non-native proteins; and (b) protein degrada-
tion systems such as the ubiquitin–proteasome system (UPS) 
and autophagy-lysosome pathway that eliminate misfolded 
and aggregated proteins [166, 168–170].

This section will highlight how protein aggregates are 
formed during As(III) stress, how these aggregates cause 
toxicity, and how cells maintain a healthy proteome during 
As(III) exposure. Most of the studies on metalloid-induced 
proteotoxicity described below have been performed in vitro 
and in model systems, primarily budding yeast and various 
human cell lines, whilst mechanistic studies in native cells 
and tissues are scarce.

Misfolding and aggregation of nascent 
and non‑native proteins is the prime mechanism 
of arsenite‑induced proteotoxicity

A number of in vitro studies demonstrated that As(III) dis-
rupts protein folding at µM concentrations. Initial studies 
indicated that the binding of As(III) to cysteine-containing 
model peptides perturbed their structures [171, 172]. Fol-
low-up studies showed that As(III) inhibits oxidative refold-
ing of certain disulfide-containing proteins (lysozyme, ribo-
nuclease, riboflavin-binding protein) by binding to cysteine 
residues within the reduced and unfolded proteins [173, 
174]. As(III) also interfered with spontaneous refolding of 
chemically denatured luciferase that possesses four cysteine 
residues but no disulfide bridge. Chaperone-mediated refold-
ing of luciferase was also inhibited by As(III), but its impact 
was greater on the substrate than on the chaperone system 
[175]. Importantly, the defect in chaperone-mediated refold-
ing of green fluorescent protein was abrogated in a cysteine-
free version of the substrate protein [176], providing strong 
evidence that As(III) directly modifies cysteine residues 

in non-native target proteins. Together, these in vitro stud-
ies established that As(III) can inhibit the formation of the 
native protein fold by forming complexes with cysteine side 
chains (Fig. 2A).

As(III) has a strong impact on protein folding also 
in vivo. Studies in S. cerevisiae demonstrated that As(III) 
at concentrations ranging from 100 µM (subcytotoxic) to 
1.5 mM (cytotoxic) provokes misfolding and aggregation 
of hundreds of cytosolic proteins and that aggregation is 
concentration-dependent [175–178]. Intracellular As(III) 
appears to be the culprit since overexpression of an As(III) 
export protein not only decreased intracellular arsenic con-
centrations but also protein aggregation levels [175]. Simi-
larly, loss of yeast proteins that either restrict or enhance 
cytosolic arsenic concentrations is accompanied by reduced 
or increased protein aggregation levels, respectively, during 
As(III) stress [178].

What proteins are targeted by As(III) for misfolding and 
aggregation? Several observations indicate that As(III) pri-
marily targets nascent or non-native proteins for misfolding 
and aggregation (Fig. 2A). In vitro experiments showed that 
As(III) has a modest impact on the activity of native lucif-
erase whereas spontaneous and chaperone-mediated lucif-
erase refolding were strongly inhibited [175]. In vivo experi-
ments in yeast cells revealed that newly synthesized proteins 
aggregated during As(III) stress, and that As(III)-induced 
protein aggregation at concentrations of 100–500 µM was 
supressed when protein biosynthesis was inhibited, either 
chemically using a translation inhibitor [175] or genetically 
by deleting genes encoding proteins with functions in cyto-
solic translation [178, 179]. Proteomic studies further indi-
cated that yeast proteins that are susceptible for aggregation 
during exposure to 1.5 mM As(III) have high translation 
rates and are substrates of ribosome-associated Hsp70 chap-
erones [175, 177, 180] while they appear relatively stable in 
their native (folded) state [177]. Collectively, these findings 
indicate that As(III) primarily impairs folding of nascent 
proteins rather than inducing large-scale unfolding of native 
proteins.

In addition to acting on non-native proteins, As(III) may 
also impair chaperone-assisted protein folding and disag-
gregation (Fig. 2A). In vitro experiments with the Hsp70 
chaperone system of Escherichia coli (DnaK, DnaJ, GrpE) 
showed that As(III) interferes with chaperone-assisted 
refolding of denatured and heat-aggregated luciferase, even 
though the main impact of As(III) was on the substrate rather 
than on the chaperone system [175]. As(III) also inhibits 
substrate folding by the bovine and archaeal chaperonin 
TRiC/CCT in vitro [151]. As(III) was shown to bind to indi-
vidual members of the human TRiC/CCT complex using a 
human proteome microarray [181] as well as to actin and 
tubulin in human lymphoblastoid cells and human breast 
cancer cells [145, 154] that are major TRiC/CCT substrates. 
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Fig. 2   How arsenite causes proteotoxicity. A As(III) may bind to free 
thiols or other functional groups in nascent and non-native proteins, 
thereby preventing their folding into the native conformation, promot-
ing protein misfolding and aggregation. As(III) may also impair chap-
erone-mediated folding and disaggregation by binding to the substrate 
protein, to molecular chaperones, and by modifying the structure of 
the aggregate. B The protein aggregates formed during As(III) expo-

sure may contribute to toxicity by provoking aberrant protein–pro-
tein interactions, by sequestering chaperones, and by increasing the 
misfolding of other proteins that have not encountered the metalloid. 
Additionally, As(III) can affect aggregate structure such that process-
ing by chaperones and possibly other PQC factors is impaired. The 
figure was created with BioRender.com
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Thus, it is not clear whether As(III) primarily affects TRiC/
CCT activity or the folding substrate. Interestingly, the puri-
fied yeast Hsp70 and bichaperone Hsp70–Hsp104 systems 
were inhibited by As(III) to similar degrees as the bacterial 
Hsp70 system [175, 176]. However, instead of inhibiting the 
yeast chaperones, As(III) impaired protein disaggregation 
by modifying the structure of the aggregates, thereby pre-
venting efficient binding of the chaperones to the aggregate 
[176]. One way As(III) could affect aggregate structure is by 
acting as an intermolecular crosslinker between two or three 
polypeptide chains leading to the formation of heterodimers 
and trimers [32, 36, 176]. Possibly, the observed changes of 
aggregate properties in the presence of As(III) [176] may not 
only reduce chaperone binding but might also affect aggre-
gate processing by other PQC systems.

