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Abstract
Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. 
However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administra-
tion of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To 
this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 
2–3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice 
were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 
5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. 
In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, 
amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, 
but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-
hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in 
either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed 
to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study 
highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.

Keywords Epileptiform activity · Glycemia · Ketogenic diet · Temporal lobe epilepsy · Tonic GABAergic inhibition · Sex 
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Introduction

Epilepsy is one of the most common and serious chronic 
neurological diseases, affecting 1% of the world popula-
tion and characterized by spontaneous recurrent seizures. 
Seizures are the epiphenomenon of modifications of neural 
circuits that, starting from an initial insult, become hyperex-
citable during a latent process, named epileptogenesis. The 
initial insult activates multiple and complex cascades of 
events, lasting from hours to months, encompassing neuro-
degeneration, inflammatory activity, transcriptional events, 
neurogenesis, sprouting, reorganization of neuronal circuits 
and gliosis [1, 2]. Using maladaptive mechanisms proper 
of neural plasticity, the epileptogenic process progressively 
alters neuronal excitability and modifies circuit connectivity 
before the first seizure occurs [3]. In spite of the availability 
of a large toolbox of antiepileptic drugs (AEDs) capable of 
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suppressing seizures, an anti-epileptogenic (AEG) strategy 
able to efficiently contrast the epileptogenic process and pre-
vent epilepsy is still on demand [4].

In the last 2 decades, several clinical trials based on the 
use of conventional AEDs for preventing epilepsy have been 
carried out, but the results have been unsuccessful or con-
troversial, so that effective AEG drugs for treating people at 
risk are still missing [4, 5]. A possible explanation for this 
failure is that the molecular mechanisms of epileptogenesis 
differ from those of seizure manifestation. Seizures are a 
product of an overt excitatory/inhibitory imbalance, while 
epileptogenesis represents a complex cascade of events 
leading to the imbalance condition. AEDs act attempting to 
recover the balance producing an opposite imbalance else-
where in the brain. On the contrary, to contrast epileptogen-
esis, it is probably more efficient a physiological strengthen-
ing of intrinsic homeostatic processes that normally defend 
neuronal networks from brains insults [6, 7]. Moreover, a 
preventive treatment for epilepsy with AEDs must be con-
sidered with caution in vulnerable patients showing markers 
of epileptogenesis associated with moderate probability of 
developing seizures, as in the case of cerebral malaria in 
which only 10% of children presenting clear electrographic 
signs will develop epilepsy [8]. Thus, in people with uncer-
tain probability of developing epilepsy, the risk of side 
effects due to treatment with conventional AEDs has to be 
considered, raising serious doubts on the opportunity of a 
treatment for preventive/protective purposes [4].

Metabolism-based therapies such as the traditional high-
fat, low-carbohydrate ketogenic diet (KD) and the much 
better tolerated, low-glycemic index diet (LGID) [9–11] 
may represent an alternative to prevent the development of 
epilepsy, because of their proven success in arresting drug-
resistant seizures [12, 13] coupled with the relative absence 
of side effects that allows chronic treatments in patients 
with uncertain risk of epilepsy, even in the pediatric age. 
More importantly, a large body of experimental evidence 
demonstrates that diet-based treatments activate multiple 
homeostatic mechanisms in the brain to increase seizure 
threshold [14–16] and make neuronal networks more resil-
ient to stressors [17], thus preventing or reversing seizure 
progression [18–20]. Here, we studied the efficacy of LGDI 
in reverting the epileptogenic process in the Synapsin II 
knockout (SynIIKO) mice, an experimental model of mono-
genic reflex temporal lobe epilepsy caused by dysfunctions 
of synaptic transmission.

The synapsins are a family of neuron-specific phospho-
proteins encoded by three distinct genes (Syn1, Syn2 and 
Syn3) that are abundantly expressed in the brain and con-
centrated in synaptic terminals where they act by regulat-
ing neurotransmitter release [21–25]. Large-scale search 
for genetic susceptibility loci in epilepsy identified SYN2 
as one of the five major genes that contribute to epilepsy 

predisposition in humans [26]. These findings were sup-
ported by subsequent studies, revealing that polymorphisms 
in SYN2 are associated with idiopathic generalized epilepsy 
[27–29]. Both SynIKO and SynIIKO mice show an epilep-
tic phenotype, consisting of partial secondarily generalized 
tonic–clonic seizures, that is more severe in SynIIKO mice 
or in double SynI/SynIIKO mice [30–33]. Importantly, the 
behavioral seizures in SynIIKO mice are characterized by 
a late onset, thus offering an operational window to test 
whether LGID modifies the epileptogenic process.

In the present work, SynIIKO mice fed with either LGID 
or standard diet (StD) during gestation and the postnatal life 
up to 5 months of age were investigated behaviorally for the 
appearance of epilepsy and electrophysiologically for the 
presence of interictal events in acute cortico-hippocampal 
slices. Behavioral and electrophysiological results revealed 
protective effects of LGID only in SynIIKO females. ELISA-
based analysis revealed that LGID-fed female mice had 
higher cortical level of allopregnanolone (ALLO), a neu-
rosteroid known as an agonist on GABAergic transmission, 
providing a mechanistic basis for the peculiar gender-spe-
cific effect of LGID in this mouse model of temporal lobe 
epilepsy.

