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Abstract
Increasing evidence implicates astrocytic dysfunction in Alzheimer’s disease (AD), a neurodegenerative disorder charac-
terised by progressive cognitive loss. The accumulation of amyloid-β (Aβ) plaques is a histopathological hallmark of AD 
and associated with increased astrocyte reactivity. In APP/PS1 mice modelling established AD (9 months), we now show an 
altered astrocytic morphology and enhanced activity of astrocytic hemichannels, mainly composed by connexin 43 (Cx43). 
Hemichannel activity in hippocampal astrocytes is also increased in two models of early AD: (1) mice with intracerebroven-
tricular (icv) administration of Aβ1-42, and (2) hippocampal slices superfused with Aβ1-42 peptides. In hippocampal gliosomes 
of APP/PS1 mice, Cx43 levels were increased, whereas mice administered icv with Aβ1-42 only displayed increased Cx43 
phosphorylation levels. This suggests that hemichannel activity might be differentially modulated throughout AD progression. 
Additionally, we tested if adenosine A2A receptor (A2AR) blockade reversed alterations of astrocytic hemichannel activity 
and found that the pharmacological blockade or genetic silencing (global and astrocytic) of A2AR prevented Aβ-induced 
hemichannel dysregulation in hippocampal slices, although A2AR genetic silencing increased the activity of astroglial 
hemichannels in control conditions. In primary cultures of astrocytes, A2AR-related protective effect was shown to occur 
through a protein kinase C (PKC) pathway. Our results indicate that the dysfunction of hemichannel activity in hippocampal 
astrocytes is an early event in AD, which is modulated by A2AR.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder 
characterised by a progressive decline of cognitive func-
tions, namely learning and memory, which is linked with 
an abnormal accumulation of amyloid-β peptides (Aβ). 
Although the presence of Aβ plaques is a major histopatho-
logical hallmark of established AD, it is considered that 
the extracellular accumulation of soluble Aβ oligomers is 
a causative agent of neurodegeneration, mainly of synaptic 
deterioration that is usually associated with the first signs 

of memory impairments preceding the formation of Aβ 
deposits that are characteristic of early AD (reviewed in [1]). 
The hippocampus is particularly affected in early stages of 
AD, undergoing structural and functional changes typified 
by alterations of synaptic plasticity that are considered the 
neurophysiological basis of learning and memory encoding 
(reviewed in [2]). Astrocytes are glial cells with multiple 
processes that establish contact with 60–70% of hippocam-
pal synapses and regulate synaptic plasticity, mainly through 
their capacity to release gliotransmitters, such as ATP and 
glutamate, and to uptake glutamate and GABA from the 
synaptic cleft [3–5]. Accordingly, increasing evidence sup-
ports a role of astrocytes in AD onset and progression, as 
heralded by several morphological and molecular changes 
of astrocytes in AD mouse models (e.g. APP/PS1) and in 
human patients [6, 7] as well as by the link between Aβ 
plaques formation and changes in astrocytes morphology 
and activity [8, 9].
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Astrocytic responses depend on the functions of connex-
ins (Cx), which are proteins forming gap junction channels 
and hemichannels that allow inter-cellular fluxes of ions and 
small molecules, such as IP3, ATP, glutamate, and energy 
metabolites (reviewed in [10, 11]). Astrocytic hemichannels 
are mainly composed of hexamers of Cx43 and Cx30, which 
accumulate in astrocyte processes allowing the release of gli-
otransmitter and ion fluxes that can regulate hippocampal syn-
aptic transmission and plasticity, and consequently memory 
[12, 13]. Astrocytic Cx43 levels are upregulated in animal 
models of AD, namely in transgenic APP/PS1 and 5xFAD 
mice [14–16]. Moreover, there are evidences of dysfunctional 
astrocytic hemichannels in animal models of AD that do not 
exhibit alterations on gap junction astrocytic communication 
[17–19]. Furthermore, in adult APP/PS1 mice with 8–18 
months of age, it was reported that activated microglial cells 
did not contribute to the elevated connexin immunoreactivity 
that was concentrated in astroglial processes infiltrating the 
amyloid plaques [14], implying that the AD-related alteration 
of connexins hemichannels is intrinsic to astrocytes.

Our group previously showed that cultured astrocytes 
exposed to Aβ peptides display an enhancement of Cx43 
hemichannels and that adenosine A2A receptors (A2AR), 
which are closely associated with Cx43, regulate the levels and 
activity of hemichannels [20]. A2AR modulate key astrocytic 
functions that are affected by Aβ exposure, such as glutamate 
uptake [21], ATP release and hemichannel activity [20], and 
Ca2+ signalling [22], and we recently showed that the genetic 
deletion of astrocytic A2AR in the hippocampus of adult mice 
impairs synaptic plasticity and cause memory deficits [23]. 
Moreover, several studies support the idea that A2AR are a 
promising target to manage AD, since the pharmacological or 
genetic blockade of A2AR confers neuroprotection [24–28]. 
Likewise, as occurs for Cx43, astrocytic A2AR are increased in 
the hippocampus of mice exposed intra-cerebro-ventricularly 
to Aβ [21], mice expressing human amyloid precursor protein 
[29], 3xTg-AD mice [28] and APP/PS1 mice [26] as well as 
in AD patients [29]. However, it remains to be clarified if the 
activity of Cx43 hemichannels is modified in early AD and 
whether A2AR regulate the activity of hemichannels in hip-
pocampal astrocytes. Thus, in the present study, we resorted 
to in vivo and ex vivo models of early AD to investigate altera-
tions in astrocytic hemichannel activity in hippocampal slices 
and tested if A2AR modulate Cx43 hemichannel activity under 
physiological and AD-like conditions.

Materials and methods

Animals and surgeries

Animals were kept with food and water available ad libi-
tum under a controlled environment (23 ± 2 °C, 50 ± 10% 

relative humidity and 12 h light/dark cycle). Mice were 
handled following the “3R” principles, and all experiments 
were approved by the Ethical Committee of the Center for 
Neuroscience and Cell Biology of the University of Coim-
bra (ORBEA_300_2021/24092021) and certified by Direção 
Geral de Alimentação e Veterinária (DGAV; Portuguese 
National Authority for Animal Health and Well-Being, 
0421/000/000/2021).

A line of double transgenic mice, APPswe/
PS1dE9 (APP/PS1), with B6C3F1/J genetic back-
ground (Jackson Laboratory, Bar Harbor, Maine, 
strain B6;C3-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax 
RRID:MMRRC_034832-JAX) and wild type (WT) lit-
termates were used. We chose to use male mice, to 
avoid estrous cycle influences, with 9 months old, as the 
deficits of reference memory and of synaptic plastic-
ity are already evident in both males and females at this 
age [25, 30]. We also used C57Bl/6 male mice obtained 
from Charles River Laboratories Barcelona, Spain (MGI 
catalogue number (Cat#) 5811150, Research Resource 
Identifier, RRID:MGI:5811150), global A2AR knockout 
(GbA2ARKO) and forebrain neuron conditional knock-
out mice (FbA2ARKO) with C57Bl/6 genetic background 
that were generated by Jiang-Fan Chen (Boston University 
School of Medicine, MA). The selective deletion of A2AR 
in astrocytes was accomplished in A2AR floxed (A2A

flox/flox) 
mice through the Cre-lox method. Briefly, an AAV5-GFAP-
GFP-CRE viral construct (1 µL from 4.8 × 1012 particles/mL, 
obtained from Vector Core, University of North Carolina, 
USA) was bilaterally administrated into the CA1 region of 
the dorsal hippocampus (GFAP-CRE-A2AR mice), whereas 
control (GFAP-CTR) mice received a similar construct 
without Cre recombinase, AAV5-GFAP-eGFP (Vector 
Core, University of North Carolina, USA), as previously 
described [23].

Some C57Bl/6 mice (5 mice) were subjected to an intra-
cerebro-ventricular (icv) administration of the synthetic pep-
tide Aβ1-42 (Bachem), carried out as previously described 
[24, 31]. Aβ1-42 was dissolved in sterile water to obtain a 
solution mostly composed of soluble monomers and low 
molecular weight oligomers (2.25 mg/mL) and 4 μL of 
Aβ1-42 (2 nmol) or water (vehicle) were administered icv, 
which translates into 5–30 pmol levels of Aβ1-42 within the 
hippocampus [24]. This Aβ1-42-icv model recapitulates two 
main features of early AD, namely the impairment of ref-
erence memory and of synaptic function, as we previous 
reported [24, 31].

