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Abstract
The aim of this review article is to focus on the unconventional roles of epigenetic players (chromatin remodelers and long 
non-coding RNAs) in cell division, beyond their well-characterized functions in chromatin regulation during cell differentia-
tion and development. In the last two  decades, diverse experimental evidence has shown that subunits of SRCAP and p400/
TIP60 chromatin remodeling complexes in humans relocate from interphase nuclei to centrosomes, spindle or midbody, 
with their depletion yielding an array of aberrant outcomes of mitosis and cytokinesis. Remarkably, this behavior is shared 
by orthologous subunits of the Drosophila melanogaster DOM/TIP60 complex, despite fruit flies and humans diverged 
over 700 million years ago. In short, the available data support the view that subunits of these complexes are a new class of 
moonlighting proteins, in that they lead a "double life": during the interphase, they function in chromatin regulation within 
the nucleus, but as the cell progresses through mitosis, they interact with established mitotic factors, thus becoming integral 
components of the cell division apparatus.  By doing so, they contribute to ensuring the correct distribution of chromosomes 
in the two daughter cells and, when dysfunctional, can cause genomic instability, a condition that can trigger tumorigenesis 
and developmental diseases. Research over the past few years has unveiled a major contribution of long non-coding RNAs 
(lncRNAs) in the epigenetics regulation of gene expression which also impacts on cell division control. Here, we focus on 
possible structural roles of lncRNAs in the execution of cytokinesis: in particular, we suggest that specific classes of lncR-
NAs relocate to the midbody to form an architectural scaffold ensuring its proper assembly and function during abscission. 
Drawing attention to experimental evidence for non-canonical extranuclear roles of chromatin factors and lncRNAs has 
direct implications on important and novel aspects concerning both the epigenetic regulation and the evolutionary dynamics 
of cell division with a significant impact on differentiation, development, and diseases.
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Introduction

In eukaryotes, successful cell division requires the proper 
distribution of chromosomes and cytoplasmic material to 
daughter cells, orchestrated via coordinated cytoskeletal 
processes including spindle assembly, spindle position-
ing, chromosome segregation, and cytokinesis [1–9]. Upon 
entering mitosis, chromosomes condense and attach to 
mitotic spindle fibers to ensure that sister chromatids are 
pulled towards opposite sides of the cell (Fig. 1). The mitotic 
spindle assembles from microtubule arrays and associated 
proteins that orchestrate chromosome segregation during 
mitosis [3, 4]. The spindle is highly dynamic in nature and 
evolutionarily conserved, with many components shared by 
humans and simpler organisms. In addition to tubulins, pro-
teins involved in spindle function include motor proteins, 
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microtubule-associated proteins (MAPs), microtubule 
organizing centers, regulatory kinases and phosphatases, 
kinetochore protein complexes, and chromatin-associated 
proteins. Following chromosome segregation, the assembly 
of actomyosin contractile ring occurs at the cleavage furrow. 
The ring drives the constriction of the plasma membrane 
leading to abscission, the last stage of cytokinesis (Fig. 1). 
Before the final cut, the two newly generated daughter cells 
remain connected by a cytoplasmic bridge that contains 
the midbody (MB), an organelle first described by Walther 
Flemming at the end of the 1800s [5]. The MB is a complex 
multi-protein organelle with a tightly packed structure that 
forms from the bipolar microtubule array of the central spin-
dle. It plays a pivotal role in the final step of cell division 
by localizing the site of abscission, and hence of physical 
separation of daughter cells during cytokinesis [6–12]. Sev-
eral cellular and molecular pathways have been identified 
that localize to the MB, contributing to the proper execution 

of cytokinesis. Notably, various biochemical assays on MB-
purified extracts have identified proteins not only related 
to the cytoskeleton, but also to other molecular pathways, 
including lipid rafts, vesicle trafficking, protein synthesis, 
and chromatin organization [6, 10].

