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Abstract
Our current knowledge regarding the development of the human brain mostly derives from experimental studies on non-
human primates, sheep, and rodents. However, these studies may not completely simulate all the features of human brain 
development as a result of species differences and variations in pre- and postnatal brain maturation. Therefore, it is impor-
tant to supplement the in vivo animal models to increase the possibility that preclinical studies have appropriate relevance 
for potential future human trials. Three-dimensional brain organoid culture technology could complement in vivo animal 
studies to enhance the translatability of the preclinical animal studies and the understanding of brain-related disorders. In 
this review, we focus on the development of a model of hypoxic-ischemic (HI) brain injury using human brain organoids to 
complement the translation from animal experiments to human pathophysiology. We also discuss how the development of 
these tools provides potential opportunities to study fundamental aspects of the pathophysiology of HI-related brain injury 
including differences in the responses between males and females.
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Hypoxic‑ischemic encephalopathy: a major 
cause of death and disability in the newborn 
period

Hypoxic-ischemic (HI) injury is the most common cause 
of brain damage in the newborn resulting in neurological 
abnormalities including cerebral palsy, intellectual deficits, 
cognitive developmental delay, and behavioral disorders 
[1]. The onset of these abnormalities can begin during preg-
nancy, labor, and delivery, or after birth. The etiology of 
brain injury has been widely reported. HI encephalopathy 
(HIE) can begin during pregnancy as a result of compro-
mised placental perfusion, preeclampsia, maternal diabetes, 
congenital fetal infections, drug abuse, severe fetal anemia, 
or pulmonary disorders, along with a variety of other dis-
orders [2]. HI-related brain injury originating during labor 
and delivery can result from umbilical cord occlusion, pla-
cental abruption, uterine rupture, excessive bleeding from 
the placenta, abnormal fetal position, prolonged late stages 
of labor, or maternal hypotension [3]. Finally, injury to the 
brain can also result from prematurity, severe lung or heart 
disease, infection, respiratory failure, or cardiac arrest after 
birth [4, 5]. HI-related brain injury has dramatic effects 
on the developing brain of the newborn as it affects the 
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cerebrovasculature. The germinal matrix, a highly vascu-
larized region of the developing brain located beneath the 
lateral ventricles, is vulnerable following adverse conditions 
including hypoxia, systemic hypo- and hypertension, and 
fluctuations in brain blood flow [6–8]. In addition, thin-
walled cerebral blood vessels could be another source of 
vulnerability with structural immaturity or ongoing angio-
genesis [9]. These observations suggest that cerebrovascu-
lature responses after HI-related injury could contribute to 
injury in the neonate brain [8].

The incidence and outcomes of HIE depend upon the 
available resources. Low-income countries have a higher 
incidence of HIE compared with technologically advanced 
countries most likely because of limited resources and lim-
ited technology and personnel to provide neonatal intensive 
care [10]. In addition, less than adequate sanitation can 
contribute to a high incidence of neonatal sepsis [11]. The 
incidence of HIE is 1.5 per 1000 live births in developed 
countries and ranges from 2.3 to 26.5 per 1000 live births in 
developing countries [12]. HIE accounts for 23% of infant 
mortality worldwide and affects 0.7–1.2 million infants 
annually [13]. Twenty-five percent of infants who develop 
HIE at birth develop long-term neurological disabilities and 
15% die [14]. There are approximately 125 million new-
borns with birth-related abnormalities, including 10 million 
who do not breath at birth, resulting in 1.2 million neonates 
potentially exposed to HI brain injury and approximately 0.5 
million newborns, who are destined to develop neurodevel-
opmental abnormalities [1]. Although controversies remain 
regarding a definitive definition of HIE and classification of 
its severity, exposure of infants to HIE places a huge bur-
den on families and society. Children with severe HIE may 
develop motor disorders, speech language problems, and 
vision and hearing impairment, which require long-term 
supportive care and supportive services. A report published 
in 2003 by Research Triangle Park (RTI International) and 
the Centers for Disease Control (CDC) estimated that life-
time costs in dollars totaled $2.1 billion for persons born 
in 2000 with hearing loss and $2.5 billion for persons with 
vision impairment [15]. These data emphasize the burden of 
these long-term consequences of HIE for the newborn and 
his or her family.

Sarnat and Sarnat [16] published a staging system in 
1976 to identify specific parameters to validate the sever-
ity of what they termed “encephalopathy”. Nonetheless, 
it is often difficult to determine when or if HI results in 
neonatal encephalopathy. However, the term hypoxic-
ischemic encephalopathy (HIE) is widely used, even 
though the diagnosis may be difficult to establish [17]. 
There is a need to improve the diagnostic criteria to facili-
tate parental counseling, diagnoses, prognostication, and 
treatment [18]. Classification of newborn encephalopathy 
is important because of the potential development of novel 

pharmacological neuroprotective agents that could serve 
as adjunctive or alternative agents to therapeutic hypother-
mia (TH), which is the current standard of care worldwide 
[19].