Materials and methods

Animals and diets

SynIIKO mice were generated by homologous recombi-
nation and extensively backcrossed on a C57BL/6 J back-
ground (Charles River, Calco, Italy) for over 10 generations 
[30, 34, 35]. Each homozygous SynIIKO female mouse was 
housed with one homozygous SynIIKO male in standard 
Plexiglas cages (33 × 13 cm), with sawdust bedding and a 
metal top. Female SynIIKO mice were split into two groups 
and fed ad libitum either StD or LGID starting from mat-
ing [36]). The two diets (Bio Serv, Flemington, NJ) were 
isocaloric (3.7 kcal/g), with the same nutritional profile 
(carbohydrate 65%, protein 20%, fat 5%, fiber 5%, moisture 
5%) and identical in micro- and macro-nutrients except for 
the type of starch, representing the main source of carbohy-
drate (Supplementary Table 1). The starch in the LGID was 
a combination of 70% amylose and 30% amylopectin (Hylon 
VII starch; Ingredion, Westchester, IL), whereas the starch in 
the StD was 100% amylopectin (Amioca starch; Ingredion, 
Westchester, IL).

SynIIKO pregnant and lactating mothers and pups 
therefrom were fed ad libitum with either diet (Fig. 1A). 
After weaning, male (M) and female (F) offsprings of each 
group of mothers were kept on the same diets as their moth-
ers (n = 16 M StD, n = 21 M LGID, n = 14 F StD; n = 12 
F LGID). Sample size was chosen based on previous 
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experience with behavioral seizures in SynIIKO mice [31]. 
Starting from weaning (P25), each mouse was weekly 
checked for body weight, food intake, water consumption 
and seizure onset. Blood glucose and glycated hemoglobin 

were assayed at 5 months of age (Fig. 1 and Supplementary 
Figs. 1–3). Mice were maintained on a 12∶ 12 h light/dark 
cycle (lights on at 7 a.m.) at constant temperature (21 ± 1 °C) 
and relative humidity (60 ± 10%). All experiments were 
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Fig. 1  Experimental plan and parameters analyzed during the admin-
istration of the two diets. A StD and LGID were delivered ad libitum 
to SynIIKO pregnant females starting from mating and continuing 
during pregnancy and lactation. Mice were maintained with LGID 
also after weaning and for the entire lifespan. Starting from the day 
of weaning, all mice were weekly checked for two months for body 
weight (B), food intake (C) and water consumption (D). Param-
eters analyzed in the two experimental groups revealed that LGID 
mice increased food consumption, although no differences appeared 
in body weight and water consumption (n = 30 KO StD; n = 32 KO 
LGID). Five months after birth all mice were subjected to blood anal-
ysis for the evaluation of glycemia (E, F) and glycated hemoglobin 

(G) levels. E For the analyses of blood glucose, mice were fasted for 
24  h. Glycemia was measured immediately after the fasting period 
and 1 h after food administration. Glycemia levels showed a increase 
after food consumption in StD and LGID-fed mice (n = 12 for both 
StD and LGID). F Percentage increase of glycaemia observed 1  h 
after food administration (n = 12 for both StD and LGID). G Glycated 
hemoglobin levels were higher in StD-fed mice when compared with 
animals treated with LGID (n = 8 for both StD and LGID). Data are 
expressed as means ± sem. *p < 0.05, **p < 0.01; two-way repeated-
measures ANOVA (B–D), paired Student’s t-test (E), unpaired Stu-
dent's t-test (F), unpaired Mann–Whitney U-test (G)
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carried out in accordance with the guidelines established 
by the European Communities Council (Directive 2010/63/
EU of March 4th, 2014) and were approved by the Italian 
Ministry of Health (authorization n° 600/2020-PR).

Behavioral seizures

Seizure provocations were performed every first day of the 
week (between 2 and 4 p.m.), starting from the day of wean-
ing (P25), in acoustically isolated animal housing room. 
The provocation consisted of moving the animal from its 
cage to a new cage. The procedure started with opening the 
lid and lifting each mouse by its tail into an adjacent cage 
equipped with fresh bedding. This procedure is known to 
elicit reflex seizures in SynIIKO mice [31–33, 35, 37]. All 
provocations were recorded on tape with a digital camera 
located in front of the new cage. Video recordings were later 
streamed to a PC for digital storage and detailed behavioral 
seizure analysis were made off-line. Due to the short time 
interval between seizure provocation and seizure generaliza-
tion, we did not apply a severity score scale, but identified 
the following three main elements of the seizure based on 
the previously described ethological description [31, 33]: 
(i) head and body myoclonic jerks, including retreating oro-
facial/forelimb twitch; (ii) whole tonic–clonic seizure (with 
or without jumping), including emprostoclonus, emprosto-
tonus, epistotonus (iii) post-ictal immobility. The running 
fit activity was observed only in few animals and was not 
included in the analysis. Latency to the first observed seizure 
(days from the date of birth), duration of each seizure, and 
percent of animals jumping were analyzed. At the end of 
behavioral follow-up, 5-month-old animals were sacrificed 
to collect blood samples and brains for biochemical and 
electrophysiological studies.