The MB consists of three major structural regions: the 
ring, central core, and arms (Fig. 1) [10]. MB-proteins are 
generally classified in subgroups based on their location: 
the ring contains Anillin, Citron kinase, and other contrac-
tile ring components; the central core is marked by central 
spindle proteins, e.g. the Centralspindlin complex; the arms 
contain the Aurora B kinase and its localizing partners of the 
Chromosome Passenger Complex (CPC).

Studies on mitosis and cytokinesis are increasingly rele-
vant to cancer research. Anomalies in the mitotic spindle can 
impact chromosome segregation, leading to aneuploidy. This 
phenomenon results in chromosomal instability, a significant 
contributor to genetic heterogeneity in cancer. Additionally, 
chromosomal instability plays a crucial role in clinical prog-
nosis and the development of therapeutic resistance [13–16]. 
Furthermore, MB alterations can lead to cytokinesis failure, 
resulting in two outcomes: (i) inhibition or regression of 
the cleavage furrow, leading to the formation of binucleated 
cells, or (ii) persistent connections between daughter cells, 
forming long intercellular bridges and giving rise to syncy-
tial cells. Cytokinesis failure ultimately yields tetraploid and 
polyploid cells with multiple centrosomes, which can further 
result in aneuploid daughter cells. All these dysfunctions 
converge to promote tumorigenic transformation [16–18]. 
Consequently, understanding the molecular mechanisms 
underlying mitosis and cytokinesis holds the potential to 
significantly impact both cancer prognosis and therapy.

ATP‑dependent chromatin remodeling 
complexes

Chromatin organization and remodeling are crucial aspects 
of development and differentiation of higher eukaryotes. In 
this context, ATP-dependent chromatin remodeling com-
plexes are multi-protein machines that have been highly 
conserved during eukaryotic genome evolution [31]. These 
complexes use the energy from ATP hydrolysis to control 
sliding and displacement of the nucleosomes, thereby modu-
lating histone-DNA interactions and making nucleosomal 
DNA more accessible to specific binding proteins during 
replication, transcription, and DNA repair, processes that are 
crucial for the proper execution of cell division.

Currently, chromatin remodeling complexes are cat-
egorized into four subfamilies based on their associated 
ATPase subunits [19]: (i) the mammalian switch/sucrose 
non-fermenting (SWI/SNF) subfamily, also called BAF com-
plexes (Brg/Brm-associated factor); (ii) the chromodomain 

Fig. 1   Schematic representation illustrating various stages of cell 
division and highlighting the three  major structural regions of the 
MB: the ring, central body, and arm
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helicase DNA-binding (CHD) subfamily; (iii) the imitation 
switch (ISWI) subfamily; and (iv) the inositol requiring 80 
(INO80) subfamily, which includes yeast INO80 and SWR1 
complexes, as well as human p400/TIP60 and SRCAP 
complexes.

The INO80 family is responsible for exchanging the 
canonical histone H2A with the variant H2A.Z in vari-
ous eukaryotic species [19]. The Drosophila DOM/TIP60, 
related to the yeast SWR1 complex shares many subunits 
with the p400/TIP60 and SRCAP complexes. It has been 
recently suggested that the subunits assigned to Drosophila 
DOM/Tip60 complex are indeed part of two different chro-
matin remodeling complexes, DOM-A and DOM-B. These 
complexes are analogous to the yeast SWR1 and NuA4 com-
plexes, respectively, and are characterized by different func-
tions and subunit compositions [20]. Overall, the subunits of 
these remodeling complexes exhibit strong evolutionary and 
functional conservation (Fig. 2; Table 1) and their dysfunc-
tion is implicated in cell cycle alterations and tumorigenesis 
(Table 2).

Relocation and functions of chromatin 
factors during cell cycle progression

The first example of versatile chromosome proteins able to 
change their localizations and functions during cell-cycle 
progression is given by the CPC, whose subunits are Aurora 
B, INCENP, Borealin, and Survivin [36]. In early mitosis, 
they associate with chromosomes, then are recruited to 
kinetochores to monitor their interactions with the spindle 
microtubules and eventually relocate to the MB. The cata-
lytic component Aurora B, whose localization is aided by 
the three passenger partners, phosphorylates and activates 
several factors at specific times at these different locations, 
thus playing essential roles in cell division.