Long-term outcomes of HIE depend upon the severity, 
location of brain injury, and presence or absence of seizures. 
HIE is considered when the cord blood pH is less than 7.0 
or 7.1, Apgar scores are less than or equal to 5 at 5 and/ 
or 10 minutes after birth and there is an apparent need for 
respiratory support [20]. The severity of HIE is estimated 
after the potential for HIE has been identified by serial neu-
rological examinations using the Sarnat staging system. The 
severity is designated as normal, mild, moderate, or severe 
and is used to determine the necessity for treatment with 
therapeutic hypothermia. Mild HIE is diagnosed when the 
infant exhibits a hyper-alert state of consciousness, slightly 
decreased muscle tone, brisk deep tendon reflexes, irritabil-
ity, and difficulty feeding, and sleeping, along with frequent 
episodes of crying. These symptoms can disappear within 
24 h. Moderate HIE is present when the infant is lethargic, 
exhibits decreased spontaneous activity, hypotonia, a weak 
suck, and an incomplete Moro reflex. Finally, severe HIE is 
characterized by stupor or coma, flaccidity, decerebrate pos-
turing, lack of spontaneous activity, absent suck, and absent 
Moro reflexes [21].

Although HIE remains an important cause of neurological 
disability and death in neonates, the only currently approved 
treatment is TH. This treatment requires that the infant be 
placed on a cooling mattress and that the temperature to be 
reduced to 33.5 °C within the first 6 h of life and maintained 
continuously at this temperature for 72 h of life. The infant 
is then slowly rewarmed after completion of the therapeutic 
cooling [22]. TH remains the only effective therapy for neo-
nates with HIE and is now considered the standard of care 
worldwide. TH reduces cerebral metabolism by approxi-
mately 5% for each 1 °C of reduction in body temperature 
and is thought to reduce excitotoxicity, neuronal cell death, 
and improve neurological outcomes [23]. Other beneficial 
effects of hypothermia have been demonstrated including 
mitigation of blood–brain-barrier (BBB) dysfunction [24] 
associated with inhibition of neuroinflammation and reduc-
tion in specific markers of brain injury [25].

Whole-body hypothermia was investigated in a mul-
ticenter study [19] using an esophageal temperature of 
33.5 °C for 72 h in full-term infants compared to a usual care 
control group. Infants with moderate or severe HIE exposed 
to whole-body hypothermia for 72 h exhibited reduced risks 
of death and disability, demonstrating the efficacy of TH 
in full-term neonates. The neurodevelopmental outcomes 
of the infants enrolled in the original trial were evaluated 
at 18–22 months of age [26]. The neurodevelopmental 
outcomes suggested that TH was safe and reduced the fre-
quency and severity of brain injury after exposure moderate 
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HIE compared with the normothermic control group, but 
severe HIE is not really improved by TH.

The ‘female advantage’, which suggests more favorable 
survival and neurodevelopment outcomes in female com-
pared with male infants, has been previously reported for 
premature infants [27]. Smith et al. [28], also showed that 
the female advantage extended to more favorable IQ perfor-
mance in preterm infants at 5–12 years of age [28]. Hypoxia 
ischemia-related brain injury contributes to neonatal mor-
bidities and is responsible for elevated mortality rates in both 
preterm and full-term neonates [13]. However, the types of 
brain injury differ in preterm and full-term infants [29]. HIE 
in full-term infants is associated with high mortality and 
morbidity rates [30, 31]. There is limited information com-
paring neurodevelopmental outcomes in male versus female 
infants [28], because most reports combine male and female 
outcomes and/or control for the male disadvantage in the 
analysis of developmental outcomes [32]. Therefore, this 
approach along with the limited information available on 
long-term developmental outcomes in male versus female 
full-term infants after exposure to HIE restricts the ability 
to draw conclusions regarding differences in developmen-
tal outcomes in full-term infants after HIE [28]. Available 
information has not yet identified the ‘female advantage’ in 
infants exposed to HIE with or without exposure to thera-
peutic hypothermia. However, these data could result from 
failure to detect differences in outcomes between male and 
female infants due to inadequate long-term follow up of a 
sufficient number of infants after exposure to HIE. Nonethe-
less, experimental findings in rodents support the contention 
that HI-related insults exhibit a similar male disadvantage 
with regards to brain injury potentially related to increased 
sex-specific inflammatory responses including greater infil-
tration of peripheral lymphocytes in males and elevated 
cytokine levels including tumor necrosis factor alpha [33]. 
Therefore, differences in inflammatory responses between 
males and females could potentially underlie the ‘female 
advantage’ in neonates [27].

Potential molecular mechanisms of HIE

HIE is not a single event but a continuum of biochemical 
cascades, which lead to oxidative stress, inflammation, and 
neuronal cell death, over hours to days after the initial onset 
of injury (Fig. 1). The etiological event is oxygen and glu-
cose deprivation in the developing brain, which results in 
anaerobic metabolism with ATP depletion and failure of 
ATP-dependent Na+/K+ pumps [34]. The initial injury 
results in cerebral metabolic alterations that can be divided 
into three phases. The initial stage is the acute phase known 
as “primary energy failure,” which occurs during the first 
minutes after the initial insult. This phase is characterized 

by anaerobic metabolism, oxidative stress, excitotoxicity, 
and neuronal cell death [35]. Excitotoxicity results from 
excessive exposure to the neurotransmitter, glutamate, or 
overstimulation of the AMPA, KA, and NMDA membrane 
receptors resulting in neuronal cellular injury or death. The 
second phase is the latent phase, which lasts from 1 to 6 
h. A key factor in the latent phase is the development of 
neuroinflammation along with additional cascades including 
oxidative stress, excitotoxicity, and apoptotic and cell death 
pathways. The secondary phase occurs within 6–15 h and 
includes continued excitotoxicity, cytotoxic edema resulting 
from sodium and chloride ion accumulation along with fluid 
entering neurons and astrocytes, cerebral hyperperfusion, 
and secondary mitochondrial failure. Seizures often develop 
during this phase. Finally, the tertiary phase develops from 
weeks to months after the initiating event. The injured brain 
undergoes remodeling, astrogliosis, chronic inflammatory 
changes, and cell death during this phase [36].