Experimental data support the notion that folding inhibi-
tion is an important contributor to the toxicity of As(III) that 
acts in parallel with other toxicity mechanisms. A genome-
wide screen found a strong correlation between yeast mutants 
with enhanced protein aggregation levels and As(III) sensi-
tivity, and between mutants with reduced aggregation levels 
and As(III) resistance [178]. Likewise, several studies in 
different model systems, including yeast (500 µM–1.5 mM), 
worm (Caenorhabditis elegans) (1.5–4.5 mM) and various 
mammalian cell lines (10–100 µM), indicated that maintain-
ing proteostasis is crucial for cell survival and proliferation 
during As(III) exposure [175, 176, 178, 179, 182–187]. How 
aggregates formed during As(III) stress affect cell viability 
is not well understood. Protein aggregates can cause toxic-
ity through multiple mechanisms. For example, aggregation 
could result in loss-of-function of individual proteins with 
protective or detoxification functions. Aggregation could 
also create a toxic gain-of-function where aggregated pro-
teins damage membrane lipids, interact inappropriately with 
proteins and RNA, and sequester molecular chaperones and 
PQC factors [166]. Most likely, several mechanisms contrib-
ute to the toxicity caused by the aggregates formed during 
As(III) stress (Fig. 2B): (a) proteins that aggregate during 
As(III) stress are enriched for proteins with many interac-
tion partners, suggesting that misfolded forms of these pro-
teins could be involved in aberrant interactions [177]; (b) 
multiple chaperones associate with the aggregated proteins 
[175, 177], suggesting that chaperones may be sequestered 
away from the active pool of cytosolic PQC factors during 
As(III) stress; (c) in vitro experiments suggest that As(III)-
aggregated protein seeds can drive misfolding and aggrega-
tion of other proteins that have not encountered the metalloid 
[175]; (d) aggregate size and structure may influence their 
seeding capacity and toxicity [166], and As(III) has been 
shown to modify the structure of aggregated model proteins 
[176, 188]. It will be important to elucidate the structure and 
properties of aggregates formed in the presence of As(III) to 
better understand their in vivo toxicity.

How does As(III) inhibit the folding of non-native pro-
teins in vivo? On the molecular level, As(III) probably acts 
on not-yet folded segments of the polypeptide chain emerg-
ing from the ribosome during protein synthesis, preventing 
the formation of the native protein conformation. As(III) can 
bind to one, two or three thiol groups of cysteine residues 
with unidentate binding being weak whereas tridentate bind-
ing is highly stable [36]. Formation of stable pluridentate 
complexes between As(III) and exposed side chains is more 
likely to occur during the folding process when the protein 
backbone is flexible, and their formation prevents the protein 
from adopting its native conformation, promoting its mis-
folding and aggregation. In contrast, side chains are more 
likely to be fixed or buried inside the folded native protein, 
implying that formation of pluridentate complexes would 
require partial protein unfolding. We anticipate that As(III) 
affects folding of most nascent and non-native cellular pro-
teins, and its impact on folding is likely influenced by the 
concentrations of both As(III) and the target proteins, the 
amino acid sequence of the target protein, the content and 
arrangement of thiol groups in side chains, the folding path-
way, the rate of synthesis and folding, the structure of fold-
ing intermediates, and the efficacy of As(III) detoxification 
and PQC systems. While As(III) primarily targets cysteine-
containing non-native proteins for aggregation, aggregation 
might also involve intermolecular hydrophobic interactions 
between As(III)-misfolded proteins and proteins that have 
not encountered the metalloid [32]. The observations that 
As(III)-aggregated proteins are enriched in multiple pro-
tein–protein interactions [177] and have seeding capacity 
[175], support this notion.

Additional ways arsenic could affect proteostasis and 
induce proteotoxicity include depletion of cellular ATP. In 
yeast, this mechanism appears unlikely for As(III), since 
As(III) concentrations that results in widespread protein 
aggregation in vivo (500 µM) had a negligible effect on 
intracellular ATP concentrations [176]. However, since 
ATP depletion can affect proteostasis [189], it is possible 
that As(V) could induce protein aggregation through dis-
ruption of ATP generation, although this remains to be 
demonstrated. Errors during transcription and translation 
may also lead to protein misfolding and aggregation [190, 
191]. However, in budding yeast, 500 µM As(III) did neither 
induce errors during transcription [178], nor did it enhance 
mRNA mistranslation [175]. Finally, As(III) could affect 
proteostasis not only by stimulating the formation of pro-
tein aggregates, but also by interfering with their clearance 
through degradation. Studies in various mammalian cell 
lines showed that low As(III) concentrations (0.25–2 µM) 
can inhibit autophagic flux by blocking the autophagosome-
lysosome fusion step through inhibition of SNARE complex 
formation [192, 193]. Whether this inhibition leads to the 
build-up of aggregates remains to be demonstrated. As(III) 
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can bind to E3 ubiquitin ligases with RING finger domains 
[33, 194] and some studies using NIH3T3 and HEK293 
cells suggested that arsenic (50–250 µM As(V), 1–10 µM 
As(III)) may inhibit the UPS [195, 196]. However, direct 
measurements of proteasomal activity revealed that, in fact, 
it increases in As(III)-exposed yeast (500 µM) and HeLa 
(25 µM) cells [175, 185, 197]. Nevertheless, it cannot be 
excluded that changes of aggregate structure by As(III) [176, 
188] could affect aggregate processing and degradation.

Taken together, the impact of As(III) on non-native pro-
teins, on chaperone machineries, and on aggregate structure 
and processing is expected to result in substantial protein 
misfolding and aggregation in cells, placing a heavy burden 
on the PQC systems.

Do other metals and metalloids 
including antimonite disrupt protein folding 
in cells?