Morris water maze

The Morris water maze test was performed as previously 
described [32] in order to evaluate hippocampal-dependent 
spatial learning and memory. The test was done using a 
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105 cm diameter circular pool filled with water opacified 
with non-toxic white paint. A platform was submerged 
1 cm underneath water surface. The acquisition train-
ing phase consisted of four swimming trials of 60 s per 
day with a 20 min inter-trial interval. In each trial, mice 
were placed in the pool from a different drop location and 
given 60 s to find the location of the hidden platform. To 
complete the trial, the animals must remain 10 s on the 
platform. This stage was completed when the average of 
escape latency from the four drop points reached 20 s in 
WT mice. It was then followed by a retention/probe trial 
in which the platform was removed and mice were placed 
on the pool from a random drop location and allowed to 
swim freely for 60 s. The number of crossings of the hid-
den platform location was recorded with Any-Maze ver-
sion 4.99 tracking software (Stoelting, Wood Dale, USA, 
RRID:SCR_014289). The strategies used by mice to find 
the platform location in the retention trial were analysed 
offline and classified as hippocampus-dependent (allocen-
tric) or hippocampus-independent (egocentric), as previ-
ously described [33].

Pharmacological treatments in hippocampal slices

Mice were sacrificed by decapitation after deep anaesthe-
sia with halothane. The brain was removed and the hip-
pocampus dissected in ice-cold, oxygenated (95% O2 and 
5% CO2) artificial cerebrospinal fluid solution (aCSF, com-
position: 124 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 
26 mM NaHCO3, 10 mM glucose, 1 mM MgSO4, and 2 
mM CaCl2; pH 7.4). Transversal hippocampal slices (400 
μm-thick) were obtained with a McIlwain tissue chopper, 
and then allowed to recover functional and energetically 
in gassed ACSF for 90 min at 32 °C.

Control hippocampal slices (CTR) were only super-
fused with aCSF. For Aβ1-42 challenge, hippocampal slices 
were superfused with Aβ1-42 (50 nM in aCSF) for 60 min, a 
concentration and time of peptide exposure that we previ-
ously showed to affect synaptic plasticity (see [34]), before 
assaying hemichannel activity. Aβ1-42 solution contained 
mainly soluble monomers and oligomers, as previously 
reported by us [21, 24]. When testing the effect of A2AR, 
slices were incubated for 30 min with the A2AR selective 
antagonist, SCH58261, [(2-(2-furanyl)-7-(2-phenylethyl)-
7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine, 
50 nM in aCSF, Tocris Bioscience] prior to the challenge 
with Aβ1-42, and continuously superfused with SCH58261 
during the exposure to Aβ1-42. In experiments with APP/PS1 
mice, hippocampal slices were superfused with Gap19 (250 
μM in aCSF; Tocris Bioscience) for 90 min before assaying 
hemichannel activity.

Ethidium bromide uptake assay 
and immunolabelling of astrocytes

The activity of hemichannels was carried out with an eth-
idium bromide (EtBr) assay as previously described [35, 36]. 
Briefly, after the pharmacological treatments, hippocampal 
slices were incubated with EtBr (20 μM; Sigma-Aldrich) in 
aCSF solution in an oxygenated chamber for 5 min at room 
temperature (RT) and rinsed with gassed aCSF for 15 min 
to stop EtBr uptake. Hippocampal slices were then fixed 
by immersion overnight at 4 °C in a 4% paraformaldehyde 
(PFA) solution in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM 
Na2HPO4 and 1.9 mM KH2PO4, pH 7.4) and then rinsed 
with a glycine solution (0.5 M) for 5 min to block unreacted 
aldehydes that produce background signals. This step was 
followed by several washes with PBS. Slices were protected 
from light throughout the entire procedure and were fur-
ther processed for GFAP immunolabelling, as previously 
described [23]. Briefly, hippocampal slices were permea-
bilized for 30 min with 0.1% Triton X-100 in PBS and then 
with blocking solution (10% horse serum, 0.1% Triton X-100 
in PBS) for 2 h. Slices were then incubated for 2 days at 4 °C 
with the primary antibody, rabbit anti-GFAP (1:1000, Milli-
pore Cat# AB5804, RRID:AB_2109645) diluted in blocking 
solution. After washing, slices were incubated first with a 
blocking solution for 30 min and then with a donkey anti-
rabbit 488 (1:1000, Thermo Fisher Scientific Cat# A-21206, 
RRID:AB_2535792) secondary antibody for 4 h at RT. In 
the case of hippocampal slices obtained from GFAP-CRE-
A2AR mice, we also used as a primary antibody goat anti-
GFP (1:500, Abcam Cat# ab6673, RRID:AB_305643) and 
anti-goat 488 (1:1000, Molecular Probes Cat# A-11055, 
RRID:AB_2534102) and an anti-rabbit 647 (1:1000, 
Molecular Probes Cat# A-21245, RRID:AB_141775) as 
secondary antibodies. Hippocampal slices were then washed 
three times with PBS during 10 min, incubated with Hoe-
chst33258 (1:2000, Sigma Aldrich) for 30 min at RT to stain 
the nuclei, washed again three times during 10 min with PBS 
and mounted onto Ibidi μ-slide 8 well treated using Fluoro-
mount Aqueous Mounting Medium (Sigma-Aldrich). Hip-
pocampal slices were visualised with a LSM 710 confocal 
inverted microscope (Zeiss, RRID:SCR_018063) with a 40× 
objective (Plan-Apochromat 40×/1.4 Oil DIC M27 objec-
tive) and Z-stacks were acquired using Black Zen software 
(RRID:SCR_018163).

Analysis of EtBr fluorescence signal in astrocytes 
involved the processing of the images obtained by confocal 
microscopy through deconvolution using Huygens software 
(RRID:SCR_014237) to reduce out-of-focus information, 
thus increasing spatial resolution through a classic maxi-
mum likelihood estimation (CMLE) algorithm. Then, a 
normalisation operation was conducted in the GFAP chan-
nel in order to improve visualisation of GFAP+ cells with 
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Imaris software (RRID:SCR_007370), which was used in 
the subsequent processing stages and analysis. The next step 
was a nuclei segmentation through creation of surfaces in 
the nuclei channel. Astrocyte nuclei were manually selected 
according to the following criteria: (i) cells positive for 
GFAP which comprehend a single nucleus enwrapped by a 
GFAP immuno-labelled structure, (ii) nucleus not truncated 
and (iii) nucleus exhibiting EtBr fluorescence above back-
ground. An additional criterion was considered when analys-
ing hippocampal slices from GFAP-CRE-A2AR mice: only 
GFAP-positive cells with GFP immuno-labelling were eval-
uated. EtBr uptake was quantified as a ratio between EtBr 
fluorescence intensity (in arbitrary units, au) and nucleus 
volume (µm3) for each astrocyte (i.e. GFAP+ cell); we then 
calculated, for each experimental condition, the mean of 
EtBr uptake normalised (ratio) to the corresponding control 
condition. It should be mentioned that all GFAP+ cells take 
up EtBr and that we checked for differences in the volume 
of astrocyte nuclei amongst the different experimental con-
ditions analysed and no statistically significant differences 
were found (data not shown).

Aβ immunohistochemistry and thioflavin‑S staining

APP/PS1 and WT mice were transcardially perfused 
with ice-cold PBS followed by 4% PFA in PBS. Brains 
were removed, post-fixed for 24 h in PFA, dehydrated in 
30% sucrose solution for 72 h at 4 °C and cryopreserved 
at −80 °C. Coronal brain sections (30 μm) were obtained 
using a cryostat (CryoStar NX50, ThermoScientific, 
RRIDD:SCR_022732) for Aβ immunolabelling and thio-
flavin-S staining following a previously described protocol 
with minor modifications [37]. First, antigen retrieval was 
performed through the incubation of air-dried sections in cit-
rate buffer (10 mM sodium citrate tribasic dehydrate, 0.05% 
Tween 20, pH 6.0) at 95 °C for 15 min. Then, sections were 
rinsed three times with PBS for 5 min, permeabilized with a 
0.2% Tween 20 solution in PBS for 15 min and non-specific 
binding blocked by incubation of 1% bovine serum albumin 
(BSA) 0.05% Tween 20 in PBS for 30 min. Sections were 
incubated overnight in an airtight humidity chamber with 
the mouse anti-β-amyloid (βA) primary antibody (1:250, 
Covance Cat# SIG-39320, RRID:AB_662798) in blocking 
solution. Sections were washed again three times in PBS 
for 5 min prior to incubation for 2 h with the secondary 
anti-mouse Alexa594 antibody (1:1000, Molecular Probes 
Cat# A-21203, RRID:AB_141633). Following three rinses 
with PBS for 5 min, sections were stained with 1% thio-
flavin-S solution for 10 min, differentiated in 70% ethanol, 
rinsed thrice with water, mounted with DAKO mounting 
medium and cover-slipped. Finally, hippocampal sections 
were visualised by fluorescence microscopy (Zeiss, Axio 

Imager Z2 microscope, RRID:SCR_018856) and the pic-
tures were captured using the AxioVision Imaging System 
(RRID:SCR_002677 version 4.8).