The dynamic behavior during cell-cycle progression is 
not restricted to the CPC proteins. In fact, diverse chro-
matin proteins, in addition to their role in modulating 
chromatin organization and gene expression, can relocate 
to centrosomes, spindle and MB, taking part in cell divi-
sion and hence in the maintenance of genomic integrity 
and stability (Table 3). The chromatin proteins Skeletor 
and Chromator, interact with each other and redistribute 
during mitosis to form a molecular spindle matrix com-
plex [37, 38]. The Nucleolar and Spindle-Associated 
Protein (NuSAP), a RanGTP-dependent microtubule and 
DNA-binding protein, is nucleolar during interphase, 

Fig. 2   The cartoon shows 
the subunit composition of D. 
melanogaster DOM/Tip60 and 
related human SRCAP and 
p400/Tip60 complexes. The 
DOM/Tip60 complex consists 
of 17 known subunits (Act87B, 
BAP55, Brd8, DOM, DMAP1, 
E(Pc), Eaf6, GAS41, Ing3, 
Mrg15, MrgBP, Nipped-A, 
Pontin, Reptin, TRA1, YETI, 
and YL1). This complex is 
crucial for the replacement of 
acetylated phospho-H2A.V with 
unmodified H2A.V through the 
activity of Domino ATPase. In 
Drosophila, H2A.V is the only 
H2A variant and corresponds to 
mammalian H2A.X and H2A.Z 
[20]. Subunits are not in scale
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associates with microtubules in metaphase and with the 
central spindle in anaphase and its depletion results in 
mitosis and cytokinesis defects [39, 40]. In addition, the 
chromatin remodeler INO80 and three subunits of the 

SRCAP and p400/TIP60 chromatin remodeling com-
plexes, Pontin (RUVBL1), Reptin (RUVBL2) and TIP60 
(KAT5), were shown to relocate to the mitotic apparatus 
with functional relevance in ensuring the proper execution 

Table 1   Evolutionary conservation of ATP-dependent chromatin remodeling complexes

The D. melanogaster DOM/TIP60 complex appears to be a fusion of SWR1 and NuA4 complexes of yeast, since the TIP60 complex shares con-
served subunits with either SWR1 or NuA4 complexes. Similarly, the human TIP60 complex is a fusion of SWR1 and NuA4 complexes

Organism H. sapiens D. melanogaster S. cerevisiae A. thaliana

Complex p400/Tip60 SRCAP DOM / Tip60 NuA4 SWR1 AtNuA4 AtSWR1
Core P400 SRCAP DOM-A EAF1 SWR1 EAF1A / EAF1B PIE1

RUVBL1 Pontin RVB1 TIP49a (RIN1)
RUVBL2 Reptin RVB2 RVB2A / RVB2B
BAF53a (ACTL6A) BAP55 ARP4 ARP4
YEATS4 GAS41 YAF9 YAF9A / YAF9B
DMAP1 DMAP1 SWC4 (EAF2) SWC4
VPS72 YL1 SWC2 SWC2
Actin Act87E ACT1 ACT1

ACTR6 ARP6 ARP6 ARP6
Tip60 (KAT5) Tip60 ESA1 HAM1 / HAM2
MORF4L1 MRG15 EAF3 MRG1 / MRG2
MEAF6 dEAF6 EAF6 EAF6
MRGBP MRGBP EAF7 EAF7
EPC1 E(Pc) EPL1 EPL1A / EPL1B
ING3 ING3 YNG2 ING1 / ING2
TRRAP Nipped-A (dTra1) TRA1 TRA1 / TRA2
BRD8 Brd8 Bdf1

ZNHIT1 SWC6 (VPS71) SEF
CFDP1 YETI SWC5 SWC5

Non-homologous 
subunits

EAF5 SWC3, SWC7

Table 2   Subunits of SRCAP and p400/TIP60 complexes implicated in cancer biology