We predict that many more metals and metalloids have the 
potential to disrupt protein folding processes in living organ-
isms [32]. Indeed, like As(III), cadmium [Cd(II)] induces 
misfolding and aggregation of nascent and non-native pro-
teins in vivo. Interestingly, Zn(II) mitigated Cd(II)-induced 
protein aggregation in yeast cells [198], suggesting that 
Zn(II) may be substituted by Cd(II) while the nascent poly-
peptide chain undergoes the folding process [198, 199]. In 
contrast, Zn(II) did not alleviate As(III)-induced protein 
aggregation in yeast cells [198] even though As(III) can 
bind to ZnF motifs [37, 111]. Copper [Cu(I)] was shown 
to cause widespread protein aggregation in E. coli, prob-
ably by targeting cysteine- and histidine-containing proteins 
[200]. Whether Cu(I) primarily targets native or non-native 
proteins, remains to be determined. In case of chromium 
[Cr(VI)], protein aggregation in budding yeast is caused by 
enhanced mRNA mistranslation [201], but the underlying 
mechanism remains unknown. In vitro studies showed that 
mercury [Hg(II)] and lead [Pb(II)] can interfere with the 
refolding of chemically denatured proteins [202], but their 
effects on protein folding in vivo is not known. As outlined 
above, Sb(III) has high affinity for thiols and its toxicity may, 
in part, be attributed to its capacity to bind to cysteine resi-
dues in proteins [15, 42, 43, 136, 137]. Thus, it is conceiv-
able that Sb(III) could disrupt protein folding in cells. A few 
studies suggest that Sb(III) might induce proteotoxic stress 
in cells: the molecular chaperones HSP70 and HSC70 were 
shown to confer Sb(III) tolerance to the protozoan parasite 
Leishmania [203] and work in yeast implicated the UPS in 
the protection from Sb(III) toxicity [182]. An in vitro study 
showed that Sb(III) can interact with and induce conforma-
tional changes in bovine serum albumin and to promote its 
partial aggregation [204]. Finally, antimony trioxide at high 
concentrations (400 µM–2.8 mM) induced transcription of 

genes encoding molecular chaperones as well as UPS- and 
autophagy-related genes in Daphnia magna [205]. Never-
theless, direct evidence that Sb(III) affects protein folding is 
currently lacking, which calls for more research in this area.

Arsenite induces the formation of biomolecular 
condensates

As described above, As(III) can induce the formation of pro-
tein aggregates that are largely insoluble assemblies of mis-
folded proteins with aberrant and non-native conformations. 
Additionally, As(III) has been implicated in the formation 
of certain biomolecular condensates that are membrane-
less assemblies of proteins and nucleic acids. In contrast 
to aggregates, biomolecular condensates are characterized 
by weak, dynamic and multivalent interactions, are often 
formed via liquid–liquid phase separation, and carry out spe-
cialized functions in eukaryotic cells during physiological 
and stress conditions [206, 207]. Examples of condensates 
and their functions include stress granules (mRNA stor-
age transcriptional regulation), processing bodies (mRNA 
decay and silencing), promyelocytic leukemia nuclear bod-
ies (apoptotic signaling, anti-viral defence, DNA repair and 
transcription regulation), actin patches (endocytosis), het-
erochromatin (gene regulation), and nucleolus (ribosomal 
synthesis). Protein condensation and aggregation appear 
to be interlinked: (a) some condensates can transition from 
liquid-like states into more solid-like states when misfolded 
proteins associate with the condensates, (b) the cellular PQC 
machinery is implicated in the regulation of condensate for-
mation, dissolution and dynamics, (c) a decline in PQC may 
contribute to the formation of aberrant, disease-causing con-
densates, and (d) there is evidence that certain condensates 
can serve as PQC compartments themselves [206, 208].

High concentrations of As(III) stimulates the formation 
of stress granules (SGs) and processing bodies (PBs) [209, 
210] that are dynamic and reversible biomolecular con-
densates involved in mRNA storage and processing, and 
in transcriptional regulation [211]. Formation of SGs cor-
relate with As(III)-induced translation repression through 
phosphorylation of the key translation initiation factor eIF2α 
[209, 212] and SG formation is important for stress adapta-
tion [206, 211]. In contrast, PB formation does not involve 
eIF2α phosphorylation [209]. Work in S. cerevisiae suggests 
that the protein aggregates formed during As(III) stress are 
largely distinct from PBs and SGs as their localization and 
protein composition appear to differ to a large extent [175, 
178]. Nevertheless, the PQC machinery is not only impli-
cated in the processing of misfolded proteins but also in the 
regulation of SG and PB formation and dissolution, indicat-
ing cross-talk between these structures [206, 213].

Promyelocytic leukemia nuclear bodies (PML-NBs) 
are membraneless structures inside the nucleus involved in 
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multiple genome maintenance pathways including the DNA 
damage response, DNA repair, telomere homeostasis, and 
p53-associated apoptosis [214]. The PML protein is the key 
driver of the formation of PML-NBs. The PML protein is 
also involved in the pathogenesis of APL and, as outlined 
above, arsenic trioxide can cure APL by binding to cysteine 
residues in the PML-RARα fusion protein inducing its oli-
gomerization and subsequent degradation [37, 38]. Inter-
estingly, As(III) stimulates PML-NB formation followed 
by PML degradation upon extended exposure in non-APL 
(HeLa) cells [215]. Additionally, PML-NBs have been pro-
posed to have a function in nuclear protein homeostasis: 
upon proteotoxic stress, PML-NBs compartmentalize defec-
tive proteins and recruit chaperones and proteasomes to pro-
mote efficient degradation [216]. It is tempting to speculate 
that PML-NBs constitute a nuclear PQC compartment also 
during As(III) stress. In such a scenario, PML might act as 
an As(III) sensor that stimulates NB formation followed by 
recruitment of misfolded proteins and PQC components to 
restore proteostasis.

Other examples of condensates where misfolded proteins 
are stored, refolded or degraded during cellular stress condi-
tions include the insoluble protein deposit (IPOD) and the 
juxtanuclear protein quality control (JUNQ) compartment 
[169, 206]. If and how As(III)-misfolded are partitioned into 
specific subcellular sites remains to be explored.