Immunohistochemistry in brain slices

Free floating coronal brain sections (30 μm-thick) from 
APP/PS1 and WT mice were obtained as described above. 
For GFAP immunolabelling, brain sections were rinsed 
with PBS, incubated with permeabilization solution (0.1% 
Triton-X100 in PBS) for 15 min and then with blocking 
solution (10% horse serum + 0.1% Triton-X100 solution 
in PBS) for 2 h. Afterwards, sections were incubated with 
the rabbit anti-GFAP (1:1000, Millipore Cat# AB5804, 
RRID:AB_2109645) primary antibody overnight at 4 °C. 
Sections were then washed with PBS, further incubated 
with anti-rabbit Alexa594 (1:1000, Thermo Fisher Scientific 
Cat# A-21207, RRID:AB_141637) for 2 h at RT and washed 
again with PBS. Nuclei were stained with DAPI (1:5000, 
Invitrogen) for 10 min at RT. Following rinsing with PBS, 
sections were mounted onto gelatin-coated slides using 
ProLong™ Antifade mounting medium (Cell Signaling 
Technology). Z-stack images were captured with intervals 
of 0.5 μm with a LSM 710 confocal inverted microscope 
(Zeiss, RRID:SCR_018063) with a 63 × objective (Plan-
Apochromat 63x/1.40 Oil DIC M27) for the tridimensional 
reconstruction of the astrocytic structure.

3D reconstruction of astrocytes

The morphology of astrocytes was studied as previously 
described [23, 38, 39] by tridimensional reconstruction of 
astrocytic structures using an open access tool, Simple Neu-
rite Tracer (SNT, RRID:SCR_016566) plugin available in 
Fiji-ImageJ software. The tridimensional reconstruction of 
astrocytic processes within the stratum radiatum of the CA1 
subregion of the dorsal hippocampus was carried out using 
Z-stack images as reported above. Astrocytes were selected 
for the tridimensional reconstruction of arbors of astrocytic 
processes according with the following criteria: (i) a single 
nucleus enwrapped by a GFAP-immunolabelled structure, 
(ii) the main structure of the astrocyte did not present trun-
cated processes and (iii) reconstruction was carried out in 
the first five astrocytes fulfilling the previously mentioned 
criteria in each animal of both genotypes. The morphometric 
analysis of astrocytic arbor complexity was performed by 
quantifying the number of processes, their total length and 
the number of intersections with concentric spheres start-
ing at the centre of the soma with intervals of 4 μm (Sholl 
analysis).
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Preparation of gliosomes

Gliosomes were obtained from hippocampal tissue through 
a discontinuous Percoll gradient as previously described 
[40, 41]. Briefly, hippocampal tissue was homogenised 
in ice-cold isolation sucrose solution (0.25 M sucrose, 10 
mM HEPES, pH 7.4 at 4 °C) using a glass-Teflon tissue 
grinder. Nuclei and debris were removed by centrifugation 
(1000g, 5 min at 4 °C) and the supernatant was carefully 
placed on top of the discontinuous gradient composed by 
23, 10, 6 and 2% v/v of Percoll in a sucrose solution (0.32 
M sucrose, 1 mM EDTA, pH 7.4 at 4 °C), which was strati-
fied by centrifugation (31,000g for 5 min at 4 °C), turning 
off the centrifuge brake for the last 2000g to avoid a sudden 
stop. Gliosomes were collected between the 2% and 6% v/v 
Percoll layers, whereas synaptosomes (purified synapses) 
were collected in the interface between the 23% and 10% 
of Percoll layers. Each fraction was washed with isotonic 
physiological solution 140 mM NaCl, 5 mM KCl, 5 mM 
NaHCO3, 1.2 mM NaH2PO4, 1 mM MgCl2, 10 mM glucose 
and 10 mM HEPES, pH 7.4 at 4 °C) and further centrifuged 
(30,000g for 20 min at 4 °C). Pellets were washed again in 
isotonic physiological solution and centrifuged (22,000g 
for 20 min at 4 °C), the supernatant was discarded and 
the pellets solubilised in RIPA lysis buffer supplemented 
with 1 mM dithiothreitol (Sigma Aldrich), 1 mM phenyl-
methylsulfonyl fluoride (PMSF, Sigma Aldrich), 0.001% 
of a protease inhibitor cocktail (CLAP; Sigma Aldrich) 
and phosphatases inhibitor cocktail phosphoSTOP (Roche). 
The comparative analysis of gliosomes and synaptosomes 
by Western blot allowed confirming the enrichment of our 
gliosomal preparation in proteins found in perisynaptic 
astrocytic processes, such as Cx43 and glutamate trans-
porters (GLT-1 and GLAST), as can be observed in Fig-
ure S1, the gliosomes preparation of adult wild-type mice 
had an enrichment not only in GFAP levels, but also of 
Cx43, GLT-1 and GLAST, as compared with synaptosomal 
preparations that were enriched in synaptophysin, a widely 
used synaptic marker.

Western blot

Western blot was performed as previously described [20]. 
The amount of protein samples used to quantify Cx43 and 
phosho-Cx43 at Ser368 was 3 and 30 µg, respectively; 
the amount of protein samples used to quantify other pro-
teins was as follows: 3 µg GFAP, 20 µg for GLT-1 and 
GLAST and 10 µg for synaptophysin. Membranes were 
probed with rabbit antibodies against Cx43 (1:8000, 
Sigma-Aldrich Cat# C6219, RRID:AB_476857), anti-
phospho-Cx43-Ser368 (1:1000, Cell Signaling Technol-
ogy Cat# 3511, RRID:AB_2110169), GLT-1 (1:1000 

ThermoFisher Scientific PA5-17099 RRID:AB_10978571) 
GLAST (1:1000 Abcam Ab416 RRID:AB_304334), GFAP 
(1:20,000, Millipore Ab5804 RRID:AB_2109645) or with 
mouse anti-synaptophysin antibody (1:20,000 Sigma S5768, 
RRID:AB_477523). These primary antibodies were diluted 
in Tris-buffered saline (137 mM NaCl, 20 mM Tris, pH 7.6) 
containing 0.1% Tween 20 (TBS-T) and 5% non-fat dry milk 
or 3% BSA overnight at 4 °C. After washing with TBS-T, 
membranes were incubated with IgG secondary antibod-
ies (anti-rabbit, 1:10,000, RRID: AB_228338; anti-mouse 
1:10,000, RRID:AB_228302, both from ThermoFisher Sci-
entific) for 2 h at RT. Membranes were then washed, revealed 
using enhanced chemiluminescence substrate (ECL; GE 
Healthcare) and visualised with an imaging system (Chemi-
doc, RRID:SCR_019037). Then, membranes were re-probed 
for anti-α-tubulin antibody (1:20,000, Sigma-Aldrich Cat# 
T6074, RRID:AB_477582) for protein load control. Den-
sitometric analysis of protein bands was performed using 
Image Lab Software (BioRad, RRID: SCR_014210). The 
relative densities of Cx43 and phospho-Cx43 were normal-
ised to α-tubulin and expressed as percentage of the respec-
tive control condition.

Astrocytic cultures

Primary cultures of astrocytes were prepared following a 
previously used protocol [20]. Briefly, mixed glial cultures 
were obtained from the cerebral cortex of 2–5 days Wistar 
rats, grown in astrocyte medium [DMEM, supplemented 
with 10% foetal bovine serum, penicillin (100 U/mL), strep-
tomycin (100 μg/ mL), HEPES (6 g/L), and sodium bicar-
bonate (0.84 g/L)] and maintained at 37 °C in a humified 
5% CO2 incubator for 10–15 days until reaching confluency. 
Microglia cells were removed by mechanical shaking of the 
mixed cultures in an orbital shaker for 4 h at 200 rpm and 
astrocytes detached by a mild trypsinization procedure, re-
seeded at a density of 5 × 104 cells/coverslip, and maintained 
in culture for 2–3 days prior to EtBr uptake.

Based on our previous experience [42], we manipulated 
different transducing systems to explore the mechanisms 
involved in the regulation of astrocytic hemichannels, 
namely using the cAMP analogue and activator of protein 
kinase A (PKA) 8-Br-cAMP (8-bromoadenosine-3',5'-cyclic 
monophosphate, 5 µM; Tocris), the protein kinase C (PKC) 
inhibitor GF109203X (2-[1-(3-dimethylaminopropyl)indol-
3-yl]-3-(indol-3-yl)maleimide, 5 µM; Tocris), and the PKC 
activator PMA (phorbol 12-myristate 13-acetate, Ascent Sci-
entific, 10 ng/mL). The concentrations of the compounds 
used were supramaximal, but selective for their targets (see 
[42]). All drugs were applied to cultured astrocytes 30 min 
prior to challenge with Aβ1-42 (1 μM, 24 h), a concentration 
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higher than that used in slices but that we previously defined 
to be required to trigger astrocyte reactivity and dysfunction 
in cells obtained from newborn rodents [20–22].