Brain slice preparations

All experiments were performed on symptomatic (5 months 
of age) SynIIKO mice of either sex. Animals were anaes-
thetized with isofluoran prior to decapitation, the brain was 
quickly dissected out and immersed in an ice-cold oxygen-
ated “cutting solution” composed of (mM): 125 NaCl, 25 
 NaHCO3, 25 glucose, 2.5 KCl, 1.25  NaH2PO4, 1  CaCl2, 2 
 MgCl2, 0.4 ascorbic acid, 2 NaPyruvate, 3 myo-inositol, and 
saturated with 95%  O2/5%  CO2. Transverse hippocampal 
slices (300 μm thick) were cut using a Microm HM 650 V 
microtome equipped with a MicromCU65 cooling unit 
(Thermo Fisher Scientific, Waltham, MA). Slices were cut 
at 2 °C in a high-sucrose protective solution containing (in 
mM): 87 NaCl, 25  NaHCO3, 2.5 KCl, 0.5  CaCl2, 7  MgCl2, 
25 glucose, 75 sucrose and saturated with 95%  O2/5%  CO2. 
Slices were incubated for 30–45 min at 35 °C and for at 
least another hour at room temperature in recording standard 

solution (artificial cerebrospinal fluid, ACSF) composed of 
(mM): 125 NaCl, 25  NaHCO3, 25 glucose, 2.5 KCl, 1.25 
 NaH2PO4, 2  CaCl2, 1  MgCl2. Prior to being used for record-
ings slices were pre-incubated for 20 min in recording solu-
tion supplemented with 4-aminopyridine (4-AP; 200 μM; 
Sigma-Aldrich, Milan, Italy). Slices were then transferred 
to a “submerged” high-density multielectrode array (HD-
MEA) recording chamber which was continuously super-
fused at a rate of 1.5 ml/min with ACSF supplemented with 
4-AP 200 μM. The bath temperature was monitored and 
maintained at 33 °C throughout the experiments.

In accordance with the rare occurrence of spontaneous 
seizures in vivo, slices from Syn IIKO mice showed only 
sporadic spontaneous epileptiform activity under control 
perfusion conditions. The paucity of spontaneous paroxysms 
is also related to slice deafferentation and the submerged 
modality of MEA recordings. Thus, SynIIKO slices were 
perfused with the  K+ channel blocker 4-AP, a broad inhibi-
tor of voltage-gated  Kv1–Kv4 potassium channel subtypes 
[38–40], prolonging action potentials and thereby increasing 
neurotransmitter release at the presynaptic terminals [41]. 
4-AP is widely used to cause epileptiform-like activity in 
in vitro and ex vivo preparations [42–45], as previously 
reported for SynIIKO hippocampal slices with respect to 
slices obtained from wild-type animals [37].

HD‑MEA recordings of spontaneous epileptiform 
activity in brain slices

To record electrophysiological activity in brain slices, we 
used the Biocam X high-density CMOS-based multielec-
trode arrays (HD-MEA; 3Brain AG, Switzerland). The chip 
integrates amplification and analog multiplexing circuits 
that provide simultaneous extracellular recordings from 
4096 electrodes (also called pixels) at a sampling rate of 
18 kHz per channel. Each square pixel measures 21 × 21 μm, 
and the array is integrated with an electrode pitch (center-
to-center) of 81 μm. Pixels are arranged in a 64 × 64 array 
configuration, yielding an active area of 5.12 × 5.12 mm 
with a pixel density of 156.3 pixel/mm2. Three on-chip 
amplification stages provide a global gain of 60 dB, with 
a 0.1- to 5-kHz band-pass filter. This bandwidth is adapted 
to record both slow local field potentials (LFPs) and fast 
action potentials (APs). Acquisition was controlled using 
the Brain Wave software (3Brain AG, Switzerland). Acute 
cortico-hippocampal slices were recorded for 10 min per 
session, once activity had stabilized for at least 15 min. Bath 
application of 4-AP (200 μM) [46] favored the induction of 
epileptiform activity characterized by spontaneous spike-
wave interictal discharges (I-ICs) that can be visualized as 
real-time video images in which each pixel of the video’s 
frames represents a recording-electrode of the array and has 
a color corresponding to the voltage amplitude according to 
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a color-code map (see Supplementary Fig. 4B). Spike-wave 
complexes, usually lasting between 50 and 400 ms, recorded 
by a single recording-pixel were named I-IC waves, while 
groups of I-IC waves that are temporally aggregated and 
recorded by an ensemble of spatially clustered pixels were 
named I-IC events.