Recent studies indicate that DSB repair involves con-
densate formation [217]. Induction of DSBs triggers a 
local accumulation of DNA damage signaling and DNA 
repair proteins, called DDR foci, at sites of DNA breaks. 
Proper assembly and disassembly of DDR foci is crucial for 
rapid and efficient DNA repair coordinated with cell cycle 
arrest followed by recovery. Several DDR proteins have 
been shown to exhibit features of phase separation and to 
form condensates, such as the HR factor Rad52 in S. cer-
evisiae [218, 219] and the DNA damage signaling protein 
and DNA repair pathway choice regulator 53BP1 [220, 
221] in human cells. It is believed that condensate forma-
tion may facilitate tethering of DNA molecules and control 
the recruitment and accumulation of DNA repair proteins 
at sites of DSBs or exclusion of other proteins [222]. For 
example, Rad52 condensates mediate nucleation of DNA 
damage-inducible intranuclear microtubule filaments, which 
facilitate Rad52 condensate fusion resulting in clustering 
of DSBs at the nuclear periphery for repair [218]. Inter-
estingly, proteins condensates have also been implicated in 
polymerization, organization and dynamics of both tubulin 
and actin cytoskeleton [223–225]. 53BP1 condensates act as 
a scaffold for the tumor suppressor protein p53, promoting 
its activation, thereby inducing changes in transcription of 
p53-targeted genes and checkpoint activation in response to 
DNA damage [220]. On the other hand, 53BP1 is excluded 
from the PAR-seeded condensates of the low complexity 

domain-containing FET proteins (FUS, EWS, TAF15) [226]. 
FET condensates are an early but transient event at DNA 
damage sites and can therefore control the spatiotempo-
ral assembly and disassembly of DDR proteins. A recent 
in vitro study demonstrated that telomeres also undergo a 
phase separation-driven compartmentalization that regulates 
the access of telomere-associated and DNA repair proteins 
to chromosome ends [227]. Considering the observed nega-
tive effects of As(III) and Sb(III) on DSB repair, PARP-
1-mediated PAR synthesis, cytoskeleton morphology and 
telomere stability, it is tempting to speculate that the mecha-
nisms of metalloid toxicity may also involve disruption of 
biomolecular condensate-driven cellular processes by inter-
fering with post-translation modifications and/or folding of 
proteins involved in condensate formation.

Regulation of eukaryotic gene expression has been shown 
to involve condensate formation of gene-specific transcrip-
tion factors with coactivator and RNA polymerase II com-
plexes [228–230]. Whether metalloids promote condensate 
formation of specific transcription factors involved in detoxi-
fication and defence remains unknown.

To conclude, recent studies established that the prime 
mechanism of As(III)-induced proteotoxicity is governed by 
interactions between As(III) and exposed cysteine residues 
in nascent or non-native proteins. This interaction obstructs 
the formation of the native protein conformation and pro-
motes protein misfolding and aggregation. Additionally, 
As(III) may potentially regulate or disrupt formation of bio-
molecular condensates as a toxicity or defence mechanism. 
Due to the importance of biomolecular condensates in health 
and disease, future research efforts should be directed toward 
the elucidation of how arsenic, antimony and other metals 
affect condensate biogenesis.

Mechanisms that protect cells 
from metalloid‑induced protein misfolding 
and aggregation

Cells rely on two main strategies to maintain a functional 
proteome during As(III) exposure. The first strategy relies on 
damage prevention. Cells can protect nascent proteins from 
harmful arsenic interactions by limiting intracellular arsenic 
concentrations. Yeast cells respond to As(III) by regulating 
influx, efflux, and sequestration systems [46, 51, 231–234], 
and this response is important to safeguard proteostasis: 
yeast cells capable of restricting cytosolic arsenic concentra-
tions show reduced protein aggregation levels whilst a fail-
ure in limiting cytosolic arsenic is accompanied by enhanced 
protein aggregation [178]. Regulation of certain arsenic 
influx and efflux systems involves the transcription factor 
Yap8 and the MAP kinase Hog1 that act as direct sensors of 
intracellular As(III) [39, 41, 51]. Thus, these proteins couple 
arsenic-binding to improved proteostasis and cell survival. 
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Intracellular As(III) chelation by GSH also protects cells 
from extensive protein aggregation, probably by lowering 
the cytosolic concentration of ‘free’ As(III) that can interfere 
with protein folding processes [233].

Another way of preventing or reducing aggregate forma-
tion is to repress translation. A number of studies in yeast 
(500 µM–1.5 mM) and human cell lines (10–150 µM) dem-
onstrated that As(III)-exposed cells repress global protein 
biosynthesis, probably as a result of increased phosphoryla-
tion of the translation initiation factor eIF2α and subsequent 
inhibition of translation initiation [178, 179, 183, 187, 235, 
236]. Additionally, studies in yeast cells showed that expres-
sion of genes encoding aggregation-prone proteins [177] 
and of protein biosynthesis–related genes [183, 234, 237] 
were repressed in response to As(III) exposure. Translation 
repression is crucial for maintaining proteostasis during 
As(III) stress, since yeast mutants with low global translation 
activity as well as mutants with improved translation repres-
sion efficiency are less susceptible for As(III)-induced pro-
tein aggregation and toxicity [178, 179]. Conversely, yeast 
mutants that are defective in translation repression show 
enhanced protein aggregation levels and As(III) sensitivity 
[178]. The importance of translation control during As(III) 
stress is further emphasized by the observation that deletion 
of yeast genes encoding functions in protein biosynthesis 
leads to reduced protein aggregation and As(III) resistance 
[151, 178, 179, 183]. Together, these studies establish that 
an accurate control of protein synthesis is of central impor-
tance to ensure proteostasis and cell viability during As(III) 
stress, probably by lowering the influx of misfolded pro-
teins into the proteome. Little is known about the sensing 
and signaling mechanisms that regulate translation during 
As(III) stress, although the heme-regulated inhibitor kinase 
(HRI) in mouse cells [187] and the TORC1 (TOR complex 
1) protein kinase in yeast [238] have been implicated.