Following the exposure to these pharmacological agents, 
the activity of hemichannels was assessed through EtBr 
uptake as previously described [20]. Briefly, astrocytes 
were exposed for 10 min to EtBr (5 μM) in HBSS solu-
tion (137 mM NaCl, 5.4 mM KCl, 0.34 mM Na2HPO4, 0.44 
mM KH2PO4, 2.7 mM glucose, 1.2 mM CaCl2, pH 7.4), 
washed, fixed with 4% PFA solution and the nuclei stained 
with Hoechst 33,258. Following three rinses, coverslips were 
mounted with Fluoromount™ aqueous mounting medium. 
Images were taken from five random fields under epifluo-
rescence microscopy (Zeiss, Axio Imager Z2 microscope, 
RRID:SCR_018856 with AxioVision Imaging System, 
RRID:SCR_002677 version 4.8) and analysed by FIJI-
ImageJ software (RRID:SCR_002285).

Statistical analysis

Data are presented as mean ± SEM of the indicated num-
ber (n) of animals (in the case of behaviour and Western 
blot analysis) or hippocampal slices from different animals 
(for EtBr uptake quantification). In the case of data from 
tri-dimensional reconstructions of astrocytic processes, n 
refers to the number of cells reconstructed. Comparisons 
between experimental groups were performed with two-way 
ANOVA followed by Tukey's or Sidak's multiple compari-
sons test. Comparison between two experimental conditions 
was performed using either a paired or unpaired Student's t 
test. To identify differences between strategies used in the 
Morris water maze test, a table of contingency was built 
and a Fisher’s exact test of independence was performed. 
Differences in astrocytic morphometric analysis between 
WT and APP/PS1 mice (Sholl analysis) were assessed by 
multiple Student's t test using the Holm–Sidak method for 
correction of multiple comparisons. Statistical significance 
was set for p values < 0.05. All statistical tests were car-
ried out using Graphpad Prism software (version 8.0.1, 
RRID:SCR_002798).

Results

APP/PS1 mice exhibiting memory deficits present 
morphological alterations of hippocampal 
astrocytes

Learning and memory assessment using the Morris water 
maze test showed that WT mice displayed a normal 

learning pattern as they improved their performance 
throughout the acquisition stage reaching the escape 
latency criterium (20 s) on day 3 (day 1: 38.43 ± 4.07 s 
vs. day 3: 10.73 ± 1.57 s, n = 10); in contrast, APP/PS1 
mice did not reach the escape latency criterium (day 1: 
46.72 ± 2.12 s vs. day 3: 38.94 ± 2.20 s, n = 9). Two-way 
ANOVA identified the genotype as a source of variation 
(F1,17 = 56.63, p < 0.0001), and post hoc Sidak’s multi-
ple comparisons test showed a statistically significant 
difference between WT and APP/PS1 mice on day 2 
(20.15 ± 3.30 s vs. 41.90 ± 4.55 s, p < 0.0001) and on day 
3 (10.73 ± 1.57 s vs. 38.94 ± 2.20 s, p < 0.0001, Fig. 1A). In 
the probe trial, 24 h following the acquisition stage, APP/
PS1 mice crossed the platform location significantly fewer 
times than WT mice (WT: 2.70 ± 0.34, n = 10, vs. APP/
PS1: 0.56 ± 0.18, n = 9, p < 0.0001, t17 = 5.482, Fig. 1B). 
Thus, APP/PS1 mice displayed impaired hippocampal-
dependent memory. When analysing the search patterns, 
we observed that APP/PS1 preferentially resorted to non-
hippocampal-dependent strategies (only 33% of APP/
PS1 mice used strategies dependent on the hippocampus) 
whereas 90% of WT mice used hippocampal-dependent 
strategies to find the location of the hidden platform 
(p < 0.0001, Fig. 1C).

Next, we checked for the presence of Aβ accumula-
tion and deposition in the hippocampus of APP/PS1 mice. 
Figure 1D illustrates the accumulation of Aβ in the hip-
pocampus of APP/PS1 mice, and thioflavin-S staining 
further supports the existence of an accumulation of these 
peptides, suggesting the presence of amyloid plaques. By 
contrast, in the hippocampus of WT mice no thioflavin-
S staining was observed. Additionally, we investigated 
whether APP/PS1 mice displayed alterations in astrocytic 
arbor complexity through tri-dimensional reconstructions 
of astrocytes in the CA1 hippocampal region. Astrocytes 
of APP/PS1 mice displayed a significant increase in the 
total length of processes (APP/PS1: 1651.15 ± 43.18 µm vs 
WT: 1171.43 ± 54.27 µm, n = 15 astrocytes from three mice, 
p < 0.0001, t28 = 6.917, Fig. 1F) and also in the number of 
processes (APP/PS1: 98.07 ± 3.30 vs WT: 61.47 ± 2.30, 
n = 15 astrocytes from three mice, p < 0.0001, t28 = 9.098, 
Fig. 1G) relatively to hippocampal astrocytes from WT 
mice. This suggests an increment in morphologic complex-
ity of hippocampal astrocytes in APP/PS1 compared to WT 
mice. These results were supported by Sholl analysis which 
unveiled a significant augmentation of the astrocytic arbor 
complexity of APP/PS1 compared to WT mice at 8 µm and 
at 16–24 µm from the central soma (8 µm: p = 0.0312, 16 
µm: p = 0.0023, 20 µm: p = 0.0035 and 24 µm: p = 0.0033, 
Fig. 1H).
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Fig. 1   APP/PS1 mice displayed deficits in hippocampal-dependent 
memory, an accumulation of Aβ and of Aβ plaques and an increased 
astrocytic arbor complexity in the hippocampus. A In the Morris 
water maze test, APP/PS1 mice displayed a higher latency to find 
the hidden platform location in the acquisition learning curve than 
WT mice. ****p < 0.0001, two-way ANOVA followed by a post 
hoc Sidak’s multiple comparisons test. B APP/PS1 mice showed an 
impairment in spatial memory since the number of crossings of the 
platform location was significantly lower than WT mice in probe 
trial of the Morris water maze test. ****p < 0.0001, unpaired Stu-
dent’s t test. C Analysis of the search strategy patterns unveiled that 
WT mice preferentially used strategies implicating the hippocampus, 
whereas APP/PS1 mice mostly used strategies not dependent on the 
hippocampus to discover the hidden platform location in the probe 
trial of the Morris water maze. ****p < 0.0001, Fisher’s exact test of 

independence. Data are presented as mean ± SEM of n = 9–10 mice. 
D Representative images of thioflavin-S staining (left column, green) 
and Aβ immunolabelling (right column, red) disclosed the presence 
of amyloid-β plaques in the hippocampus of APP/PS1 but not of WT 
mice. Scale bar: 100 μm. E Representative images of GFAP immu-
nolabelling (red) using a magnification of 63 × in slices from WT and 
APP/PS1 mice showing the morphology of hippocampal astrocytes. 
Nuclei were stained with DAPI (blue). Scale bar: 20 μm. Representa-
tive fillings of tri-dimensionally reconstructed astrocytes are shown 
for each group: APP/PS1 mice exhibited an increase in morphologi-
cal complexity by evaluating F total length, G number of processes, 
and H Sholl analysis as compared with astrocytes from WT mice. 
Data are mean ± SEM of 15 astrocytes (from three different mice). 
****p < 0.0001, unpaired Student's t test and *p < 0.05, **p < 0.01 in 
Sholl analysis through multiple t tests
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Astrocytic Cx43 hemichannel activity is increased 
in the hippocampus of APP/PS1 mice

The activity of astrocytic hemichannels was assessed in 
hippocampal slices using the ethidium bromide (EtBr) 
uptake assay. Data showed a significant effect of the geno-
type in EtBr uptake by hippocampal astrocytes (p = 0.0179, 
F1,8 = 8.809) and further analysis with a post hoc multiple 
comparisons test unveiled a significant increase of EtBr 
uptake in hippocampal astrocytes of APP/PS1 compared 
with WT mice (1.00 ± 0.036 for WT vs 1.69 ± 0.087 for 
APP/PS1, n = 5, p = 0.0004, Fig. 2B). To investigate the 
contribution of Cx43 to the altered hemichannel activity 
in APP/PS1 mice, Cx43 hemichannels were selectively 

blocked with Gap19 [43]. Two-way ANOVA showed a 
significant effect of Gap19 (p = 0.0014, F1,7 = 26.13) and 
an interaction between Gap19 and genotype (p = 0.0015, 
F1,7 = 25.35). Sidak’s multiple comparisons tests disclosed 
a significant effect of Gap19 on EtBr uptake by hippocam-
pal astrocytes of APP/PS1 mice (1.685 ± 0.087 for CTR vs 
1.066 ± 0.163 for Gap19, n = 5, p = 0.0003). Thus, Cx43 
hemichannels were major contributors to the EtBr uptake 
and their blockade rescued the dysfunctional hemichannel 
activity, restoring astrocytic EtBr uptake to levels similar 
to WT (Fig. 2B).