Specific transcription factors produced during HI injury 
activate genes involved in anti-apoptosis, erythropoiesis, 
apoptosis, angiogenesis, and necrosis [37]. A key factor in 
this molecular cascade is hypoxia-inducible factor alpha 
(HIF1α), which mediates gene transcription to counterbal-
ance the effects of the insults during HI injury. Mitogen-acti-
vated protein kinase (MAPK) is activated and phosphoryl-
ates HIF1α and HIF1β to stabilize the protein and dimerize 
the two subunits to form HIF1 during hypoxia [38]. The 
dimer acts on the hypoxia response elements to promote 
a variety of hypoxia responsive genes [39]. Therefore, the 
potential therapeutic window for HIE occurs between the 
latent and tertiary phases. However, as outlined above, thera-
peutic hypothermia is the only currently available efficacious 
treatment to attenuate the effects of HIE in full-term infants. 
This treatment is only partially effective as nearly half of 
infants with moderate-to-severe HIE newborn still survive 
with significant neurological disabilities or die despite treat-
ment [40, 41]. Other therapeutic strategies such as treat-
ment with erythropoietin have not proven efficacious [42]. 
Recent studies showed the role HIF1α and its downstream 
vascular endothelial growth factor (VEGF) in the damage of 
BBB integrity after ischemia and reperfusion [43, 44]. These 
studies showed that HIF1α inhibition reduces postischemic 
BBB damage in adult and neonatal rats and could imply that 
this neuroprotection is partially the result of blocking HIF1α 
signaling pathway and down-regulating VEGF activity. Tar-
geting hypoxia-inducible factor and VEGF signaling could 
become a useful therapeutic approach for ischemic stroke.

BBB dysfunction also potentially contributes to brain 
injury after exposure to HI injury, but has only been dem-
onstrated in vivo and in vitro (Fig. 2). The BBB is an impor-
tant physical/physiological barrier formed by the neuro-
vascular unit (NVU), which is a multicellular structure, 
including astrocytes, pericytes, microglia, endothelial cells, 
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Fig. 1   Schematic illustration of the pathophysiology of HIE. 
Hypoxic-ischemic (HI) insults result in anaerobic metabolism, 
because oxygen transport and tissue oxygenation are compromised 
in the fetal/neonatal brain resulting in depletion of adenosine triphos-
phate (ATP) and failure of the ATP-dependent Na + /K + pump. This 
event induces primary energy failure within minutes to hours with 
excitotoxicity, inflammation, oxidative stress, and reperfusion. Sec-
ondary energy failure occurs within hours to days with secondary 

mitochondrial failure including apoptosis and production of reactive 
oxygen species (ROS), seizures, cytotoxic edema, and hyperperfu-
sion. The last stage is tertiary energy failure lasting days to months 
associated with astrogliosis, chronic inflammation, repair, and remod-
eling. These molecular cascades result in long-term neurological dis-
abilities, such as developmental delay, sensory/cognitive abnormali-
ties, learning disorders, seizures, and cerebral palsy. Adapted from 
[35] with BioRender.com

Fig. 2   Blood–brain-barrier (BBB) disruption after a hypoxic-
ischemic insults. BBB integrity is comprised after HI events asso-
ciated with loss of tight junctions (TJ) between endothelial cells, 
neutrophilic infiltration, release of inflammatory mediators, such as 

cytokines, reactive astrocytes, excessive glutamate secretion, acti-
vated microglia, apoptosis, and free radicals. These molecular events 
result in increases in BBB permeability and disruption of the barrier. 
Created from BioRender.com
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extracellular matrix, and basement membrane. Tight junc-
tions between adjacent endothelial cells are important struc-
tures, which selectively limit the passage of molecules into 
the brain parenchyma. Consequently, metabolites needed for 
neuronal activity enter via transporters and enzymatic activ-
ity [45]. Accordingly, the BBB maintains the homeostatic 
environment of the central nervous system (CNS). This bar-
rier most likely plays a prominent role in pathophysiology 
of hypoxic-ischemic injury in neonates [46]. Exposure to HI 
injury potentially has many deleterious effects on the NVU 
and BBB function in the human adult brain. Previous work 
has shown disruption of the BBB after exposure to HI brain 
injury using a variety of methods and animal models [47, 
48]. Exposure to HI affects all elements of the NVU. How-
ever, the endothelium is more susceptible to injury than the 
other cellular elements of the NVU including astrocytes and 
pericytes [49]. Compromise of the BBB after exposure to 
HI events could have important consequences including the 
development of vasogenic edema [50]. In addition, injury to 
the BBB could increase exposure of the brain parenchyma 
to inflammatory mediators, which activate matrix metallo-
proteinases (MMPs), which further accentuate inflammatory 
processes [51]. MMPs are also implicated in the proteolysis 
of the extracellular matrix protein and cleavage of tight junc-
tions, which can result in edema and hemorrhage [52].