Subunits Implication in cancer biology

BAF53a Overexpressed in bladder, cervix, myeloma, colon, and ovarian cancers [21]; aberrant expression correlated with the 
progression of rhabdomyosarcoma, osteosarcoma, hepatocellular carcinoma, and head and neck squamous cell carci-
noma [21]; BAF53a is considered to promote cancer progression via EMT epithelial–mesenchymal transition [22]

EPC1 Is mutated by chromosomal translocation in endometrial stromal sarcoma and in adult T-cell leukaemia/lymphoma 
SO4 cells [23–25]

GAS41 Overexpressed in glioblastoma cell lines [26, 27]
MRGBP/MRGX/MRG15 Overexpressed in colorectal cancer tissues [28]
P400 Its siRNA-mediated decrease favors the response to 5-fluorouracil of colon cancer cells [29]
Pontin & Reptin Overexpressed in bladder, colon, liver cancers, and melanoma [21, 30, 31]
SRCAP Mutated in large intestine, cervix, bone, endometrium, lung, urinary tract [21]; overexpressed in pancreatic cancer 

[21]; interacts with the CREB binding protein (CBP), an acetyltransferase encoded by a haplo-insufficient tumor 
suppressor gene in B-cell lymphoma [32]. It has been identified as a physiologically relevant mediator of PSA 
expression in prostate cancer cells [33]

Tip60 Acts as a haplo-insufficient tumor suppressor [29, 34]
YL1 Overexpressed in prostate cancer [35]
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of cell division in human cells [41–48]. Notably, these 
proteins were found to interact with tubulins and/or with 
cell division regulators. INO80 binds to microtubule and 
was implicated in spindle assembly [41]. Pontin associ-
ates with the mitotic spindle and centrosomes via interac-
tions with tubulins in U937 human promonocytic cells 
[42] and interacts with the γ-tubulin ring complex in 
Xenopus egg extracts [43]. Pontin and Reptin were found 
on the mitotic spindle [43]. In late anaphase, both Pontin 
and Reptin concentrate at the MB in HeLa cells [44, 45]. 
Accordingly, both Pontin and Reptin are found in micro-
tubule interactome [46], and their RNAi-depletion leads 
to cell cycle alterations such as spindles defects, mis-
aligned, and lagging chromosomes [43–45]. The TIP60 
acetyltransferase of the p400/TIP60 chromatin remodeling 
complex co-localizes and physically interacts with both 
Plk1, a mitotic kinase, and cyclin B1, forming a ternary 
complex that localizes to the centrosomes and to the MB 
during cytokinesis [47]. Moreover, TIP60 performs Aurora 
B acetylation at kinetochores and is required for proper 
chromosome segregation [48]. Finally, an RNAi screening 
in Drosophila melanogaster S2 cells provided evidence 
for a role in cytokinesis of BAP55 [49], a subunit of the 
Drosophila DOM/TIP60 complex (Fig. 2; Table 1).

More recently, we studied several subunits of human 
SRCAP and p400/TIP60 chromatin remodeling complexes 
and found that they localize at the mitotic apparatus (cen-
trosomes, spindle, and MB) in both HeLa and U2OS cell 
lines (Table 3; Fig. 3A), with their RNAi-induced depletion 
producing cell division defects at both mitosis and cytoki-
nesis [50, 51]. These defects might be a secondary effect 
caused by general chromatin perturbations that in turn would 
result in deregulation of cell division genes. However, a 
direct role of chromatin remodeling subunits in cytokinesis 
is supported by co-IP experiments performed on chroma-
tin-free protein extracts from telophase-synchronized HeLa 
cell [50, 51]. In these assays, where chromatin contribution 
can be excluded, SRCAP, BAF53a and TIP60 interacted at 
telophase with α-tubulin, Aurora B, CIT-K, and other MB-
associated cytokinesis regulators. Remarkably, a similar 
relocation behavior during mitosis and meiosis is shared 
by subunits of DOM/TIP60 complex of D. melanogaster 
(Table 3; Fig. 3B), which are orthologous to those of SRCAP 
and p400/TIP60 human complexes (Table 1) [51, 52]. Since 
the lineages of D. melanogaster and humans separated 
approximately 780 million years ago, these results strongly 
suggested that the functional recruitment of chromatin 