Given the relevant role of Cx43 hemichannels in the 
altered EtBr uptake in APP/PS1 mice, we further evaluated 
putative alterations of Cx43 levels in gliosomes (membranes 

Fig. 2   APP/PS1 mice showed an increase of Cx43 hemichannel 
activity in hippocampal astrocytes and an increase of Cx43 levels. A 
Representative images of EtBr fluorescence signal (red) in astrocytes 
in hippocampal slices of WT and of APP/PS1 mice. Astrocytes were 
immuno-labelled with anti-GFAP (green) and nuclei were stained 
with Hoechst 33,258 (blue). Scale bars: 20 μm. B EtBr uptake was 
significantly higher in hippocampal astrocytes of APP/PS1 mice than 
in WT mice. The selective blockade of Cx43 hemichannels signifi-
cantly reduced EtBr uptake in astrocytes of APP/PS1 mice, indicat-
ing the involvement of these channels in EtBr uptake. Hippocampal 
slices from APP/PS1 mice were treated with the Cx43 hemichan-
nel inhibitor, Gap19 (250 µM, 90 min), prior to EtBr uptake assay. 
***p < 0.001, two-way ANOVA followed by post hoc Sidak’s mul-

tiple comparisons test. The activity of hemichannels was assessed 
through the fluorescence intensity of EtBr signal, per astrocyte 
(GFAP+cells) nucleus volume (µm3) from WT or APP/PS1 mice 
and expressed as a ratio of control condition. Data are mean ± SEM 
of five independent experiments. C Levels of total Cx43, but not of 
phospho-Cx43 at Ser 368 (D), were increased in gliosomes (mem-
branes from astrocytic processes) obtained from the hippocampus of 
APP/PS1 relatively to WT mice. The ratio between immunoreactivi-
ties for total Cx43 or for phospho-Cx43 at Ser 368 to α-tubulin levels 
were expressed as a percentage of values obtained in WT mice. Data 
are mean ± SEM of 3–4 independent experiments. *p < 0.05, unpaired 
Student’s t test. Representative immunoblots for Cx43, phospho-Cx43 
and α-tubulin are shown below the average bar graphs
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of astrocytic processes) obtained from the hippocampus of 
APP/PS1 compared to WT mice. Data showed a substantial 
enhancement of Cx43 levels in gliosomes from APP/PS1 
mice when compared with WT mice (100.00 ± 4.68% for WT 
vs. 251.33 ± 55.02% for APP/PS1 mice, n = 4, p = 0.0337, 
t6 = 2.741, Fig. 2D). Since the activity of hemichannels is 
modulated by phosphorylation, we also evaluated altera-
tions of Cx43 phosphorylation at Ser368 and no alterations 
were observed between gliosomes of WT and APP/PS1 mice 
(100.00 ± 43.85% for WT vs. 87.95 ± 32.30% for APP/PS1, 
n = 4, p = 0.8323, t6 = 0.2212, Fig. 2E). The ratio between 
pCx43 and total Cx43 was 1.00 ± 0.12 for WT mice and 
of 0.64 ± 0.12 for APP/PS1 mice, supporting an increase in 
total Cx43 levels.

Hemichannel activity is affected in hippocampal 
astrocytes at early AD stages

The aforementioned data showed that adult APP/PS1 mice 
displayed hippocampal-dependent memory deficits at 9 
months of age, exhibiting also Aβ plaques in parallel with 
altered astrocytic morphology, heighten hemichannel activ-
ity and increased Cx43 levels in the hippocampus. However, 
several evidences suggest that soluble Aβ oligomer rather 
than Aβ deposits primarily contribute to neuronal dysfunc-
tion, synaptic loss and early memory deficits (reviewed in 
[1, 44]) as well as with astrocytic dysfunction in early AD 
stages [34, 35]. Therefore, we next evaluated hemichan-
nel activity in conditions mimicking early AD, using hip-
pocampal slices directly superfused with Aβ1-42 (50 nM, 
60 min) and hippocampal slices collected from adult mice 
intracerebroventricularly injected with Aβ1-42 (icv-Aβ1-42), 
which we previously showed to cause hippocampal synaptic 
plasticity and memory impairment after 15 days of peptide 
administration without evidence of Aβ deposits [24, 34]. 
In hippocampal slices exposed to Aβ1-42, the EtBr uptake 
by astrocytes was significantly higher than that of control 
slices (2.03 ± 0.185, n = 5, for Aβ1-42 vs. 1.00 ± 0.075, n = 4, 
for CTR, p = 0.0475, t3 = 3.250, Fig. 3A). Similarly, the 
icv Aβ1-42 administration also resulted in an enhancement 
of EtBr uptake by hippocampal astrocytes compared to 
vehicle-injected control mice (icv-VEH: 1.00 ± 0.075, n = 4 
vs. icv-Aβ1–42: 1.42 ± 0.127, n = 5, p = 0.0323, t7 = 2.664, 
Fig. 3B).

icv‑Aβ1‑42 peptides administration affects Cx43 
phosphorylation at Ser368

Since in APP/PS1 mice, the enhancement of the activity 
of astrocytic hemichannels was linked with an increase of 
Cx43 levels, we next analysed if Aβ1-42-icv administration 
affected Cx43 levels in hippocampal gliosomes. Curiously, 
although no alterations were found in Cx43 levels (WT: 

Fig. 3   Hemichannel activity was also enhanced in astrocytes of 
models mimicking early AD. The activity of hemichannels was aug-
mented in astrocytes of hippocampal slices obtained from A WT 
mice and incubated with Aβ1-42 (50 nM, 60 min) and B from WT 
mice administrated icv with Aβ1-42 (icv-Aβ1-42), compared to con-
trol (or icv-vehicle administration) WT mice, being the EtBr uptake 
assay performed after 15 days of Aβ1-42- or vehicle-icv administra-
tion. The activity of hemichannels was evaluated by the mean fluo-
rescence intensity of EtBr signal per astrocyte nucleus volume and 
expressed as a ratio of control for each experimental condition. Data 
are mean ± SEM of 4–5 independent experiments. *p < 0.05, paired 
for (A) or unpaired for (B) Student's t test

Fig. 4   Aβ1-42-icv administration increased Cx43 phosphorylation 
at Ser368 in hippocampal gliosomes of mice mimicking early AD 
stages. Although no alterations were observed in A Cx43 levels, an 
enhancement in B phospho-Cx43 levels (at Ser368) was observed in 
gliosomes obtained from the hippocampus of mice icv administrated 
with Aβ1-42 in comparison with icv-vehicle (VEH)-injected control 
mice. Data are ratios between Cx43 or phospho-Cx43 and α-tubulin 
(loading control protein) immunoreactivities expressed as percent-
age of the control condition (icv-VEH). Data are mean ± SEM of 4–5 
independent experiments. **p < 0.01, unpaired Student’s t test. Rep-
resentative immunoblots for Cx43, phospho-Cx43 and α-tubulin are 
shown
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100.00 ± 2.41% vs. Aβ: 93.29 ± 15.45%, n = 5, p = 0.6836, 
t8 = 0.4227, Fig. 4A), a significant increase in the levels of 
Cx43 phosphorylated at Ser368 residue was observed in gli-
osomes from the hippocampus of Aβ1-42-icv injected com-
pared to vehicle-injected control mice (WT: 100.00 ± 6.30% 
vs. Aβ: 171.28 ± 16.27%, n = 4, p = 0.0065, t6 = 4.085, 
Fig. 4B). Accordingly, the ratio phospho-Cx43(Ser368)/total 
Cx43 was 0.98 ± 0.05 for icv-VEH mice and 1.56 ± 0.05 for 
icv-Aβ1-42 mice.

A2AR modulate the activity of hemichannel activity 
in hippocampal astrocytes

Next, we investigated whether astrocytic A2AR were 
involved in the modulation of the activity of hemichan-
nels in astrocytes of hippocampal slices. For this purpose, 
we used a mouse model with astrocytic A2AR genetically 
silenced in the hippocampus, as described above (“Animals 
and surgeries" section). Data showed that silencing astro-
cytic A2AR increased EtBr uptake by astrocytes when com-
pared with the control mice (1.25 ± 0.044 for GFAP-CRE-
A2AR vs. 1.00 ± 0.031 for GFAP-CTR, n = 4, p = 0.0035, 
t6 = 4.641, Fig. 5A). Additionally, we investigated if silenc-
ing astrocytic A2AR affected the total and phosphorylated 
levels of Cx43. Data showed a significant increase in the 
levels of Cx43 (GFAP-CRE-A2AR: 147.97 ± 16.06% vs. 
GFAP-CTR: 100.00 ± 1.78% n = 5, p = 0.0179, t8 = 2.968, 

Fig. 5B) and of phospho-Cx43 at Ser368 (GFAP-CRE-
A2AR: 140.78 ± 15.70% vs. GFAP-CTR: 100.00 ± 1.49% 
n = 7, p = 0.0238, t12 = 2.586, Fig.  5C), being the ratio 
phosphoCx43/Cx43 similar for both groups (GFAP-CTR: 
1.00 ± 0.09 vs. GFAP-CRE-A2AR: 0.098 ± 0.12). These data 
confirm that A2AR control the activity of hemichannels com-
posed by Cx43 in hippocampal astrocytes, increasing Cx43 
levels and Cx43 phosphorylation.