Animal models to study HIE 

Many animal models have been used in an attempt to repli-
cate the some of the components of HIE in newborn infants, 
although there is no model that completely replicates HIE in 
infants. Rodent, sheep, pig, and non-human primate animal 
models have been used to examine various aspects of the 
human disease [53]. The most important studies in animals 
are experiments in the ovine fetus, in which bilateral carotid 
artery occlusion is followed by various durations of reperfu-
sion [54]. Studies of brain ischemia/reperfusion in the ovine 
fetus have demonstrated the neuroprotective efficacy of TH 
resulting in the worldwide use of therapeutic hypothermia 
in newborns exposed to HIE.

Several other animal models have been utilized to par-
tially simulate HIE in human neonates and can roughly 
be divided into four categories [1]. The most widely used 
model is the Rice–Vannucci model [55]. This model facili-
tates the study of a relatedly large number of animals in 
comparison to the larger animal models [56]. Neonatal 
rodents at P7–P10 are exposed to unilateral carotid artery 
ligation with a recovery for approximately one and half 
hours, followed by exposure to 8% oxygen for 1–3 h at 36 
or 37 °C. This model was originally described in rats but 
has been modified for use in mice with similar anatomi-
cal and behavioral effects [57]. The Rice–Vannucci model 

simulates a variety of anatomical lesions that are observed 
in human neonates with HIE including development of 
neuronal necrosis with injury to the cerebral cortex, hip-
pocampus, thalamus, and basal ganglia [55, 58]. Other 
important lesions observed both in HIE in human neonates 
and in the Rice–Vannucci model include decreased cer-
ebral blood flow [57], brain acidosis [59], decreased cer-
ebral glucose uptake [60], white matter lesions [61], and 
prolonged inflammatory processes [62]. The Rice–Van-
nucci model has also been used to explore the effects 
of hypothermia and other potentially neuroprotective 
agents after exposure to HI injury in neonatal subjects. 
For example, Exendin-4, also known as exenatide, is a 
drug approved the U.S. Food and Drug Administration 
with the treatment of type 2 diabetes mellitus. It has been 
tested in combination of hypothermia in the context of HI 
brain injury in mice [63]. This preclinical study of com-
bination of exendin-4 and hypothermia demonstrated an 
enhanced protection both in macroscopic injury score and 
regional infarct volume in a mouse model of HI. Another 
study investigated the effect of hypothermia on infection-
sensitized neonatal HI brain injury on a rat model. In this 
lipopolysaccharide-sensitized unilateral stroke-like HI 
brain injury model, hypothermia was not neuroprotective 
in the hippocampus. The results of these studies in rodents 
suggest neuroprotection, as evidenced by smaller lesion 
volumes and improved performance in neurobehavioral 
outcome measures [64, 65].

The second category of animal model to simulate HIE 
is hypoxia without exposure to ischemia using an oxygen 
deprivation chamber. These models have not been studied 
as frequently as the Rice–Vannucci model but have been 
used to investigate hypoxia-related brain biochemical abnor-
malities [66]. The third category constitutes inflammatory 
models of perinatal brain injury in which intra-uterine infec-
tion often predisposes to preterm birth and brain injury [67]. 
Although the inflammatory models more closely simulate 
brain injury in premature infants, some characteristics of the 
inflammatory lesions are similar to those observed in HIE 
in the developing brain [68]. The fourth category is the non-
human primate model in which monkey fetuses are exposed 
to umbilical cord occlusion [69]. Each of the animal model 
has advantages and disadvantages for the study of human 
disease. All of the models contribute to the investigation of 
mechanisms of HI injury and the potential development of 
therapeutic agents. Nonetheless, each model has limitations 
including species differences and timing of injury. The ani-
mal models cannot capture specific features of the human 
brain, including cognitive capacity, complex molecular pro-
cessing, cellular responses, and unique genetic signatures. 
Unfortunately, many therapeutics which appear favorable 
from studies in rodent models have not proven efficacious, 
when subjected to human controlled trials.
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In vitro models to study HIE 

Several in vitro models have also been utilized to simu-
late HIE. Many studies have investigated hypoxia with 
2D cellular culture models to examine neural progeni-
tors derived from human embryonic stem cells [70] or rat 
organotypic hippocampal slices [71]. These 2D cell culture 
models can be divided into two categories for the study of 
HIE, oxygen deprivation, and oxygen-glucose deprivation 
(OGD). The first model exposes the cell culture to hypoxia 
alone. For example, human fetal neural stem cell-derived 
astrocytes have been exposed to oxygen deprivation [72]. 
In this study, neural stem cell-derived astrocytes were 
exposed to 2% oxygen as a model of moderate hypoxia 
and 0.2% oxygen as a model of severe hypoxia for 48 h 
to determine glutamate uptake after the two conditions 
of hypoxic injury. Changes in glutamate uptake were not 
observed suggesting that astrocytes play an important 
neuroprotective role during exposure to both moderate 
and severe hypoxic insults. Another study exposed mouse 
cortical neurons to hypoxia (95% N2, 5% CO2) for 24 h 
and examined the regulation of neuroglobin, a heme pro-
tein which enhances the supply of oxygen to neurons [73]. 
In vitro exposure of neurons to hypoxia increased neuronal 
neuroglobin expression. Furthermore, neuronal survival 
was reduced by inhibiting neuroglobin expression, sug-
gesting that neuroglobin has an important role in neuronal 
survival after exposure to hypoxia.