I-IC waves were detected by the BrainWave software 
(3Brain AG) that adopts a previously described Precision 
Timing Spike Detection (PTSD) algorithm [47, 48] origi-
nally tailored to detect fast-spiking activity generated by 
cultured neurons and adapted to detect slower local field 
potential events. To this purpose, the threshold was set to 
fivefold the standard deviation of the noise, whereas the 
refractory period and the peak lifetime period were set to 40 
and 50 ms, respectively. To evaluate the effects of the LGID 
on I-IC waves, amplitude (maximum value of the waveform 
modulus), duration (time an I-IC wave takes to extinguish) 
and energy (time integral of the I-IC wave modulus) were 
computed.

I-IC events were detected with a custom program written 
in Pyton (v3.7.1) that analyzes I-IC waves identified by the 
BrainWave software. For the detection of I-IC events, we 
preliminarily evaluated the function H(t) representing the 
temporal aggregation of I-IC waves detected in each pixel-
channel of a selected group (G):

as follows:

where N(ta,tb) is the number of I-IC waves in the  (ta,tb) inter-
val and T the time window of integration. H(t) is computed 
at discrete time values t (0, ∆t, 2∆t, 3∆t…) and represents 
how many I-IC waves are detected within the time window 
centered in t. I-IC events are detected applying a threshold 
on H(t) values and represent ensembles of temporally and 
spatially related I-IC waves in a specific area of the cortico-
hippocampal slice. I-IC events can be defined as an ensem-
ble I-IC waves that are temporally and spatially related, 
representing the temporally synchronized activation of an 
aggregated of multiple neurons (i.e., recording-pixels) in a 
specific area of the cortico-hippocampal slice. I-IC events 
are tracked in time and in space, to monitor their area and 
rate of propagation in the slice. To evaluate the effects of the 
LGID on I-IC events, we extracted the following features 
from the recordings: (i) affected area, as the ratio between 
the number of activated pixels/channels recording an I-IC 
wave and the total number of pixels/channels covering the 
cortical or hippocampal area; (ii) duration, as the time dif-
ference between the last and the first I-IC wave of a detected 
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i
(t),

H(t) = N(t − T∕2, t + T∕2) = ∫
t+T∕2

t−T∕2

�(�)d�

event; frequency, as the number of I-IC events detected per 
min; covered distance and propagation speed, by analyzing 
the I-IC event propagation in space and in time. To capture 
the characteristics of propagation of the I-IC event occur-
ring in the recording of the brain slice activity, a computer 
vision approach has been adopted. The developed algorithm 
is composed of two phases: video extraction and multiple 
object tracking (MOT). The software computes two differ-
ent values: one is the average propagation speed, namely the 
weighted mean of the average speeds of each track, whose 
weights are the durations of each track trajectory; the second 
is the distance covered by the event, calculated as the sum 
of distances covered by each trajectory. All procedures used 
to detect and analyze I-IC events and waves were carried 
out blind to the experimenter thanks to algorithms based on 
custom programs written in Pyton (v3.7.1).

Glycemia and glycated hemoglobin measurements

Blood glucose concentration was measured using a Mini 
Glucometer (Accu-Chek Aviva, Roche) by tail vein puncture 
of SynIIKO mice fed for 1 h with either StD or LGID after a 
24 h fasting period. Glycemic index values were expressed 
as mg/dl of blood sample. Glycated hemoglobin (HbA1c) 
levels were measured in serum samples from the same ani-
mals using the HbA1c ELISA kit (mouse) (OKEH00661, 
Aviva System Biology, San Diego, CA) according to the 
manufacturer’s instructions. All standards and samples were 
run in duplicate. The optical density values were read at 
450 nm in a multiplate reader (Tecan  Infinite® F500, Tecan 
Trading AG, Switzerland). HbA1c concentrations were 
expressed as ng/ml of blood sample.

Brain allopregnanolone quantification

Cortico-hippocampal tissues from SynIIKO mice fed with 
either StD or LGID, were dissected after decapitation, imme-
diately weighted and frozen in liquid nitrogen and stored 
at − 80 °C until analysis. All females were at their dies-
trus stage according to vaginal cytology. An organic phase 
extraction with acetonitrile to solubilize steroids and hexane 
to remove fat and lipids was performed. Fifty mg of fro-
zen samples were thawed on ice and homogenized in 15 ml 
acetonitrile with a Teflon-glass homogenizer. After cen-
trifugation at 10,000 × g for 10 min at 4 °C, the supernatant 
was carefully transferred to a clean glass tube, added with 
15 ml hexane and vigorously shaken. The organic phase was 
collected through a separatory funnel and the fat removal 
step was repeated twice. Acetonitrile was evaporated to 
dryness under a rotary evaporator  (Rotavapor® R-100, 
BÜCHI Labortechnik AG, Switzerland) and successively 
in a concentrator centrifuge (VR-maxi St. a, Heto-Holten 
A/S, Denmark). Dried samples were frozen at − 20 °C and 
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subsequently used for allopregnanolone (ALLO) quantifi-
cation. ALLO concentrations were determined using the 
DetectX ALLO Immunoassay Kit (K044–H1, Arbor Assays, 
Ann Arbor, MI) according to the manufacturer's protocol. 
After solubilization of dried steroids with a volume of etha-
nol followed by a volume of the kit Assay Buffer in a 1:4 
(v:v) ratio, samples were vigorously shaken and allowed to 
sit 5 min at room temperature to ensure complete steroid 
solubilization. Reconstituted samples were immediately 
immunoassayed after bringing ethanol in the sample volume 
below 5% with kit specific Assay Buffer. All standards and 
samples were run in duplicate. The optical density values 
were read at 450 nm in a multiplate reader (Tecan Infinite® 
F500). ALLO concentration values were normalized on tis-
sue weights and reconstitution volumes and expressed as pg/
mg of tissue weight.