Table 3   Localization of chromatin factors to sites of cell division apparatus, in human and D. melanogaster cell cultures

Homo sapiens

Name Localization References

Aurora B Kinetochores, spindle midzone, midbody [36]
INCENP Inner centromeres, spindle midzone, equatorial cortex [36]
Borealin Centromeres, spindle midzone, cleavage furrow [36]
Survivin Centromeres, spindle midzone, cleavage furrow [36]
NuSAP Central spindle [39, 40]
Ino80 Mitotic spindle [41]
Pontin, Reptin Mitotic spindle, centrosomes, midbody [42, 44–46, 51]
BAF53a, CFDP1, GAS41, YL1 Mitotic spindle, central spindle, midbody [51]
p400 Midbody [51]
SRCAP Centrosomes, mitotic spindle, midbody [50]
TIP60 (KAT5) Spindle poles, kinetochores, cleavage furrow, central spindle, midbody [47, 48, 51]

Drosophila melanogaster

Skeletor Skeletor defined spindle, microtubule spindle [37]
Chromator Chromator defined spindle, centrosomes [38]
dTIP60 Spindle, centrosomes, midbody [51, 52]
DOM-A Centrosomes; midbody [50–52]
MRG15 Centrosomes; midbody [51, 52]
YETI Spindle, midbody [51, 52]
BAP55 Spindle, centrosomes [52]
DMAP1 Centrosomes [52]
YL1 Centrosomes [52]
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remodelers to the mitotic apparatus is a very ancient and 
biologically functional process [51].

Several ATPases interact with microtubules and play 
direct roles in mitosis and cytokinesis. Specifically, the 
AAA-ATPase Cdc48/p97 regulates spindle disassembly 
at the end of mitosis [53]. The ISWI activity is necessary 
for spindle maintenance, stabilizing microtubules in ana-
phase [54], while INO80 and CHD4 are required for spindle 
microtubules assembly [41, 55]. Interestingly, domain analy-
sis of ISWI, CHD4, and INO80 revealed that they can bind 
microtubules through regions containing chromatin-binding 
domains [56]. Moreover, Spastin, a microtubule-severing 
ATPase ensuring the final cut at the midbody, assembles 
into a hexamer and recognize the C-terminal amino acids of 

α-tubulin [57]. Mutations in the Spastin-encoding gene are 
the most common causes of dominant hereditary spastic par-
aplegias (HSPs), a genetic motor neuron disease character-
ized by progressive degeneration of corticospinal tract axons 
[58]. Interestingly, depletion of Spastin in HeLa and MRC5 
cells results in cytokinesis failure phenotypes [59], simi-
lar to those found in SRCAP-depleted HeLa cells [50]. In 
agreement with these results, the SRCAP ATPase interacts 
with Spastin and α-tubulin [50] in telophase-synchronized 
cells and carries putative microtubule-binding domains in 
its C-terminal region (Y. Prozzillo, unpublished). Thus, we 
hypothesized that SRCAP ATPase, as spindle and MB com-
ponent, participates in two different steps of cell division: by 
ensuring proper chromosome segregation during mitosis and 
MB function during abscission at cytokinesis [50].

Dominant truncating mutations of the Srcap gene were 
found to trigger the onset of Floating Harbor syndrome 
(FHS), a rare genetic disease characterized by delayed bone 
mineralization and growth, skeletal, and craniofacial abnor-
malities, often associated with mental disability [60, 61]. 
Thus, in addition to gene deregulation caused by chroma-
tin alterations, a cell division failure may contribute to the 
developmental defects found in FHS patients [50].

Collectively, the aforementioned studies highlighted the 
existence of a massive and evolutionarily conserved phe-
nomenon where relocation of chromatin factors to the cell 
division apparatus has functional relevance in ensuring a 
faithful cell division in distantly related organisms. It is 
possible to speculate that the “mitotic trip” of chromatin 
remodelers from the interphase nucleus to the cell division 
apparatus takes place by exploiting interactions with micro-
tubules and/or microtubule-associated proteins. Elucidating 
the molecular mechanisms underlying the moonlighting 
functions of chromatin proteins in cell division is also an 
important challenge to clarify yet poorly understood routes 
to tumorigenic transformation in cancer types in which 
these factors are aberrantly expressed and/or dysfunctional 
(Table 2). Gaining insight into these processes will also help 
to expand our understanding of the link between cell divi-
sion and cancer.