OGD is a second category of in vitro studies widely 
used to simulate in vivo HI brain injury. For example, a 
study showed that polysaccharide 3 (LRP3) exerted neuro-
protective effects on rat primary cortical neurons exposed 
to OGD [74]. Another study investigated the potential 
neuroprotective effects of stabilizing beta catenin after 
exposure of human neural progenitor cell cultures to OGD 
[75]. After exposure to 1% oxygen for 4 h, GSK-3beta 
inhibitors/beta-catenin stabilizers exhibited neuroprotec-
tive effects on human neural progenitor cells. Therefore, 
the in vivo animal models and in vitro cell culture sys-
tems described above have yielded and continue to provide 
a wealth of mechanistic information related to HI brain 
injury in adults and newborns. Nonetheless, many of these 
models do not contain some critical features specific to 
HI injury in the human brain. Consequently, additional 
models are needed to simulate human brain injury after 
exposure to HI.

2D monolayer cell culture is a useful tool to study 
behavior of specific cell type in brain disease; however, 
it is still relatively limited in providing a comprehen-
sive understanding of complicated processes, such as 
cellular differentiation, tissue regeneration, and disease 
development [76]. In term of technical and experimental 

considerations, 2D models have lower costs, are moder-
ately challenging, have lower time required, and have an 
artificial environment and a high reproducibility compared 
to brain organoid. In addition, vascularization is not possi-
ble for 2D models with monolayer; however, this aspect is 
important to consider in HI injury as endothelial cells are 
involved with an alteration of vascular integrity in patho-
physiology of HIE [77]. However, vascularization and per-
fusion is highly possible in brain organoid using various 
methods, including 3D bio-printing strategy, organoids-
on-a-chip, transplantation of organoid in vivo and perfu-
sion after transplantation, fusion of vascular organoid, and 
brain organoid [78–80] Inflammation also plays a critical 
role in mediating brain injury induced by neonatal HIE 
[36]. Brain organoid can model a complex inflammatory 
system compared to 2D cell culture to study for instance 
human microglial phenotypes [81]

Benefits of in vitro brain organoids 
for the study of human HIE

Four studies have already been completed with brain orga-
noid culture systems relevant to HIE. These studies are 
described in Table 1 along with their advantages and dis-
advantages [82–85].

Brain organoids represent the next generation of promis-
ing novel in vitro models for the study of hypoxia-related 
injury in the human brain. Lancaster et al. first initiated the 
development of brain organoids for the modeling of micro-
cephaly in 2013 [86]. Their 3D model of the human brain 
was developed from human pluripotent stem cells, which 
simulate specific brain regions in vivo. These brain orga-
noids reproduced the cytoarchitecture of the cerebral cortex 
and have the ability to develop multiple brain regions and 
cellular types. The 3D structures of the brain organoids facil-
itate the proliferation, migration, and differentiation of the 
different cell types. Astrocytes, neurons, oligodendrocytes, 
and microglia have been generated within brain organoids 
depending on the use of particular protocols [87]. Cellular 
identification appears at specific periods during the develop-
ment of brain organoid cultures [88]. For example, markers 
of astrocytes and microglia have been shown to increase 
after 1 month, whereas oligodendrocytes gradually emerge 
after the brain organoids have been cultured for 3 months 
[88]. Consequently, cellular identities, neuronal activity, and 
cellular interactions are a function of the duration of time 
that the brain organoids remain in culture.

Brain organoid cultures have been shown to replicate 
early in vivo brain development remarkably well from the 
middle to the end of the 8–10 weeks of gestation (GW) 
[89]. Some reports have demonstrated that the in  vitro 
development recapitulates in vivo development up until 
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approximately 19–24 weeks of gestation, suggesting that this 
model is particularly relevant to human fetal brain develop-
ment [90, 91]. Similarities have been shown to exist between 
in vitro neocortical cultures and early human neocortical 
development with respect to their temporal development and 
gene expression [92]. In addition, cortical organoids have 
recently been shown to mimic dynamic neural networks 
similar to those of premature neonates at approximately 
28 week gestation [93]. Consequently, the recent develop-
ment of brain organoid technology facilitates an approach 
to human-specific neurodevelopmental processes with 
respect to their transcriptional signatures, recapitulation of 
the dynamic cytoarchitectural development, and functional 
electrophysiological maturation [94].

The considerations outlined above suggest that 3D orga-
noid culture models could provide novel insights into cel-
lular mechanisms and responses, along with specific bio-
markers related to signature of human HIE. Recent studies 
have examined brain organoid cultures to simulate neonatal 
encephalopathy using several different approaches. Several 
recent studies have examined the neuroprotective efficacy 
of minocycline to attenuate hypoxic insults using human 
brain organoids [82]. Minocycline is a second-generation 
semi-synthetic tetracycline derivative that has been shown to 
exhibit neuroprotective properties [95]. HIE was simulated 
by exposure of the brain organoid cultures to hypoxia (1% 
and 8% oxygen) using a hypoxia chamber from day 10 of 
the neural organoid culture induction up until to 25 days of 
exposure to hypoxia. Thereafter, the cultures were exposed 
to minocycline for 72 h. However, this protocol induced 
hypoxia at a very early stage of brain organoid development 
that could potentially limit the relevance of the hypoxic 
exposure to HIE in the human full-term human infants [89, 
92]. Minocycline has been evaluated in hypoxic brain injury 
but also in neurodegenerative and psychiatric diseases [96, 
97]. This molecule displays effective antioxidant and anti-
inflammatory effects in preclinical studies in animal models 
but not in clinical studies [98]. Matrigel was not used during 
the culture of organoids in this study as well as bioreactors 
or extrinsic signaling molecules, which limit neuroectoderm 
expansion and appropriate differentiation of the cellular ele-
ments into the neuronal population. The gap between pre-
clinical and clinical data suggests that these systems need to 
be carefully evaluated.