A2AR regulate alterations in astrocytic hemichannel 
activity triggered by an acute challenge with Aβ1‑42

To further explore the role of A2AR in the dysregulation 
of astrocytic hemichannel activity triggered by Aβ1-42 
peptides, we resorted to different approaches. First, a 
pharmacological strategy was employed where hip-
pocampal slices were treated ex vivo with A2AR selective 
antagonist, SCH58261, prior to Aβ1-42 challenge. Two-
way ANOVA revealed an interaction between Aβ1-42 and 
SCH58261 (F1,14 = 5.241, p = 0.0381), and post hoc analy-
sis with Tukey’s multiple comparisons test revealed that 
A2AR selective blockade prevented the increase in EtBr 
uptake triggered by Aβ1-42 (Aβ1-42: 2.03 ± 0.185, n = 5, 
vs. SCH58261 + Aβ1-42: 1.24 ± 0.158, n = 5, p = 0.0066, 
Fig. 6A, of noting that the Aβ1-42/SAL data are the same 
presented in Fig. 3A). The administration of SCH58261 
per se did not significantly affect EtBr uptake, as compared 

Fig. 5   Astrocytic A2AR genetic silencing increased the activity of 
hemichannels and the levels of Cx43 and of phospho-Cx43 at Ser368 
in hippocampal astrocytes. A Deletion of A2AR selectively in astro-
cytes led to the enhancement of EtBr uptake in hippocampal astro-
cytes. Hemichannel activity was evaluated by the mean fluorescence 
intensity of EtBr signal per astrocyte nucleus volume expressed as a 
ratio of control condition (GFAP-CTR) in hippocampal slices from 
GFAP-CTR and GFAP-CRE-A2AR mice. The levels of B Cx43 and 

of C phospho-Cx43 at Ser368 were increased in gliosomes obtained 
from the hippocampus of GFAP-CRE-A2AR compared to GFAP-
CTR mice. Immunoreactivity ratio of Cx43 and of phospho-Cx43 to 
α-tubulin were expressed as percentage of GFAP-CTR. Representa-
tive immunoblots for Cx43, phospho-Cx43 and α-tubulin are shown. 
Data are mean ± SEM of 4–7 independent experiments. *p < 0.05, 
**p < 0.01 unpaired Student’s t test
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with control conditions (SCH: 0.891 ± 0.112 vs CTR SAL: 
1.000 ± 0.075; p = 0.9604, Fig. 6A). Moreover, we further 
resorted to A2AR genetic silencing. In GbA2ARKO mice, 
two-way ANOVA showed an interaction between genotype 
and Aβ1-42 (p = 0.0035, F1.4 = 38.24) and Sidak’s multiple 
comparisons tests unveiled that the amount of EtBr taken 
by astrocytes in hippocampal slices from GbA2ARKO mice 
was significantly higher than in WT mice (KO: 1.34 ± 0.087 
vs. WT: 1.00 ± 0.088, n = 3, p = 0.0493). Furthermore, Aβ1-42 
superfusion of hippocampal slices enhanced EtBr uptake 
in WT mice (Aβ1-42: 1.42 ± 0.109 vs. CTR: 1.00 ± 0.088, 
n = 3, p = 0.0023), but did not affect EtBr uptake by astro-
cytes in hippocampal slices from GbA2ARKO mice (CTR: 
1.34 ± 0.087 vs. Aβ1-42: 1.32 ± 0.051, n = 3, p = 0.9069, 
Fig. 6B). Interestingly, despite no significant differences 

were detected in Cx43 levels (WT: 108.65 ± 10.92% vs. KO: 
106.26 ± 9.88%, n = 6, p = 0.8746, t10 = 0.1619, supplemen-
tary data Figure S2A), a downregulation in Cx43 phospho-
rylation at Ser368 was observed in gliosomes obtained from 
the hippocampus of GbA2ARKO mice (WT: 100.00 ± 9.74 
vs. KO: 67.24 ± 3.57, n = 4, p = 0.0196, t6 = 3.158, supple-
mentary data Figure S2B). When A2AR genetic deletion 
is selectively carried out in astrocytes, two-way ANOVA 
showed an interaction between Aβ1-42 and the effective 
viral construct administrated (p = 0.0183, F1,6 = 10.34) 
and Sidak’s multiple comparisons test showed a lack of 
effect of Aβ1-42 superfusion in EtBr uptake by astrocytes 
in hippocampal slices of GFAP-CRE-A2AR mice (CTR: 
1.25 ± 0.040 vs. Aβ1-42: 1.28 ± 0.084, n = 4, p = 0.9320), 
whereas in GFAP-CTR mice Aβ1-42 significantly increased 

Fig. 6   A2AR regulated alterations in hemichannel activity caused 
by an acute challenge with Aβ1-42. A The enhancement in astrocytic 
hemichannel activity driven by the acute exposure of hippocam-
pal slices to Aβ1-42 was prevented by A2AR selective blockade. Hip-
pocampal slices were pre-incubated with SCH58261 (SCH, 50 nM) 
for 30 min prior to challenge with Aβ1-42 (50 nM, 60 min), before the 
EtBr uptake assay. B In GbA2ARKO and C GFAP-CRE-A2AR mice, 
Aβ1-42 failed to increase EtBr uptake in hippocampal astrocytes, 
whereas D in FbA2ARKO mice, Aβ1-42 augmented astrocytic EtBr 

uptake. The activity of hemichannels was assessed through the fluo-
rescence intensity of EtBr signal, per astrocyte (GFAP+cells) nucleus 
volume, expressed as the mean of each animal (n) and normalised 
to the control condition. Data are mean ± SEM of 3–5 independent 
experiments, corresponding to different mice *p < 0.05, **p < 0.01, 
two-way ANOVA post hoc Sidak’s multiple comparisons test. Please 
note that the control values in panel A is the same as in Fig. 3A and 
in panel C is the same as Fig. 5A
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the amount of EtBr taken up by astrocytes (Aβ1-42: 
1.38 ± 0.058, n = 4 vs. CTR: 1.00 ± 0.031, n = 4, p = 0.0054, 
Fig. 6C, noting that CTR data of GFAP-CRE-A2AR and of 
GFAP-CTR mice are the same data present in Fig. 5A). In 
contrast, in FbA2ARKO mice, two-way ANOVA did not 
reveal an interaction between genotype and Aβ1-42 treatment 
(p = 0.8714, F1,6 = 0.0286); notwithstanding, it is pertinent 
to emphasise that a significant effect was observed in the 
genotype (p = 0.0276, F1,6 = 8.364) and Aβ1-42 treatment 
(p = 0.0020, F1,6 = 27.24). Additionally, Sidak’s multiple 
comparisons test revealed a significant enhancement in EtBr 
uptake by hippocampal astrocytes triggered by Aβ1-42 in both 
WT mice (CTR: 1.00 ± 0.031 vs. Aβ1-42: 1.38 ± 0.058, n = 4, 
p = 0.0177) and FbA2ARKO mice (CTR: 1.39 ± 0.120 vs. 
Aβ1-42: 1.74 ± 0.157, n = 4, p = 0.0234). Curiously, a sig-
nificant increase in EtBr uptake was also observed in hip-
pocampal astrocytes of FbA2ARKO mice when compared 
with WT mice (KO: 1.39 ± 0.120 vs. WT: 1.00 ± 0.031, 
n = 4, p = 0.0443, Fig. 6D), but the Aβ1-42 superfusion simi-
larly increased (p > 0.05) EtBr uptake in WT (0.38 ± 0.03) 
and FbA2ARKO (0.35 ± 0.04) mice (Fig. 6D). Surprisingly, 
the analysis of gliosomal preparations from the hippocam-
pus of FbA2ARKO mice revealed neither alterations of Cx43 
levels (WT: 100.00 ± 2.47% vs. KO: 102.35 ± 7.58%, n = 5, 
p = 0.7760, t8 = 0.2943, supplementary data Figure S2C) nor 
of Cx43 phosphorylation at Ser368 (WT: 100.00 ± 8.53% 
vs. KO: 81.81 ± 16.02%, n = 6, p = 0.3397, t10 = 1.003, sup-
plementary data Figure S2D). Taken together, these data 
identified the importance of astrocytic A2AR in the modula-
tion of hemichannel activity of hippocampal astrocytes in 
pathological conditions mimicking early AD stages.