The second strategy relies on damage elimination. Stud-
ies in various cell types and model organisms have shown 
that expression of genes encoding functions in protein 
folding and degradation is induced in response to As(III) 
(concentrations ranging from 0.5 to 50 µM for mammalian 
cells; 0.5–1.5 mM in yeast) [46, 175, 185, 196, 234, 237, 
239–242]. Expression of genes related to ATP production 
is also induced by As(III) [234, 237], and yeast cells ensure 
that sufficient ATP is available for their protein folding and 
degradation needs [176]. Protein aggregates formed during 
As(III) stress are preferentially degraded through the UPS 
(Fig. 2A). Studies in budding yeast showed that the aggre-
gates are tagged with K48-linked ubiquitin chains [176, 179] 
and that cells increase the amount of proteasomal compo-
nents as well as proteasomal activity during As(III) stress 
[175, 183, 234, 237]. Inhibition of proteasomal activity by 
genetic or chemical means impairs the clearance of aggre-
gates [175, 176, 178] and sensitizes yeast cells to As(III) 

[175, 176, 182, 183]. Similarly, mouse fibroblasts and HeLa 
cells exposed to 25 µM As(III) accumulate K48-linked ubiq-
uitin conjugates and increase proteasomal activity [185, 
197]. Interestingly, inhibition of protein ubiquitination abro-
gates As(III)- and heat-induced stimulation of proteasomal 
activity in HeLa cells, suggesting that proteasomal activation 
may be signaled by the build-up of ubiquitinated proteins in 
the cells [197]. Studies in mouse cells and C. elegans indi-
cated that proteasomes may adapt to As(III) stress via the 
arsenite-inducible RNA-associated protein (AIRAP), that is 
induced by As(III) and associates with proteasomes to regu-
late their degradative capacity [185]. Yeast cells also possess 
As(III)-inducible components of the proteasome including 
Cuz1 (ZFAND1 in mammalian cells) and Tmc1 (an AIRAP 
orthologue). Yeast Cuz1 and mammalian ZFAND1 interact 
with the proteasome and with Cdc48 (p97 in mammalian 
cells), an ATPase that delivers proteins to the proteasome 
for degradation, while Tmc1 and AIRAP associate with the 
proteasome’s 19S cap [182, 243, 244]. Loss of either Cuz1 
or Tmc1 sensitizes yeast cells to As(III) and Sb(III) [182]. 
Similarly, loss of AIRAP sensitizes worms to As(III) [184]. 
Whether cells lacking these regulators accumulate protein 
aggregates during As(III) stress remains to be determined. 
Moreover, it is currently not known how these proteins 
regulate proteasomal activity during As(III) stress or if and 
why they are specifically required during proteotoxic stress 
caused by As(III). One possibility is that changes in aggre-
gate structure inflicted by As(III) [176, 188] necessitates an 
adaptation of the proteasome for efficient substrate degrada-
tion. In addition to K48-linked chains, the aggregates formed 
during As(III) stress are also tagged with K63-linked chains 
[179]. K63-linked chains have primarily been associated 
with proteasome-independent processes such as DNA repair, 
endocytosis and selective autophagy [245, 246] but have 
recently been shown to play a role in proteasome-depend-
ent substrate degradation when forming branched K48/
K63 chains [247, 248]. Since branched ubiquitin chains are 
stronger degradation signals than unbranched chains [247, 
248], the presence of both K48- and K63-linked chains on 
As(III) aggregated proteins raises the possibility that these 
aggregates may be difficult substrates for the proteasomes. 
Nevertheless, whether the K48 and K63 chains assembled 
on As(III)-aggregated proteins are homotypic or heterotypic 
branched K48/K63 chains remains to be demonstrated. Simi-
larly, the ubiquitin ligases that mark the proteins that mis-
fold during As(III) stress with K48 and K63-linked chains, 
remain to identified.

In addition to the UPS, the autophagy–lysosome pathway 
also contributes to aggregate clearance and As(III) resistance 
(Fig. 2A). Autophagy is activated in yeast (0.5–1.5 mM) 
and human bronchial epithelial cells (0.25 µM) exposed 
to As(III) [183, 249] and several yeast mutants lacking 
autophagy–lysosome pathway components have increased 
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levels of protein aggregates during As(III) stress [176, 178]. 
While these findings implicate autophagy in the clearance of 
As(III)-induced aggregates, autophagy appears less promi-
nent than the UPS [176, 183]. The weaker contribution of 
autophagy to aggregate clearance might be due that fact that 
As(III) can inhibit autophagic flux [192, 193] or that the 
two pathways recognize distinct subsets of misfolded and 
aggregated substrates.