Hypoxic injury was also induced in 3D human neural 
organoid on day 84 of culture by exposure to low oxygen 
conditions (1% of oxygen) for 48 h [85]. After exposure 
to hypoxia, the neural organoids were placed in a chamber 
containing 21% O2 and 5% CO2 for 24 h to simulate reoxy-
genation. The organoids in this study represented organized 
human neural organoids recapitulating human cortical plate 
development, thereby increasing the relevance of the model 
to human neonates exposed to hypoxic conditions. Hypoxic 

brain injury was characterized by disruption of neuronal cell 
components after exposure to hypoxia. Moreover, reoxygen-
ation resulted in neuronal cell proliferation but could not 
reconstitute appropriate neuronal maturation. In addition, 
an attempt was made to expose the neural organoid cultures 
to OGD. However, OGD resulted in severe damage, which 
could not be reversed upon exposure to reoxygenation.

Hypoxic injury was also examined at 28 days of brain 
organoid culture by applying 3% O2 and 5% CO2 for 24 h 
followed by normoxic conditions (21% of O2 and 5% CO2). 
These study conditions resulted in injury to the outer radial 
glia (oRG) progenitors and other neuronal cells, and com-
pensatory mechanisms to reconstitute stem cells after HI 
[84]. Finally, hypoxic brain injury was used to investigate 
the effects of hypoxia using three-dimensional human brain 
region-specific organoids. Oxygen deprivation (1% O2 and 
5% CO2) for 48 h altered corticogenesis because of dam-
age to intermediate progenitors as a result of responses in 
unfolded proteins [83].

Overall, these studies tested different conditions of 
hypoxic-ischemic injury by changing the percentage of oxy-
gen, exposure time, and age of brain organoid exposed and 
recovery condition. To study HI pathophysiology through 
this 3D technology, there are number of criteria to consider. 
The first one is the age of brain organoid exposed to injury. 
HIE occurs during prenatal, intrapartum and postnatal 
period in neonates, so to compare with in vivo situation, 
human brain organoid must display similarities, including 
cellular distribution and organization, physiological struc-
ture, electrical activities, and neuronal networks. In fact, 
there is a changing organoid physiology over time in cul-
ture and age of brain organoid must be chosen carefully to 
allow cell maturity, full functionality and to enable for the 
target cell types to differentiate [88]. Neurons start to appear 
in earlier time of culturing (around 1 month). Marker of 
astrocytes and microglia increases from 1 month, while oli-
godendrocytes gradually emerge from 3 months of culturing. 
At 5 and 6 months old, there are more complex neuronal 
networks with the presence of periodic oscillatory activity 
and synaptic plasticity. To study HIE, brain organoid need 
a minimum of 1 month of maturation in culture to display 
neuronal network, cell type diversity and to allow researcher 
to observe cell’s behavior. The second criteria to consider 
is percentage of oxygen for hypoxic injury on brain orga-
noid. When hypoxic injury happen during prenatal period, 
the percentage of oxygen deprivation is not known. Differ-
ent percentage of oxygen need to be tested on brain orga-
noid and validate using cell marker (neurons, astrocytes, 
and microglia) or more specific marker such as HIF1α a 
major transcriptional regulator of the cellular response to 
low oxygen. The third criteria is additional implementation 
of glucose deprivation to model ischemia-like conditions 
in vitro [99]. One study tried OGD on brain organoids [85] 



	 R. Gaston‑Breton et al.

1 3

318  Page 10 of 16

and led to severe damage including a decrease in size, a loss 
of layer structure, and gene expression TUJ1 and PAX6. The 
last criteria is to add a reoxygenation step after hypoxic-
ischemic injury, normoxia with 21% of oxygen. This step 
can model reperfusion/reoxygenation of neonates after 
hypoxic-ischemic injury. This simulation of reoxygenation 
can be really interesting to study behavior of neurons and 
the other cell types after reoxygenation.

These early studies outlined above suggest the relevance 
and feasibility of using brain organoid cultures as a model 
to simulate some of the characteristics related to HIE in the 
human neonate. Organoid cultures could facilitate under-
standing of the effects of hypoxic insults on specific cel-
lular responses, molecular mechanisms, and the behavior of 
brain signal transduction pathways resulting in injury and/
or recovery from injury.

Challenges, limitations, and solutions 
for brain organoid cultures

Given the considerations summarized above, it appears that 
the 3D cerebral cortical organoid culture system has great 
potential to facilitate the translational study of brain diseases 
such as HIE in the newborn and to provide detailed preclini-
cal mechanistic data. Nonetheless, this methodology also 
entails considerable challenges for its implementation and 
verification (see Table 2). The first limitation is the absence 
of a microvasculature network containing native blood cel-
lular elements within the cultured brain organoids. Although 
there is sufficient oxygen and nutrients near the surface of 
the organoid cultures, their availability becomes limited in 
the deeper regions in the organoid cultures. Consequently, 
a gradient potentially exists within the organoid cultures 
resulting in acidification and release of inflammatory con-
tents predisposing to apoptosis potentially, which damage 
neighboring cells via adherent junctions at the deeper cul-
ture levels and leads to necrotic core development. Limits 
in diffusion could result in reductions of proliferation and 
structural disorganization when cultures are maintained for 
longer durations [100].