Chromatin remodeling and lncRNAs

LncRNAs are crucial players controlling a plethora of bio-
logical processes [62, 64] and their deregulation is also 
implicated in tumorigenesis [63–66]. As the list of cancers 
aberrantly expressing lncRNAs is growing fast, lncRNAs 
have been proposed both as novel biomarkers and potential 
therapeutic targets for cancer [65, 66]. Increasing evidence 
shows that many lncRNAs are involved in chromatin regula-
tion and gene expression and can function as scaffolds for 
the recruitment of chromatin factors [63]. Several lncRNAs 

Fig. 3   Evolutionarily conserved relocation of chromatin remodel-
ers to the cell division apparatus: the example of TIP60 acetyl-trans-
ferase. Immunofluorescence images depict the conserved reloca-
tion of chromatin remodelers to the cell division apparatus. Human 
RPE-1 (A) and D. melanogaster S2 cells (B) were  stained with DAPI 
(blue), anti-α-tubulin (green), and anti-TIP60 (red). Arrows highlight 
the centrosome/spindle structures (metaphase) and midbodies (telo-
phase). Scale bars:10 μm (RPE-1) and 5 μm (S2)
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facilitate the binding and spreading of the Polycomb repres-
sive complex 2 (PRC2) across targeted chromatin [67–69]. 
Interactions between lncRNAs and subunits of different 
chromatin remodeling complexes such as BAF, SRCAP, 
NuRD, and ATRX complexes have been reported [70]. For 
example, the lncRNA SChLAP1 interacts with SNF5, a core 
subunit of the BAF complex, which is required for the proper 
assembly and function of the complex [71]. The well-known 
lncRNA XIST physically associates with the BRG1 subunit 
of the BAF complex and inhibits its ATPase activity in vitro 
[72]. The lncRNA SWINGN promotes the interaction 
between SWI/SNF chromatin remodeling complexes and the 
transcription start site of GAS6 oncogene [73]. The SWI/
SNF complexes have been also identified as paraspeckle 
components that interact with the lncRNA NEAT1 [74]. 
Remarkably, the lncKdm2b, a highly expressed lncRNA in 
murine embryonic stem cells, interacts with SRCAP, the 
main subunit of the homonymous complex increasing its 
ATPase activity [75]. This finding is of particular interest in 
light of the roles played by SRCAP in mitosis and cytoki-
nesis [50].

Regulatory roles of RNAs in cell division

Over the last two decades, several studies emerged support-
ing the regulatory roles of RNAs, both mRNA and lncR-
NAs, during cell division in evolutionary distant organisms. 
Evidence for non-canonical localizations of mRNAs to the 
mitotic apparatus suggested that they could be involved in 
the regulation of cell division. Centrosomally localized 
mRNAs were found in embryos of the mollusc Ilyanassa 
obsoleta [76] and in oocytes of the surf clam Spisula solidis-
sima [77]. In Xenopus laevis egg extracts, mitotic spindle-
associated RNA has been identified and suggested to play 
a translation-independent role in spindle assembly [78]. In 
mitotic extracts of both X. laevis and humans, a significant 
fraction of mRNAs was also identified that targets microtu-
bule during mitosis, suggesting a conserved mechanism to 
regulate mitotic events and delivering translationally inactive 
mRNAs to daughter cells [79]. In early stages of D. mela-
nogaster embryogenesis, several mRNAs were found associ-
ated with spindle poles, centrosomes, astral microtubules or 
the mitotic spindle [80], indicating that mRNA localization 
may play a key role in targeting various cellular machin-
eries, including those involved in protein synthesis. The 
mRNA localization to subcellular structures was originally 
found to occur through the 3ʹ UTR regions, such as those 
of nanos and bicoid in early Drosophila embryos [81–83]. 
These and other findings [84–87] also provided evidence 
for a mitotic apparatus localized mRNA translation, whose 
initial concept emerged in the late 1950s and early 1960s 
[88]. Very recently, evidence have been provided showing a 