The cellular concentration of molecular chaperones 
increases in response to As(III). Molecular chaperones 
are implicated in the folding, sorting, disaggregation, and 
degradation of proteins [166, 168, 169] implying that their 
upregulation is important to meet an increased protein fold-
ing, sorting, and/or degradation demand. Several chaper-
ones co-sediment with aggregated proteins during As(III) 
stress in vivo [175], suggesting that they are engaged in the 
disaggregation, refolding or degradation of substrate pro-
teins. Alternatively, these chaperone interactions might be 
important to prevent As(III)-misfolded proteins from erro-
neous interactions with other proteins. Chaperone-mediated 
disaggregation has been implicated in aggregate clearance: 
deletion or chemical inhibition of the yeast disaggregase 
Hsp104, its cytosolic co-chaperones Ydj1 (Hsp40) or Ssa1 
and Ssa2 (Hsp70) delayed the clearance of protein aggre-
gates formed during As(III) stress [176]. The fate of the pro-
teins recovered from the aggregates is, however, not entirely 
clear. Heat-aggregated proteins are preferentially refolded 
rather than degraded in yeast [250] and thermotolerance is 
strongly dependent on Hsp104 [251]. In contrast, yeast cells 
lacking Hsp104 are not sensitive to As(III) at concentrations 
that provoke protein misfolding and aggregation [176, 252]. 
The observation that aggregates formed in the presence of 
As(III) are poor substrates for chaperone binding [176] 
might explain why Hsp104 is largely dispensable for growth 
and survival during As(III) stress. Moreover, overexpression 
of Hsp104 sensitizes yeast cells to As(III) [176], possibly 
due to high unfolding activity [253] and subsequent build-
up of misfolded proteins [176]. These observations suggest 
that the prime fate of As(III)-misfolded proteins might be 
their degradation rather than refolding. Indeed, yeast Ydj1 
and Ssa1/Ssa2 are not only involved in protein folding 
but also in protein turnover, keeping misfolded substrates 
soluble until they are ubiquitinated by ubiquitin ligases for 
subsequent degradation [254–257]. The GimC/prefoldin 
chaperone complex is also implicated in aggregate clear-
ance during As(III) stress in yeast [179]. Similar to Hsp40 
and Hsp70, GimC/prefoldin is primarily involved in nascent 
protein folding [258] but has also been implicated in protein 
turnover, facilitating degradation by maintaining substrate 
solubility [259]. Thus, molecular chaperones may be impor-
tant to keep As(III)-misfolded proteins soluble, promoting 
their ubiquitination and degradation. Molecular chaperones 
may also direct misfolded proteins to specific subcellular 

sites, such as the IPOD and JUNQ, as a means to protect the 
intracellular environment [166, 169, 260–263]. Whether the 
aggregates formed during As(III) stress are sequestered to 
specific sites within the cell remains unknown.

Metalloid‑induced genotoxicity 
and proteotoxicity: a double‑edged sword 
targeting neurodegeneration

A common denominator of many age-related and neurode-
generative diseases is the dysfunction of proteostasis and the 
pathological accumulation of protein aggregates. Proteins 
that adopt non-native conformations in neurodegenerative 
diseases include amyloid β (Aβ) and tau in Alzheimer’s dis-
ease (AD), α-synuclein (αSyn) in Parkinson’s disease (PD), 
TAR DNA binding protein 43 (TDP-43) and RNA/DNA-
binding protein fused in sarcoma (FUS) in amyotrophic lat-
eral sclerosis (ALS) and frontotemporal lobar degeneration 
(FTLD), and huntingtin (HTT) in Huntington disease (HD) 
[167, 264, 265]. Epidemiological studies have indicated an 
association between arsenic exposure and the prevalence of 
several neurodegenerative disorders, including AD and PD 
[13, 266–270]. However, the mechanisms by which arsenic 
contribute to these proteinopathies are poorly understood. 
Arsenic is a well-established neurotoxin that impairs cog-
nitive functions and memory, especially in children, dete-
riorates mental health, and causes peripheral neuropathy. 
Several of these effects have been replicated in rodent stud-
ies [271, 272]. At the molecular level, it is believed that 
the neurotoxic properties of As(III) mainly stem from mito-
chondrial dysfunction and oxidative stress-derived cellular 
damage, disruption of proteostasis, neuroinflammation and 
neuronal apoptosis [13, 268]. Arsenic (and perhaps also anti-
mony) can induce proteotoxicity and several yeast proteins 
that aggregate in As(III)-exposed cells have human or mouse 
orthologues that are implicated in proteinopathies and/or co-
aggregate with disease-associated proteins in AD, familial 
ALS or PD [177]. Thus, metalloid-induced and disease-asso-
ciated protein aggregation may have some shared features.

PD is characterized by the accumulation of αSyn aggre-
gates in the neurons of the substantia nigra pars compacta, 
leading to neuronal cell death and, consequently, neurode-
generation [273]. Studies in neuroblastoma cell lines, rats, 
and mice revealed a time-dependent accumulation and oli-
gomerization/aggregation of αSyn during exposure to low 
As(III) concentrations (0.03–0.3 µM) [274, 275]. Chronic 
exposure of mice to environmental relevant (0.65–6.5 μM) 
and high (65 μM) concentrations of As(III) in drinking water 
caused a dose-dependent increase in the phosphorylation of 
leucine-rich repeat kinase 2 (LRRK2) and αSyn in different 
brain regions [276]. Both LRRK2 and αSyn phosphoryla-
tion are implicated in PD, and phosphorylation is known to 
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modulate αSyn oligomerization and fibrilization, as well as 
the formation of Lewy bodies and neurotoxicity [277, 278]. 
Several metals can affect αSyn conformation upon binding 
[279–282] and in vitro data indicate that As(III) may be 
incorporated into and alter the structure of amyloid fibres 
formed by acetylated human αSyn [188]. The presence of 
As(III) also affects the intracellular distribution and clear-
ance of αSyn aggregates and aggravates αSyn toxicity in 
yeast cells [188]. Together, these observations suggest that 
A(III) may influence αSyn conformation, phosphorylation, 
regulation, and toxicity.

AD is characterized by insoluble deposits of various Aβ 
peptides, generated by cleavage of the β-amyloid precursor 
protein (APP), and of phosphorylated tau protein [283, 284]. 
Exposure to 5 μM As(III) and 10 μM DMAs(III) results in 
elevated APP levels in cholinergic cells. While DMAs(III) 
also increased Aβ formation, Aβ levels were unchanged or 
even reduced during As(III) stress [285]. However, when 
combined with Cd(II) and Pd(II), 5–50 μM As(III) greatly 
increased Aβ formation in rats, which was accompanied by 
cognitive impairments [286]. Additionally, formation of Aβ 
aggregates was stimulated by chronic exposure to As(III) 
(40 μM) in a mouse model of AD [287]. Together, these 
studies indicate that As(III) has the capacity to induce Aβ 
aggregation. As(III) has been shown to activate the tau 
kinases, such as GSK3, ERK1/2, JNK, and CDK5 in human 
neuroblastoma SH-SY5Y cells (5–10 μM) [287, 288] and in 
the rat brain (intraperitoneal injections of 2.5 mg/kg body 
weight for 28 days) [287–290] and consequently leading to 
hyperphosphorylation of several tau residues, which are also 
hyperphosphorylated under pathological conditions. As(III) 
(1–20 µM) also increased the formation of tau aggregates in 
human neuroblastoma SH-SY5Y cells at concentrations of 
5–10 μM [288], consistent with the view that tau hyperphos-
phorylation leads to the formation of oligomers and neurofi-
brils [291, 292]. Thus, As(III) may induce tau aggregation 
by affecting its phosphorylation state.