Several different techniques have been attempted to vas-
cularize organoid cultures to minimize the adverse effects 
of these gradients [101]. Blood vessels are derived from 
mesodermal tissue, whereas neurons are from ectodermal 
tissue [102]. Therefore, it is difficult to initiate cell cultures 
from two different germ layers simultaneously [102]. Several 
studies have attempted to vascularize 3D organoid cultures 
by co-culturing brain organoids with endothelial cells. This 
process results in vasculature cover or invasion into the brain 
organoid cultures [103, 104]. A limit of this strategy is that 
vascularization does not lead to a functional BBB in this 
model.

Another strategy is to transplant the brain organoids into 
the cerebral cortex of immunodeficient mice. This procedure 
results in invasion of the host blood vessels into the brain 
organoids with active blood flow perfusion [105]. However, 
this technique results in a half-mouse/ half-human model 
and brain organoid are not independently vascularized.

An alternative protocol utilized endogenous endothelial 
cells that overexpressed the transcription factor human ETS 
variant 2 (ETV2), which induced differentiation of pluripo-
tent stem cells into endothelial cells during brain organoid 
culture initiation [106]. A recent study generated, blood ves-
sels within organoids using transient mesodermal inductions, 
vascular progenitor, and endothelial cell inductions and at 
the end incubation with neurotrophic reagents [107]. After 
this procedure, vascularized organoids were infused into the 
brain organoids. Interestingly, the brain organoids became 
fused with the vascular tissue. The new structures had prop-
erties similar to those of the BBB and actually exhibited 
tight junctions. However, the generations of cellular and 
plasma components of blood also need to be established. 
Although there are several novel strategies that appear to be 
able to vascularize brain organoids in support of the complex 
cellular network in brain organoids, the development of a 
microvasculature network containing the cellular and plasma 
constituents of blood remains a considerable challenge.

Several other challenges include the necessity for 
astrocytes and oligodendrocytes to simulate defined cor-
tical layers similar to the in vivo cerebral cortex. The 
microenvironment needs simultaneously to contain all 
cell types present within normal brain. Human iPSCs-
derived microglial have been cultured along with brain 
organoids and shown to adhere to, and migrate into the 
interior of the brain organoid [108]. Other challenges 
include obstacles to spatial organization, complexity, 
maturation, appropriate cortical folding, and gyrification 
as observed in gyrencephalic mammals [109, 110]. The 
lack of appropriate cortical folding in the brain organoids 
could result from the fact that the cultures do not reach 
a developmental stage, at which gyrification is present 
[110]. There have been attempts to generate a ‘pseudo 
folding’ into brain organoids by inducing neural progen-
itor cells (NPC) overgrowth via knockout PTEN or by 
microchips [111, 112]. Moreover, there is considerable 
variability in the 3D model within and between organoid 
batches, thus limiting reproducibility, which impairs the 
validity of the data generated with this model system 
[113]. The use of Matrigel increases this variability, as 
most organoids are cultured with Matrigel, which come 
from Engelbreth–Holm–Swarm mouse sarcoma cells, 
which is rich in collagen, laminin, proteoglycan, and 
other extracellular matrix protein. These factors make it 
difficult to elucidate the type of structure and function 
of organoids and limit the use of organoids in clinical 
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transplantation [114]. A new matrix has been developed, 
which contains brain extracellular matrix, and can pro-
mote structural and functional maturation of human brain 

organoids [115]. This extracellular matrix is complicated 
to obtain, because it is human brain tissue and this makes 
it difficult to use.

Table 2   Challenges in brain organoid model

Limitations Consequences Approaches

Absence of microvasculature network Oxygen and nutrient availability become 
limited in the deeper region. This limitation 
will lead to formation of a gradient within 
brain organoid with acidification, inflamma-
tion, and apoptosis

Co-culture with endothelial cells, invasion into 
the brain organoids [103]

Transplantation of brain organoids inside the 
cerebral cortex of immunodeficient mice[105]

Use of endogenous endothelial cells that over-
express the transcription factor human ETS 
variant 2 (ETV2) [106]

Generation of blood vessels within organoids 
using fusion of vascularized organoids with 
brain organoids [107]

Development of neurovascular organoids using 
a 3D-printed microfluidic chips [126]

Absence of microglia cells Lack of specific cell types and their microen-
vironment

Human iPSC-derived microglial have been 
cultured along with brain organoids with 
migration into the interior of the brain orga-
noids [108]

Induction of oligodendrocytes progenitors and 
myelinating oligodendrocytes in cortical 
spheroids by exposure to the oligodendrocytes 
growth factors PDGF, IGF-1 and T3 [127]

Differentiation of hiPSC cells into 3D neural 
spheroids to model the development of human 
oligodendrocyte lineage cells alongside neu-
rons and astrocytes [128]

Generation of microglia-containing brain orga-
noids by co-culturing hPSCs-derived primi-
tive neural progenitors cells and primitive 
macrophage progenitors under 3D conditions 
[129]

Poor spatial organization, complexity, matura-
tion, cortical folding, and gyrification inside 
brain organoids