localized enrichment and translation of midbody associated 
mRNAs encoding key regulatory factors of cytokinesis [89, 
90]. Remarkably, the results of Park et al. [89] suggested 
that the mitotic kinesin MKLP1 and the actively regulated 
cytoskeleton-associated protein, ARC, are necessary for the 
localization and translation of mRNAs in the MB dark zone, 
while ESCRT-III, a protein normally required for the abscis-
sion process, maintains translation levels in the MB.

Regulatory roles of lncRNAs in controlling cell division 
are increasingly being demonstrated [91]. A high-content 
RNAi imaging screen targeting more than 2,000 human 
lncRNAs yielded the identification of numerous lncRNAs 
controlling mitotic progression, chromosome segregation 
and cytokinesis via regulation of key cell division players 
[92]. A regulatory lncRNA, termed mamRNA, was shown 
to be a crucial player in shaping the meiotic gene expres-
sion program in fission yeast by scaffolding the antago-
nistic RNA-binding proteins Mmi1 and Mei2 [93]. More 
recently, a widely expressed circular RNA, circZNF609, 
interacts with several mRNAs and increases their stability 
and/or translation by facilitating the recruitment of the RNA-
binding protein ELAVL1 [94]. In particular, circZNF609 
interacts with CKAP5 mRNA, which encodes a microtu-
bule-stabilizing factors, and enhances its translation, thus 
regulating microtubule function and sustaining cell cycle 
progression. Importantly, circZNF609 also modulates the 
cancer cell response to microtubule inhibitors used in cancer 
chemotherapy [94].

LncRNAs as architectural components 
of the midbody: a working hypothesis

A large fraction of lncRNAs is exported to the cytosol, 
where they could be assigned to specific organelles or dis-
tributed in the cytoplasm associating with RNA-binding 
proteins [63]. Moreover, lncRNAs are emerging players 
functioning as phase separation anchors in different sub-
cellular localizations and in the formation of biomolecular 
condensates [95–98]. Well-known examples are given by 
NEAT1 and NORAD lncRNAs [98–100].

In light of these functions, it is an intriguing possibility 
that ncRNAs, in addition to their well-established regula-
tory functions in controlling of cell division, also play struc-
tural roles at sites of the mitotic apparatus [101]. A direct 
physical role of a human centromeric 1.3 kb long lncRNA in 
maintaining centromere integrity has been proposed [102]. 
By targeting CENP-A and its chaperone HJURP to the cen-
tromere, this lncRNA ensures proper chromosome dynamics 
during mitosis and its knockdown results in the formation of 
multipolar spindles and lagging chromosomes [102].
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Several cellular and molecular pathways and categories of 
proteins have been assigned to the MB, contributing to the 
proper execution of cytokinesis (Fig. 1) [6, 10]. Moreover, 
MB-associated mRNAs have been recently reported [89, 90]  
but  little is known about the presence of architectural lncR-
NAs on this organelle.

So far, only few examples suggesting a recruitment of 
lncRNAs to the MB have been reported. First, Moulton 
Clemson et  al., using FISH, described MB localization 
of XIST RNA during cytokinesis in human female fibro-
blasts [103]. XIST RNA, the first long non-coding RNA 