Not much is known about the neurotoxic potential of anti-
mony. Recent studies in mice revealed that Sb(III) exposure 
(10–40 mg/kg body weight) resulted in impaired learning 
and spatial memory [293] and neurotoxicity via ROS-medi-
ated autophagic death of neurons [294]. Interestingly, long-
term exposure of mice to Sb(III) (10–20 mg/kg body weight) 
triggered tau hyperphosphorylation and accumulation of tau 
and Aβ deposits [295]. Hence, Sb(III) exposure might be 
a risk factor for AD and other neurodegenerative diseases.

The above studies suggest that metalloids like As(III) 
and Sb(III) may contribute to proteinopathies by inducing 
misfolding and aggregation of specific disease-associated 
proteins such as αSyn, Aβ, and tau, by interacting with the 
protein, by inducing post-translational modifications such 
as phosphorylation, and/or via other mechanisms such as 
induction of oxidative stress (Fig. 3). Moreover, the strong 

impact of As(III), and perhaps also Sb(III), on global pro-
tein misfolding that propels extensive protein aggregation in 
cells, may also play a part in the initiation or progression of 
degenerative diseases. These effects are likely more severe 
with increasing age when the efficacy of the PQC systems 
decline.

It is important to note that beside pathological protein 
aggregation and aberrant proteostasis, neurodegenerative 
disease can arise due to several other mechanisms includ-
ing DNA and RNA defects, neuronal cell death, synaptic 
and neuronal network defects, cytoskeletal abnormalities, 
and altered energy homeostasis [265]. In recent years, it has 
become increasingly clear that genome instability is another 
important contributor to neurodegenerative disorders [296] 
as well as cancer [297] and aging [298]. For example, AD, 
PD, ALS, HD, and FTLD are not only characterized by the 
accumulation of pathological protein aggregates, but also 
by increased levels of DNA damage [299–302]. A growing 
body of evidence suggests that age-related mitochondrial 
dysfunction and increased oxidative stress, accompanied 
by compromised DNA repair, result in genome instability 
that may precede and/or exacerbate proteome instability 
in neurons [303–307]. Several genetic disorders caused by 
mutations in genes encoding DNA damage sensors and DNA 
repair proteins also lead to neurodegenerative pathologies 
[308, 309]. Furthermore, loss or inhibition of human DNA 
damage sensor proteins, such as ATM, ATR, and MRE11, as 
well as induction of genotoxic stress in form of topoisomer-
ase-DNA adducts, result in widespread protein aggregation 
[310–312]. Similarly, the budding yeast ATR orthologue 
Mec1 confers resistance to proteotoxic stress, suggesting an 
evolutionarily conserved role of the DNA damage response 
signaling pathway in proteostasis [313].

Notably, several proteins that form pathological aggre-
gates have functions in DNA metabolism and genome main-
tenance. It is believed that cytosolic aggregation of these 
proteins may impair their nuclear functions in preserving 
genomic integrity of neurons, leading to build-up of DNA 
damage and induction of regulated cell death. For example, 
TDP-43, which exhibits nuclear exit and cytosolic aggrega-
tion in motor neurons in tau-negative FTLD patients and in 
95% of ALS patients [314], is involved in DSB repair by 
NHEJ [305]. Loss of TDP-43 nuclear localization results in 
persistent DNA damage and prolonged activation of DNA 
damage response signaling, ultimately leading to neuronal 
death [305]. FUS, whose defects are associated with ~ 5% 
of familial ALS and ~ 1% of sporadic ALS cases due to loss 
of its nuclear localization and subsequent cytosolic aggre-
gation, has been shown to facilitate DNA ligation during 
the final step of oxidative damage repair [315] and to be 
required for DSB repair by NHEJ and HR [316, 317]. HD-
associated wild-type HTT is recruited to sites of DNA dam-
age, colocalizes with BER proteins during oxidative stress 
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[318], and serves as a scaffold protein for the transcription-
coupled DNA repair (TCR) complex [319]. αSyn forms 
nuclear foci, which colocalize with γH2AX, and enhances 
ligation of DNA ends in vitro, and repair of bleomycin-
induced DSBs is compromised in human HAP1 cells with 
αSyn knock-out [320]. Tau is involved in the organization 
of the microtubule cytoskeleton and the regulation of pro-
tein trafficking on microtubules [321], and may have a gen-
eral role in microtubule-mediated transport of DNA repair 
proteins into the nucleus, as shown for the 53BP1 protein 
required for NHEJ [160, 322]. Tau is also implicated in the 
protection of neuronal DNA by an as yet poorly understood 
mechanism [323].