Different cell organization inside brain 
organoid compared to human brain, less 
complexity of cell type, less maturation and 
no cortical folding

Generation of a “pseudo folding” by inducing 
neural progenitor overgrowth via knockout 
PTEN or by microchips [111, 112, 130]

In situ generation of human brain organoid on 
a micropillar array with specific features of 
neuronal differentiation, brain regionalization, 
and cortical organization [131]

Development of a lipid-bilayer-supported print-
ing technique to 3D print human cortical cells 
in Matrigel [132]

Engineering 3D brain organoid derived from 
hiPSCs using organ-on-a-chip technology 
revealing well-defined neural differentiation, 
regionalization, and cortical organization 
[133]

High variability within and between organoid 
batches

Reduce reproducibility of data Development of a new matrix with human brain 
extracellular matrix which can promote struc-
tural and functional maturation of organoids 
[115]
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Where promising discoveries meet their 
demise: brain in a dish as a novel tool 
to bridge the translational gap for HIE

“The translational science spectrum represents each 
stage of research along the path from the biological basis 
of health and disease to interventions that improve the 
health of individuals and the public” according to the U.S. 
National Center for Advancing Translational Sciences 
(NIH).

There are five important steps before clinical applica-
tion can be achieved. The first is basic science research 
with preclinical and animal studies [116]. (1) The aim 
of this step is to define the pathobiological mechanisms 
and targets, and to produce relevant therapeutic agents 
and determine regulatory interactions. The second step 
is translation to human clinical trials. (2) The goals of 
phase one clinical trials are to determine safety, proof of 
mechanism(s) and of concepts, new methods of diagno-
sis, treatment, and prevention. The third step is the initial 
clinical trial. (3) Phase 2/3 clinical trials address the dose 
selection, proof of efficacy, and patient safety. The aims 
of this stage are to perform controlled trials resulting in 
efficacious therapeutics, to determine the benefit/risk pro-
file, and to generate health economic data. There is a gap 
between stages one and three that has been dubbed the 
“Valley of death”. Therefore, it remains critical for basic 
and clinical scientists to achieve optimal communication 
during the initial development of clinical trials [117]. (4) 
Phase four represents translation into clinical practice 
through further clinical trials and outcomes research, in 
which therapeutics are delivered in a timely fashion to the 
appropriate clinical population, along with post-marketing 
safety evaluations, and the potential evaluation for supple-
mentary indications. (5) The final stage is translation to 
the community with societal benefit. This includes transla-
tion of new data into clinical decision-making.

More relevant accurate models are required to convert 
novel findings obtained from basic science research into 
clinically relevant therapeutics. Consequently, there is 
a critical need for improved efficacy and evaluation, for 
enhanced predictive assessment, and translation of data 
to bring innovations more rapidly from bench to bedside 
[118]. Brain organoids could potentially help bridge the 
gap between novel scientific discoveries and clinical appli-
cation [119]. This technology is a promising platform to 
study brain diseases, such as HIE and to investigate their 
underlying molecular mechanisms. As discussed previ-
ously, brain organoids have some limitations such as a 
necrotic core and hypoxia in deeper region due to a lack of 
circulating nutrients and oxygen. However, there are some 
solutions that deal with this limitation, which can bias data 

interpretation in a hypoxic context. In a study published in 
2021, [120] investigated a new method to avoid apoptosis 
and hypoxia in the organoid core: they mechanically cut 
70-day-old human cortical organoids with a scalpel blade 
into 2 or 4 pieces [120]. After 7 days of culturing these 
pieces of brain organoids, they evaluated HIF1a, which 
was not expressed in cut organoids with less pro-apoptotic 
marker such as Bcl-2 and Bax. Another possibility is to use 
cerebral organoid at the air–liquid interface, which lead to 
an improved survival and maturation [121]. Discovery of 
specific biomarkers though the brain organoids platform 
could facilitate drug development [122]. Brain organoids 
could potentially facilitate novel neuroprotective strategies 
tailored to enable personalized medicine. This methodol-
ogy could accelerate the drug development pipeline. Per-
sonalized medicine could compensate for inter-individual 
differences and different patient phenotypes, and facilitate 
personalized diagnosis along with prognostication [123]. 
Personalized medicine could also elucidate sex differences 
and allow for specific patient traits. “Biological sex” is a 
key variable in biomedical research that needs to be con-
sidered in all experiments [124].

Concluding remarks and future perspectives

HI injury is a global issue accounting for 23% of infant mor-
tality worldwide [13]. Hypothermia is the only therapeutic 
strategy approved for full-term infants that are exposed to 
HIE. However, this therapy is only partially protective and 
there is an urgent need to develop adjunctive [100] neuro-
protective agents to improve outcomes after exposure to 
HIE. Brain organoid cultures have the potential to provide 
translational data and to accelerate the transfer of therapies 
from basic science to clinical medicine. This 3D model 
could contribute to neurological research and represent an 
interesting method to study disease states, and to evaluate 
new therapeutic agents [125]. It will be an important chal-
lenge to improve this in vitro platform through: implemen-
tation of different cell types found in the human brain, the 
modeling of the brain microenvironment, establishment of 
effective vascularization, and spatial organization specific to 
brain regions in human subjects. This platform will also be 
a useful tool for the study of sexual differences reported in 
HIE, using iPSCs from human males and females in brain 
organoids.
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