The dysfunctional hemichannel activity triggered 
by Aβ seems to involve a PKC‑mediated signalling 
pathway

Although A2AR are pleiotropic receptors, they are mainly 
recognised to engage the PKA-mediated transducing sys-
tem (reviewed in [46]). However, since we previously 
reported that the Aβ1-42-induced increase of hemichannel 
activity is paralleled by increased Cx43 phosphorylation 
in residue Ser368, which is phosphorylated by PKC [47, 
48], and this effect was mimicked by A2AR activation and 
prevented by selective A2AR blockade [20], we next char-
acterised the transducing system involved in the control 
of hemichannel activity in cultured hippocampal astro-
cytes. We observed that PKA activation with the cAMP 
analogue 8-Br-cAMP (5 µM) did not affect EtBr uptake 
(101.16 ± 9.01% vs. CTR: 100%, t3 = 0.1284, p = 0.9060), 
whereas the activation of PKC with a phorbol ester ana-
logue (PMA, phorbol 12-myristate 13-acetate, 10 ng/mL) 
increased hemichannel activity (128.10 ± 4.52% vs. CTR: 

100%, t3 = 6.222, p = 0.0084, supplementary data Fig-
ure S3A). Moreover, PMA significantly enhanced Cx43 
phosphorylation at Ser368 (135.1 ± 10.82% vs. CTR: 
99.00 ± 6.74%, t6 = 2.829, p = 0.0300, supplementary data 
Figure S3B). These data suggest that the enhancement of 
hemichannel activity triggered by Aβ1-42 might involve the 
recruitment of a PKC-mediated pathway. In support of this 
hypothesis, PKC inhibition with GF109203X (5 µM) pre-
vented the enhancement of hemichannel activity caused by 
Aβ1-42 (Fig. 7B). Thus, two-way ANOVA unveiled a signifi-
cant effect of GF109203X (p = 0.0002, F1,11 = 30.14) and of 
Aβ1-42 (p = 0.0031, F1,11 = 14.16) in EtBr taken up by cul-
tured astrocytes. Further analysis with Tukey multiple com-
parisons test showed that GF109203X significantly reduced 
EtBr uptake in astrocytes exposed to Aβ1-42 (87.51 ± 5.36% 
vs. 138.05 ± 9.14% for Aβ1-42, p = 0.0016) when compared to 
astrocytes exposed only to Aβ1-42. Interestingly, GF109203X 
appeared to decrease EtBr uptake by hippocampal astro-
cytes, but this effect did not reach statistical significance 
(71.13 ± 11.39%, p = 0.0805). Moreover, PKC activation 
with PMA mimicked the effect of Aβ1-42 on EtBr uptake 
in cultures astrocytes (Fig. 7A). Three-way ANOVA dis-
closed a significant effect of PMA (F1,31 = 83.02, p < 0.0001) 
and Tukey multiple comparisons tests revealed a significant 
increase of EtBr uptake relatively to non-treated control 
(100%), in astrocytes challenged with either Aβ1-42 alone 
(142.56 ± 3.94%, p = 0.0279), PMA alone (172.58 ± 14.77%, 
p = 0.0008) and PMA + Aβ1-42 (165.29 ± 7.42%, p = 0.0009). 
Noteworthy, no additivity was observed between the effects 
of PMA and of Aβ1-42 (p = 0.9998). To further validate the 
involvement of a PKC-mediated pathway, PKC was acti-
vated followed by A2AR blockade prior to Aβ1-42 challenge 
(Fig. 7B). Tukey multiple comparisons tests disclosed that 
astrocytes exposed to the PKC activator PMA and to the 
selective A2AR antagonist SCH58261 displayed a signifi-
cant increased EtBr uptake in the absence (170.64 ± 10.46%, 
p = 0.0001) and in the presence of Aβ1-42 (181.23 ± 21.07%, 
p < 0.0001) when compared with control astrocytes. Moreo-
ver, as can be seen in Fig. 7B, A2AR blockade per se did not 
affect EtBr uptake (95.18 ± 3.29%, p > 0.999) by cultured 
astrocytes, but prevented alterations triggered by Aβ1-42 
(99.95 ± 2.22%, p = 0.0409), similarly to that previously 
observed by us [20]. Noteworthy, when astrocytes were 
exposed to PMA, SCH58261 and Aβ1-42, the amount of 
EtBr taken up by astrocytes was significantly higher than in 
astrocytes exposed to SCH58261 and Aβ1-42 (p < 0.0001), 
but as expected not different (p > 0.05) to that observed in 
astrocytes exposed to PMA and SCH58261 (Fig. 7B). Alto-
gether, the gathered results strongly support the involvement 
of a signalling pathway mediated by PKC in our experimen-
tal conditions, which can be recruited downstream A2AR 
activation.
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Discussion

The present study re-enforces the relevance of astrocytic 
alterations at the onset of memory deficits and in experimen-
tal models of established AD, by showing that the activity of 
astrocytic hemichannels composed by Cx43 is modified in 
animal models both of early stages as well as of established 
AD. Furthermore, the observed different alterations of total 
Cx43 levels and of phosphorylated Cx43 at Ser368 in differ-
ent models mimicking different AD stages from in vitro to 
in vivo suggest that the enhancement in astroglial hemichan-
nel activity might be due to different mechanisms throughout 
the evolution of AD.

The analysis of astrocyte morphology in the hippocam-
pus of APP/PS1 mice when memory dysfunction became 
evident, clearly showed global alterations of astrocyte mor-
phology, typified by an increase in arbor complexity and an 
enhancement in the number and total length of astrocytic 
processes. This finding is aligned with previous observa-
tions that an increase in astrocyte reactivity is linked to the 
accumulation of Aβ associated with AD, as assessed by the 
analysis of GFAP immunoreactivity in human samples and 
animal models of AD [6, 27, 49, 50], namely in APP/PS1 

mice [7, 14, 51, 52]. Given the active role of astrocytes in 
synaptic communication and memory processes [38, 53, 54], 
these alterations of astrocytes emerge as potential contribu-
tors to the deficits in hippocampal-dependent learning and 
memory observed in the performance of APP/PS1 mice in 
the Morris water maze test.

Our present study also revealed that the increased reac-
tivity of astrocytes in the AD brain was associated with an 
increase of astroglial hemichannel activity. In the present 
study, although we did not use scrambled peptides, we pin-
pointed the specific contribution of Cx43 to the measured 
astroglial hemichannel activity by resorting to Gap19, which 
was previously shown to selectively target Cx43 hemichan-
nels without affecting gap junctions [43]. Accordingly, we 
observed increased total levels of Cx43 in APP/PS1 mice 
that display scarce amyloid plaques. This is in agreement 
with previous studies also reporting an increase of Cx43 
protein and mRNA levels in the brain of both patients [49, 
55] and animal models [14, 18, 56] with established AD. 
This increased density of total Cx43 was originally associ-
ated with sites of Aβ deposits [14, 49], but was later recog-
nised to be widespread in the afflicted brain regions of AD 
[18]. It should be mentioned that although we observed an 

Fig. 7   The increased hemichannel activity in cultured astrocytes 
exposed to Aβ1-42 was regulated by PKC. A PKC inhibition with 
GF109203X (GF) prevented the effect of Aβ1-42 on EtBr uptake in 
astrocytes. Cultured astrocytes were exposed to GF (5 µM) for 30 min 
prior to challenge with Aβ1-42 (1 µM, 24 h). Data are mean ± SEM of 
3–4 independent experiments. *p < 0.05, two-way ANOVA post hoc 
Tukey’s multiple comparisons test. B On the other hand, PKC acti-
vation with PMA (phorbol 12-myristate 13-acetate, 10 ng/mL) mim-
icked the effect of Aβ1-42 on EtBr uptake in astrocytes. In the pres-
ence of PMA, the selective A2AR antagonist SCH58261 (SCH) did 
not blunt the Aβ1-42-induced increase in EtBr uptake by astrocytes. 
The selective A2AR antagonist SCH58261 (SCH) was no longer able 

to blunt the increase in EtBr uptake in astrocytes pre-treated with 
PMA. Cultured astrocytes were exposed to PMA (10 ng/mL, 30 
min), then SCH was added (50 nM, 30 min) and finally astrocytes 
were exposed to Aβ1-42 (1 µM, 24 h) in the presence of the previously 
added compounds, as depicted in the timeline shown. The activity of 
hemichannels was assessed through the mean fluorescence intensity 
of retained EtBr in the nucleus upon the subtraction of background 
values. Data are presented as percentage values relative to non-treated 
control cells (100%) and are mean ± SEM of 3–5 independent experi-
ments. *p < 0.05, ***p < 0.001, three-way ANOVA post hoc Tukey’s 
multiple comparisons test
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increase in astrocytic process length, number and complexity 
in APP/PS1 mice, the increase in total Cx43 levels does not 
seem to be a direct consequence of the increased number of 
astrocytic processes, because we quantified the levels of total 
and phosphorylated (at Ser 368) Cx43 in a similar amount 
of astrocytic processes membranes (gliosomes) of wild-type 
and APP/PS1 mice.