At the same time, protein aggregates may directly or 
indirectly cause DNA damage. Using in vitro models of 

PD, it was shown that αSyn overexpression induces DNA 
breaks in the presence of pro-oxidant Fe salts and that the 
DNA nicking property of αSyn is enhanced by its misfold-
ing [324]. Pre-formed fibrils (PFF) of αSyn activates NOS, 
leading to oxidative DNA damage and PARP-1 activation. 
Excessive PAR levels, as well as PARylation of αSyn PFF, 
not only accelerates αSyn aggregation but also leads to 
neuronal cell death via parthanatos [325]. Interestingly, 
lack of ATM in concert with elevated ROS triggers the 
accumulation of transcription-dependent SSBs followed 
by increased protein PARylation at sites of DNA damage 
and subsequent protein aggregation [311]. Consequently, 
PARP-1 inhibition shows neuroprotective effects not only 
in PD [325] but also in ALS [326] and HD [327]. A recent 
study showed that αSyn aggregation probably induces 

Fig. 3   How metalloid-induced genotoxicity and proteotoxicity may 
be interrelated. Arsenic and antimony may induce genotoxicity 
through oxidative stress, inhibition of DNA repair, perturbation of tel-
omere maintenance, cytoskeletal abnormalities, and epigenetic dys-
regulation. Arsenite (and perhaps also antimonite) may cause proteo-
toxicity through oxidative stress, protein misfolding and aggregation 
and defective aggregate processing. Metalloid-induced genetic altera-
tions may generate proteotoxic stress whereas protein aggregation 

may lead to enhanced oxidative stress and sequestration of genome 
maintenance and protein quality-control (PQC) components. Thus, 
metalloid-induced genotoxicity and proteotoxicity may be interre-
lated, where loss of genome integrity amplifies the impact of metal-
loids on proteome integrity and vice versa. In this way, genome insta-
bility and proteome instability are interrelated and jointly contribute 
to neurodegeneration and carcinogenesis. The figure was created with 
BioRender.com
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DSBs, as indicated by increased formation of γH2AX 
foci, both in mixed glial cultures and in the αSyn PFF 
mouse model of PD. This is followed by activation of the 
cyclic GMP–AMP synthase (cGAS)/stimulator of inter-
feron genes (STING), resulting in neuroinflammation that 
is known to contribute to neurodegeneration in PD [302]. 
Protein aggregation may also negatively affect DNA repair 
pathways indirectly by decreasing the levels of DDR pro-
teins or by sequestering DDR proteins in the cytoplasm 
of neurons. For example, BRCA1, a key factor in DSB 
repair by HR, is sequestered into cytosolic inclusions of 
hyperphoshorylated tau in AD brain samples [328], while 
reduced BRCA1 levels are observed in neurons exposed 
to Aβ oligomers and in AD patients [303].

Another source of protein aggregate-derived DNA dam-
age could be ROS. It is well established that mitochondrial 
dysfunction and increased oxidative stress contribute to 
neurodegenerative disorders and aging of the human brain 
[329–331]. Elevated oxidative damage to mitochondrial 
and nuclear DNA was observed in brain tissue from AD, 
PD, HD, and ALS patients and rodent models [309, 332, 
333]. The origin of increased ROS production and the 
mechanisms underlying redox imbalances remain elusive, 
but most likely involve physical interactions of protein 
aggregates with mitochondria, leading to impaired mito-
chondrial metabolism [309, 330, 331, 333], and/or aggre-
gation of mutant superoxide dismutase SOD1, as observed 
in some ALS cases, resulting in nuclear depletion of wild 
type SOD1 [334].

Taken together, accumulating lines of evidence suggest 
that genome instability and proteome instability are inter-
related and jointly contribute to neurodegeneration and 
carcinogenesis (Fig. 3). Since cells exposed to As(III) and 
Sb(III) suffer from both genotoxic and proteotoxic damage, 
the possibility that both modes of toxic action are mechanis-
tically related and together contribute to neurotoxicity and 
the development of neurodegenerative disorders should be 
considered. Importantly, the negative effects of metalloids 
on cells, including neurons, largely overlap with hallmarks 
of neurodegeneration. The genotoxic properties of metal-
loids, such as oxidative stress-derived DNA damage, inhibi-
tion of DNA repair mechanisms, induction of topoisomer-
ase–DNA adducts, and perturbation of the cytoskeleton, 
may lead to genome instability and subsequent overload of 
PQC systems and increased protein aggregation, as observed 
under various genotoxic conditions [312]. At the same time, 
metalloids induce pathological protein aggregation as well 
as global protein misfolding and aggregation, which may 
also negatively impact the PQC systems and further promote 
genome and proteome instability. Thus, the genotoxic and 
proteotoxic effects of metalloids may act as a double-edged 
sword with significant potential to both initiate and acceler-
ate neurodegeneration.

Conclusions and future perspectives

In this review, we highlighted how the metalloids arsenic 
and antimony cause genotoxicity and proteotoxicity and 
presented evidence that they may contribute to disease in a 
concerted way. Our understanding of how metalloids cause 
genotoxic and proteotoxic stress and the ensuing human 
health impacts, has increased considerably in the past dec-
ades. However, several key aspects of metalloid toxicity 
and cellular defence remain incompletely understood. For 
example, an important area for future studies is to clarify 
aggregate toxicity mechanisms, specifically the structures 
and properties of the protein aggregates formed during met-
alloid exposure that contribute to their toxicity as well as 
the features of these aggregates that limit aggregate binding 
and processing by chaperones and perhaps other PQC fac-
tors. A second key question concerns sensing and signaling 
mechanisms, specifically how cells detect metalloids and/or 
metalloid-induced cellular damage and how they couple the 
sensing mechanisms to the regulation of protective systems. 
The third question concerns the generality of the observa-
tions that metals and metalloids can perturb protein folding 
in cells, specifically which metals affect proteostasis in vivo 
and the mechanisms whereby the cause proteotoxicity. Loss 
of proteome and genome integrity are common hallmarks 
of neurodegenerative diseases, aging, and cancer. Given 
that certain metals and metalloids can cause proteotoxic 
and genotoxic effects, suggest that metals may be major 
environmental factors driving these diseases. Thus, future 
efforts should be directed toward elucidating mechanisms 
by which metalloids initiate or accelerate neurodegeneration 
and other human diseases. Similarly, how metal/metalloid-
induced genotoxic and proteotoxic stress are interrelated and 
jointly contribute to neurodegeneration and carcinogenesis 
remains to be clarified. Finally, epidemiological studies are 
needed to cement the importance of individual metals as risk 
factors for disease, and regulatory measures should be taken 
to reduce exposure levels. Molecular insights into cellular 
toxicity and response mechanisms and their links to patho-
genesis especially at low environmentally-relevant concen-
trations, may pave the way for the development of strategies 
for both disease prevention and treatment.
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