Statistical analysis

Data are given as means ± sem for n = sample size. The nor-
mal distribution of experimental data was assessed using 
D’Agostino-Pearson’s normality test. The F-test was used 
to compare variance between two sample groups. To com-
pare two normally distributed sample groups, the unpaired 
Student’s t-test was used, with Welch’s correction applied in 
case the variance of the two groups was different. To com-
pare two sample groups that were not normally distributed, 
the Mann–Whitney’s U-test was used. To compare more 
than two normally distributed sample groups, we used one-
ANOVA, followed by the Tukey’s post hoc multiple com-
parison test. In case data were not normally distributed, one-
way ANOVA was substituted with the Kruskal–Wallis’s test, 
followed by the Dunn’s post hoc multiple comparison test. 
Alpha levels for all tests were 0.5% (95% confidence inter-
vals). Statistical analysis was carried out by using the Prism 
software (GraphPad Software, Inc.).

Results

Effects of LGID on general health and glycaemia

Breeding female SynIIKO mice were split into two groups 
and fed ad libitum either StD or LGID. The diet started with 
mating and continued during lactation and offspring were 
fed the same diet after weaning for their entire life span 
(5 months). For 8 weeks starting from the day of weaning 
(25d), all offspring mice (males and females) were weekly 
checked for body weight, food intake and water consumption 
(Fig. 1A–D). The measurements revealed a moderate but 
significant increase of food consumption in LGID-treated 
mice which was not accompanied by an increase in body-
weight or water consumption.

With the use of LGID, we expected to maintain low and 
stable levels of glycemia and to reduce glycemic peaks. For 
this reason, we measured glycemia and glycated hemoglobin 
(HbA1c) in all SynIIKO mice 5 months after birth. To inves-
tigate the effects of the two diets on the post-prandial glyce-
mic peak, glycemia was measured after a fasting period of 
24 h and 1 h after food administration that immediately fol-
lowed the fasting period (Fig. 1E, F). Fasting blood glucose 
levels showed similar values in StD and LGID treated mice, 
while food intake induced a significantly higher glucose 
level increase (percent increase vs fasting: ~ 80%) in StD-
fed mice with respect to LGID-fed mice (percent increase 
vs fasting: ~ 30%) (Fig. 1E, F). We also measured the levels 
of glycated hemoglobin A1c (HbA1c) that integrates blood 
glucose levels over time [49] and consistently found that 
LGID-treated SynIIKO mice displayed a two-fold decrease 
in HbAc1 levels with respect to SynIIKO mice fed with StD 
(Fig. 1G).

Sex‑dependent effect of LGID on behavioral seizures

Behavioral seizures were tested weekly, starting from 
the day of weaning, manipulating the mice in an isolated 
environment and moving them to a new cage, a proce-
dure known to efficiently elicit reflex seizures in SynIIKO 
mice [30, 31]). The latency to the first seizure showed no 
differences between the two experimental groups (Sup-
plementary Fig. 1A), while the total seizure duration was 
significantly shorter in SynIIKO mice treated with LGID 
(Supplementary Fig. 1B). All mice experienced gener-
alized seizures initiated by a first short-lasting (5–15 s) 
phase of rapid muscle twitching affecting head, tail or 
legs (head and body myoclonus jerks, including retreating 
orofacial/forelimb twitch) (Supplementary Fig. 1C). The 
second phase consisted in typical tonic–clonic episodes 
with duration ranging between 5 and 35 s (Supplementary 
Fig. 1D) with jumps in about one third of the mice, gen-
erated by particularly intense clonic muscle contractions 
(Supplementary Fig. 1E). All seizures ended with a post-
ictal immobility phase of variable duration, ranging from 
few seconds to one minute (Supplementary Fig. 1F). The 
various phases of the behavioral seizures were not affected 
by the diet when male and female data were pooled (Sup-
plementary Fig. 1D–F). However, when male and female 
data were considered separately, a significant effect of 
LGID was observed only in females with longer latency 
to the first seizure and decrease of total seizure duration 
(Fig. 2A, B). Similarly, a significant reduction of the dura-
tion of the tonic–clonic phase and of the percentage of 
jumping mice was observed in female, but not in male 
mice (Fig. 2D, E). The gender-specific efficacy of LGID 
was not related to any sex-dependent difference in food 
or water consumption (Supplementary Fig. 2) or in the 
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capability of LGID to decrease blood glucose or HbAc1 
levels (Supplementary Fig. 3).