Interestingly, we now observed that the increased activity 
of hemichannels in hippocampal astrocytes is an early event 
of AD pathogenesis, which is maintained in advanced stages 
of the disease. In early AD modelled by Aβ-icv exposure, 
there was an increase in Cx43 phosphorylation at Ser368 
without alterations of the total levels of Cx43, whereas in 
hippocampal gliosomes of 9-month-old APP/PS1 mice 
already displaying sparse Aβ plaques, there was an increase 
in Cx43 levels without alterations in Cx43 phosphorylation 
at Ser368. This is in agreement with the ability of soluble 
forms of Aβ to control Cx43 levels at cell membrane [57], 
bolstering gliotransmitters release from cultured astrocytes, 
namely ATP and glutamate [20, 56, 58], which might pro-
mote neuronal injury [58]. These findings further indicate 
that the onset of AD seems to be related with alterations in 
Cx43 phosphorylation, whereas advanced AD stages involve 
alterations in Cx43 levels, which is consistent with the pro-
gressive increase in Cx43 levels observed in APP/PS1 and 
5xFAD mice [59] as well as in AD patients [55]. Although 
we have not directly explored the impact of increased 
Cx43-HC activity as a trigger of memory dysfunction, 
this increased of Cx43 might be a contributing factor for 
AD-related dysfunction of synaptic plasticity and memory 
since the genetic silencing of Cx43 affords a neuroprotec-
tion against Aβ-induced modifications [55] and improves 
memory deficits in APP/PS1 mice by increasing synaptic 
function without affecting amyloid plaque formation or the 
inflammatory response [18, 59].

We further explored the mechanism involved in the reg-
ulation of hemichannel activity by phosphorylation which 
remains largely unknown in astrocytes. The observed 
enhancement in Cx43 phosphorylation in Ser368 residue, 
which is mainly mediated by PKC [60, 61], in hippocampal 
astrocytes of mice icv administrated with Aβ peptides, is in 
line with alterations previously reported by us in cultured 
astrocytes exposed to Aβ peptides [20]. These data suggest 
an Aβ-induced increase in PKC activity, which was already 
reported in human astrocytes exposed to Aβ [62] as well as in 
cortical astrocytes of 5xFAD mice [47]. Thus, we postulate 
as a working hypothesis that the increased PKC activation 
and the subsequent enhancement of Cx43 phosphorylation 
at Ser368 might be responsible for the increased hemichan-
nel activity under AD conditions in hippocampal astrocytes. 
Interestingly, a recent study showed that an inflammatory 
stimulus (Thy-1) caused astrocytic Cx43 phosphorylation 

at Ser373 through a PI3K/AKT signalling pathway, being 
this phosphorylation related with the increased opening of 
hemichannels and ATP release [63]. Some studies performed 
in endothelial and cardiac cells also showed a link between 
PKC-mediated phosphorylation of Cx43 at Ser368 residue 
leading to altered hemichannel activity [64] and of gap junc-
tional intercellular communication [48, 64, 65]; however, 
little is known about the control of Cx43 phosphorylation at 
Ser368 in astrocytes [66].

A second major advance provided by the present study 
is the concept that adenosine A2A receptors (A2AR) mod-
ulate the impact of Aβ in the activity of astrocytic Cx43 
hemichannels. Although, we had previously shown that 
A2AR control Cx43 hemichannels in cultured astrocytes 
exposed to Aβ peptides [20], we now extend our studies to 
a more complex system, namely mouse hippocampal slices 
modelling early or advanced stages of AD, in which A2AR 
were genetically silenced in astrocytes and/or in neurons. 
Our group and others showed that A2AR blockade amelio-
rates synaptic dysfunction and loss in addition to memory 
deficits in mice icv administered with Aβ1-42 [24, 31] and 
in APP/PS1 mice [25, 26, 67]. This A2AR-mediated control 
of AD-related dysfunction involves an overfunction of neu-
ronal A2AR [25, 31, 67], in accordance with the predominant 
localization of A2AR in excitatory synapses in the limbic 
cortex [68, 69]. However, A2AR are also present in astrocytes 
and the selective manipulation of astrocytic A2AR has an 
impact on memory function [23, 29, 70]. Furthermore, A2AR 
modulate alterations triggered by Aβ in primary cultures of 
astrocytes, namely decreased glutamate uptake [21], altered 
Ca2+ dynamics [22], and increased hemichannel activity and 
subsequently ATP release [20], a danger signal in brain dis-
ease conditions [71]. We now extend these findings by show-
ing that the Aβ-induced alterations in hemichannel activity 
in hippocampal slices were abrogated by the pharmacologi-
cal blockade and genetic silencing of A2AR in astrocytes, 
whereas they were unaffected in hippocampal astrocytes 
of mice with a selective genetic silencing of A2AR in neu-
rons (FbA2ARKO); this further re-enforces the conclusion 
that astrocytic A2AR are responsible for the regulation of 
Aβ-induced alterations in astrocytic hemichannel activity in 
the hippocampus. Interestingly, A2AR also have a relevant 
role in non-pathological conditions since global, neuronal 
and astrocytic A2AR genetic silencing significantly impacted 
the activity of astrocytic hemichannels in the hippocampus. 
Indeed, mice lacking astrocytic A2AR displayed an increased 
hemichannel activity, which is likely a consequence of an 
increase of total Cx43 and phospho-Cx43 levels (see also 
[72]). Thus, astrocytic A2AR emerge as key modulators of 
hemichannel activity, which is consistent with the reported 
physical association between A2AR and Cx43 in primary cul-
tures of astrocytes [20]. This provides a molecular rationale 
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to understand that the removal of A2AR from the complex 
with Cx43 can contribute to dysregulate hemichannel activ-
ity, which may underlie the observation that the selective 
silencing of astrocytic A2AR results in impairments of syn-
aptic plasticity and deficits in hippocampal-dependent ref-
erence memory [23]. Interestingly, we also observed that 
the genetic silencing of neuronal A2AR (using FbA2ARKO 
mice) triggered an enhancement of the activity of hippocam-
pal astrocytic hemichannels relatively to WT littermates, 
despite no alterations in Cx43 or phospho-Cx43 levels were 
detected, suggesting that alterations in neuronal function due 
to A2AR deletion can influence astrocytic activity. This idea 
is in agreement with a study reporting that, under physiolog-
ical conditions, the activity of Cx43 hemichannels in astro-
cytes is promoted by neuronal activity, which, in turn, modu-
lates neuronal network function via a purinergic pathway 
in the olfactory bulb [73]. Altogether our data indicate that 
astrocytic A2AR are crucial to modulate Cx43 hemichannel 
activity in hippocampal astrocytes under AD-like conditions. 
Furthermore, our data also provides a tentative rationale for 
a riddle regarding the impact of astrocytic A2AR on memory 
performance, whereby the genetic elimination of astrocytic 
A2AR is detrimental for memory performance in naïve ani-
mals [23, 70] but beneficial in AD mouse models [29]. This 
is in agreement with the observed increase of hemichannel 
activity upon deletion of astrocytic A2AR in naïve animals 
and with the lack of additional effects of Aβ on hemichannel 
activity in hippocampal slices of mice with a genetic dele-
tion of astrocytic A2AR.

This opposite role of A2AR in naïve animals and in 
conditions of early AD is likely due to the upregulation 
of astrocytic A2AR [21]. Previous studies have shown that 
the upregulation of A2AR is coupled with an alteration of 
the transducing signalling system operated by A2AR [74]. 
In fact, whereas A2AR are canonically coupled to the acti-
vation of adenylate cyclase and generation of cAMP [46], 
these pleiotropic receptors seem to be mostly coupled to 
PKC when they are upregulated in disease conditions 
associated with increased glutamatergic signalling [74], 
such as in early AD (see e.g. [75–77]). And, in agree-
ment with the impact of PKC on the activity of astro-
cytic hemichannels, we observed that A2AR blockade was 
not able to prevent Aβ-induced alterations of hemichan-
nel activity when PKC was previously activated, which 
supports the contention that the recruitment of the PKC 
pathway is a downstream event to A2AR activation under 
conditions of Aβ exposure. This is in agreement with sev-
eral previous reports indicating the involvement of PKC 
in the signalling of glial A2AR [74, 78, 79], as also occurs 
in neurons [80] and other cell types [81–83] under stress-
ful conditions.

In conclusion, the present study reinforces the role of 
astrocytic dysfunction in AD pathogenesis. In transgenic 
APP/PS1 mice displaying diffuse Aβ plaques, deficits in 
hippocampal-dependent memory were accompanied by 
alterations in astrocytic morphology and by an enhancement 
of astrocytic Cx43 hemichannel activity in the hippocampus. 
Similarly, models of early AD also showed an increase in 
the activity of Cx43 hemichannels involving an increase of 
Cx43 phosphorylation at Ser368. This increased activity of 
astrocytic Cx43 hemichannel activity in the hippocampus 
was regulated by astrocytic A2AR, as their genetic silencing 
increased both channels activity and Cx43 and phospho-
Cx43 levels. Additionally, astrocytic A2AR also modulate 
the impact of Aβ on Cx43 hemichannel activity through a 
PKC-dependent mechanism (Fig. 8). Overall, these findings 
re-enforce the contention that astrocytic A2AR modulate 
astrocyte-to-neuron communication, which is altered in AD-
like conditions. This may contribute to the benefits afforded 
by A2AR antagonists in early AD.
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