Sex‑dependent effects of LGID on neuronal 
excitability

I-IC  discharges  in cortico-hippocampal slices are con-
sidered a proxy of the epileptic phenotype [50] and have 
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been already described in SynIIKO mice [37]. We inves-
tigated these bioelectrical markers of epilepsy in cortico-
hippocampal slices obtained from symptomatic 5 months 
old SynIIKO mice of either sex treated with either LGID 
or StD. I-IC activity was analyzed by the HD-MEA sys-
tem, that allows simultaneous extracellular recordings from 
4096 electrodes at high spatial and temporal resolution (Sup-
plementary Fig. 4A). The convulsant agent 4-AP (200 μM; 
[42]) was applied in the bath to favor the induction of epi-
leptiform activity characterized by spontaneous spike-wave 
Inter-Ictal (I-IC) discharges. Cortical and hippocampal I-IC 
activity captured by the HD-MEA, can be visualized as a 
video, where each pixel of the video’s frames represents a 
recording-electrode of the array and the color of the pixel 

corresponds to the voltage amplitude detected by the record-
ing pixel/electrode (Supplementary Fig. 4B). The spike-
wave complex, recorded by each recording pixel/electrode 
(Supplementary Fig. 4C) is an “I-IC wave”, while a group 
of “I-IC waves” that are temporally aggregated and recorded 
by an ensemble of spatially clustered pixels, represents an 
“I-IC event” (Supplementary Fig. 4D).

When all SynIIKO mice were compared, irrespective 
of sex, the percentage of hippocampal area invaded by 
an I-IC event, was not affected by the dietary condition. 
On the contrary, this parameter was dramatically reduced 
in LGDI-treated SynIIKO females and not affected in 
males treated with the same diet (Fig. 3A, B). Similar 
results were obtained when we quantified the number of 
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StD (right panel) or LGID (left panel). The green lines delimit the 
hippocampal area. Pixel size: 81 μm by side. B The bar plot shows 
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and male (right) SynIIKO mice treated with either StD or LGID. C 
Raster plots of the two I-IC events shown in panel A. Single I-IC 
events recorded in the hippocampus of a female SynIIKO mouse 

treated with either StD (left) or LGID (right). Each blue dot repre-
sents I-IC waves recorded by the pixel-electrodes. The green and red 
lines represent the start and the end of the I-IC event, respectively. D 
The bar plot shows means ± sem and individual values of the number 
of electrodes activated during an I-IC event in hippocampal slice of 
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electrodes activated during an I-IC event in the hippocam-
pal field (Fig. 3C, D).

The frequency of hippocampal I-IC events was signifi-
cantly reduced in the whole population of LGID-treated 
SynIIKO mice, regardless of sex. However, when this 
parameter was compared in sex matched mice, the reduc-
tion of I-IC rate induced by LGID remained significant 
only in females (Fig. 4A, B). Similarly, when the mean 
duration of hippocampal I-IC events was assessed in sex-
matched or unmatched SynIIKO mice, LGID induced a 
significant and marked decrease of I-IC duration only in 
females (Fig. 4C, D).

We also estimated the covered distance and propagation 
speed of each I-IC event idealized to a single “center of 

mass”. Also in this case, the distance and the velocity of 
the I-IC events were dramatically reduced by LGID treat-
ment, but only in the female SynIIKO group (Fig. 5). Simi-
lar results were obtained when we measured the duration 
and amplitude of the spike-wave complexes (“I-IC waves”; 
Fig. 6A) that were again significantly reduced in duration 
and amplitude only in female SynIIKO mice treated with 
LGID (Fig. 6B, C).

HD-MEA recordings of cortical epileptiform activity 
highlighted a reduced efficacy of LGID with respect to the 
effects observed in the hippocampus. LGID was only effec-
tive in reducing the event rate, the event duration and the 
duration of the I-IC waves regardless of sex (Supplementary 
Fig. 5). However, when these parameters were compared in 
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sex matched mice, the reduction of event and wave duration 
remained significant only in females, while it was lost in the 
male group.

Sex‑dependent effects of LGID 
on cortico‑hippocampal allopregnanolone levels

Both behavioral and electrophysiological data revealed a 
gender-specific protective action of LGID limited to Syn-
IIKO females, suggesting a possible modulation of dietary 
treatment on the sex-related neurosteroid pathway. We 

focused our investigation on ALLO, well known for its 
anti-seizure action ascribed to a potent allosteric modula-
tion on  GABAA receptors [51, 52]. ELISA-based analy-
sis on extracts of cortico-hippocampal tissue revealed 
an increase of ALLO concentration only in LGID-fed 
females, while the same effect was not present in LGID-
treated males (Fig.  7A). This effect was only present 
within the brain, as LGDI did not affect plasma ALLO 
levels regardless of gender (Fig. 7B).
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Discussion

Despite decades of research activity, currently there is no 
FDA-approved treatment that truly prevents the develop-
ment of epilepsy in people at risk. The negative results 
obtained using AEDs strongly impose a switch towards 
new strategies of intervention [4, 6, 53–55]. Most of the 
AEG-trials with AEDs aimed at preventing epilepsy fol-
lowing traumatic brain injury or stroke were unsuccessful 
also due to the heterogeneity of the patient populations 
[56]. The investigation of new strategies for the prevention 
of epilepsy could probably take advantage from the phe-
notypic homogeneity that characterizes genetic models of 
epilepsy, in which seizures occur either spontaneously or 
in response to sensory stimuli. The numerous genetic ani-
mal models of epilepsy characterized over the recent dec-
ades [57] have the advantage to simulate the vast majority 
of “idiophatic” epilepsy syndromes more closely than any 
other experimental model of epilepsy [58]. For these rea-
son, to investigate the AEG action of LGID, we chose the 
SynIIKO mouse, a human monogenic epileptic synaptopa-
thy, whose epileptogenic process was extensively charac-
terized by us and others [25]. In this mouse, the deletion 
of SynII induces upregulation of synchronous release of 
GABA and a concomitant loss of delayed asynchronous 
release that are already present in pre-symptomatic mice. 
The lack of asynchronous GABA release impairs tonic 
inhibition due to the activation of GABAergic extra-
synaptic receptors, in turn leading to an augmented firing 
activity at both single neuron and network levels [37, 59].

The history of dietary therapy for epilepsy is quite long, 
already Hippocrates documented the use of caloric restric-
tion to treat epilepsy [60]. The ketogenic diet (KD) has 
been employed as a treatment for drug-resistant epilepsy 
for over 90 years [13]. Despite the substantial efficacy [61, 
62], the use of KD remains limited because of difficulties 
in implementation and tolerability. Recently, neuroscien-
tists have proposed several antiepileptic treatment methods 
that involve metabolic regulation [15, 63, 64]. An effec-
tive alternative dietary approach is the LGID, which in 
many cases showed an efficacy comparable to the classic 
KD, but it is much better tolerated [9–12, 65, 66]. For this 
reason, LGID may better respond to the need of long-term 
preventive therapy to contrast epileptogenesis in healthy 
patients, often children, with high probability to develop 
epilepsy.

Here, we tested in vivo and ex vivo effects of the early 
application of LGID in SynIIKO mice starting from the 
prenatal phase. Behavioral characterization revealed that 
LGID produces a significant delay in the appearance of 
the first seizure and a decrease of its duration. Surpris-
ingly, this effect was observed only in females. The ex vivo 

electrophysiological investigation confirmed the gender-
dependent sensitivity by showing a decrease of evoked 
epileptic-like activity only in female SynIIKO mice fed 
with LGID. This specific effect was not attributable to 
any gender-related differences in food/water intake, body 
weight, blood glycemic index or glycated hemoglobin 
concentration.

What could be the mechanism of action for antiepilep-
togenic effect of LGID? Although dietary restrictions are 
widely used for the treatment of drug-resistant epilepsies, 
their mechanisms of action are still under investigation [5, 
16]. Various studies have highlighted that the decrease of 
neuronal glucose utilization, obtained by different low-
glucose diets such as KD, LGID or modified Atkins diet 
or, alternatively, by glycolytic pathway inhibitors, such as 
2-deoxy-glucose (2DG) represents the common mechanism 
at the basis of the antiepileptic action [14]. This hypothesis 
is further strengthened by the evidence that hyperglycemia 
lowers seizure threshold [5, 67] and infusion of glucose in 
patients under KD treatment results in restoration of the 
seizures [68]. Moreover, the anti-diabetic drug metformin 
is now recognized as a new potential AED or even AEG 
drug [69].

During the last 2 decades, at least three distinct mecha-
nisms for the anti-seizure effects of low-glucose diets have 
been identified [70]. It was initially reported that reduced 
glucose availability interferes with the membrane conduct-
ance of neurons, primarily via ATP-sensitive potassium 
 (KATP) channels that act as metabolic sensors coupling 
neuronal excitability to ATP levels [63, 71, 72]. Indeed, a 
reduction of cytoplasmatic ATP concentration has a hyper-
polarizing effect mediated by  KATP channel opening [73]. 
More recently, it was shown that the transcriptional repressor 
REST/NRSF is activated by the reduced intracellular con-
centrations of NADH induced by the inhibition of glycolysis 
[15]. Such metabolic recruitment of REST/NRSF can induce 
the transcriptional repression of BDNF and its receptor TrkB 
[15] and activate other homeostatic pathways [74]. Indeed, 
REST/NRSF expression and translocation to the nucleus 
reduces neuronal firing [75], scales down excitatory inputs 
and potentiates inhibitory transmission onto excitatory neu-
rons [76, 77]. More recently, it was also shown that REST/
NRSF boosts  K+ buffering and glutamate reuptake in astro-
cytes that are critical to maintain synaptic homeostasis [78].

Finally, several groups reported that 2DG-induced inhi-
bition of glycolysis favors the synthesis of NADPH by 
enhancing the pentose phosphate pathway (PPP) in neurons 
[79–82]. PPP is the major source of NADPH in neurons 
[83] and is enhanced not only by 2DG, but also in case of 
reduced brain glucose availability [79], fasting [84, 85] or 
KD [86]. In these cases, glucose is redirected to the PPP, as 
shown by the increase of PPP metabolites, probably due to 
the increased demand for NADPH, aimed at strengthening 
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antioxidant defense. NADPH acts as the crucial co-factor 
of 5α-reductase (5α-R), the rate-limiting enzyme for ALLO 
biosynthesis [52, 87]. The N-terminal part of 5α-R binds to 
steroid substrates, whereas the C-terminal portion contain-
ing a glycine-rich region binds NADPH [88]; consequently, 
a higher concentration of NADPH will increase neuronal 
ALLO production [89]. Also known as endogenous ben-
zodiazepine, ALLO acts as a potent allosteric modulator of 
synaptic and extrasynaptic  GABAA receptors and, therefore, 
enhances both phasic and tonic inhibition [90–92]. In par-
ticular, tonic inhibition, mediated by extrasynaptic  GABAA 
receptors bearing α/δ subunits is specifically sensitive to 
neurosteroids, and the resulting potentiation of tonic con-
ductance favors a form of shunting inhibition that strictly 
controls neuronal network excitability and seizure suscep-
tibility [93].

Given the pro-epileptogenic effect of the lack GABAer-
gic tonic inhibition identified in SynIIKO mice [37, 59], we 
focused on the increase in brain ALLO levels as the potential 
mechanism for the anti-epileptogenic action of LGID and for 
its gender-specificity. We observed similar ALLO concen-
trations in the brain of male and female SynIIKO mice fed 
with StD, as previously reported in the brain of naïve rodents 
[94–96]. Notably, LGID treatment increased ALLO levels 
only in female cortico-hippocampal area, whilst the plas-
matic concentration of ALLO was not affected by LGID in 
both sexes. These results suggested that the gender-specific-
ity of LGID is probably not related to changes of peripheral 
levels of ALLO but could derive from a sex-specific increase 
of local synthesis of ALLO in the brain of SynIIKO females 
fed with LGID.

Our data on cortical ALLO, although still preliminary, 
indicate an avenue for future research. To find a mechanis-
tic explanation for the LGID-induced increase of cortical 
ALLO production in females, it will be crucial to consider 
that: (i) female rodents have plasma and cortical progester-
one (PROG) concentrations higher than males, irrespective 
of the phase of their estrous cycle [95, 97] and (ii) ALLO is 
synthesized in the brain from PROG by the sequential action 
of 5α-R, which reduces PROG to 5α-dihydroprogesterone 
(5α-DHP) and 3α-hydroxysteroid oxidoreductase 
(3α-HSOR), which converts 5α-DHP into ALLO [98]. Thus, 
PROG is the precursor of the enzymatic cascade, initiated 
and rate-limited by 5α-R, that leads to ALLO biosynthesis 
in the brain [52].

Thus, future research activity will have the task of inves-
tigating whether, in females fed with LGID, the increase of 
NADPH concentrations potentiates the 5α-R activity and 
ALLO biosynthesis thanks to the higher PROG availabil-
ity, an effect that in males can be greatly reduced or absent 
because of the limited availability of PROG.

Other causes of the gender specificity, that deserve to be 
taken in consideration, are the possible sex differences in 

5α-R activity and/or in the sensitivity of  GABAA receptors 
to ALLO. Indeed, it was previously shown that the brain of 
female green anole lizards expresses higher levels of 5α-R 
than males [99] and that female mice are more sensitive 
to the anti-epileptic effects of ALLO because of a greater 
abundance of δ-subunit containing extra-synaptic  GABAA 
receptors [100].

Conclusions

The prevention of epilepsy is a relevant scientific challenge 
and an urgent unmet need. In human genetic epilepsy, no 
treatment is available thus far able to prevent the develop-
ment of epilepsy in patients at risk [3]. The investigation 
of the functional mechanisms underlying the homeostatic 
processes activated by the treatment with LGID represents 
a step forward for the identification of novel therapeutic 
solutions. The efficacy of LGID in delaying seizure onset in 
female mice suggest that this highly sustainable diet-based 
therapy is a promising strategy not only as an antiepileptic 
treatment, but to prevent or delay the appearance of the epi-
leptic phenotype in syndromes with distinct etiology sharing 
similar evolution of the epileptogenic process. Finally, the 
greater protection of LGID observed in females, underlines 
the importance of developing personalized gender-specific 
treatments.
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