to be identified, is a major epigenetic effector triggering 
the X-chromosome inactivation in mammalian female cells 
[104]. This result would also imply a role of XIST in female 
cell division which was not further investigated. Intriguingly, 
the Aurora B kinase, a key component of the MB, interacts 
with XIST RNA controlling its binding to chromatin [105]. 
However, the FISH signals found with the XIST probe at the 
cleavage plane [103] appeared to be somewhat dispersed and 
not precisely aligned with the MB/central spindle structure. 
Recently, Chu et al., have identified 81 XIST RNA-binding 
proteins in mouse cell lines [106]. Interestingly, we discov-
ered that 56 orthologs of these XIST RNA-binding proteins 
are present in the human MB proteome and interactome 
datasets (Fig. 4) [10]. These findings collectively provide 
support for the recruitment of XIST at MB. Finally, in mouse 
3T3 cells, the GAA repeat-containing RNAs (GRC-RNAs), 
a polypurine triplet repeat-rich lncRNA, was found to local-
ize at the midzone area in early telophase and at the MB in 
late telophase [107]. Finally, the lncKdm2b interacts with 
the SRCAP ATPase [75], which is recruited to spindle and 
MB in HeLa and MRC5 cells [51]. However, it is unknown 
whether the interaction between lncKdm2b and SRCAP is 
nucleus-specific or also occurs at the MB.

Together, the sparse evidence recalled above hints at 
the fascinating possibility that lncRNAs serve as structural 
components of the MB. In other words, specific classes of 
lncRNAs might have the ability to interact with RNA-bind-
ing proteins, cytokinesis regulators and other factors, pro-
viding an architectural platform for MB assembly (Fig. 5), 
thus contributing to the proper execution of cytokinesis. 

Fig. 4   Venn diagrams illustrating overlapping protein sets. The Venn 
diagrams present an analysis of protein sets to reveal commonalities 
between mouse XIST-binding proteins [106] and orthologous pro-
teins detected in the human MB-proteome and interactome. The over-
lapping between circles shows the number of proteins in common 
between the groups. Notably, among the 81 XIST RNA-binding pro-
teins found in mouse, 56 have orthologs in both the human proteome 
and the interactome of MB. [Y. Prozzillo, unpublished]

Fig. 5   LncRNA–MB-proteins 
aggregates triggering MB 
assembly. LncRNAs promote 
the formation of phase separa-
tion, functioning as architectural 
scaffolds for diverse RNAs and 
proteins interaction giving rise 
to biomolecular condensates in 
different subcellular localiza-
tions [95–98]. The cartoon 
shows a hypothetical network of 
interactions between lncRNAs 
and proteins (RNA-binding 
proteins, MB-proteins includ-
ing cytokinesis regulators, 
chromatin remodelers, and other 
MB-associated factors) driving 
the formation of molecular 
aggregates that trigger the 
proper MB assembly during 
cytokinesis
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Since MB dysfunctions cause abscission failure, leading to 
genetically unstable states that would promote tumorigenic 
transformation, investigating in depth the roles of lncRNAs 
in MB assembly and function can have a strong impact on 
cancer biology.

Conclusions: an upcoming challenge

To comprehensively explore and dissect the phase-specific 
roles of epigenetic players in cell division, their degrada-
tion could be performed in a time-controlled way using 
different approaches. One effective method is the immuno-
depletion technique originally developed by Gergely et al., 
[108], which allows for the inactivation of a given protein 
of interest (POI) through the injection of specific interfering 
antibody. This approach has recently proven successful in 
providing evidence for the mitotic roles of the splicing fac-
tors Sf3A2 and Prp31 in Drosophila melanogaster embryos 
[109]. Over the years, several tools have been devised to 
achieve protein degradation via proteasome recruitment. 
Among those, the PROTACs (PROteolysis Targeting Chi-
meras) systems rely on chimeric molecules composed of 
a specific ligand for the POI and an E3 ubiquitin ligase. 
Advances of this system include the use of light-responsive 
degraders with photocaged or photoswitchable molecules 
[110]. Targeted protein inactivation can be also achieved by 
the adding a specific tag fused with the POI. In such cases, a 
small heterobifunctional molecule can bind the tagged pro-
tein, inducing its inactivation through dysfunctional mislo-
calization or proteosomal degradation [111]. These systems 
have been widely employed to dissect protein functions in 
diverse model systems [112, 113].

The dynamic relocation of lncRNAs during cell divi-
sion can be examined using the CasFAS system, a recently 
developed imaging method for visualization of endogenous 
RNAs in living cells [114]. Additionally, optogenetics sys-
tems based on light-responsive molecules can be refined and 
integrated with other techniques, such as the recombinant 
codon-optimized Cas9 (rCas9), to provide valuable tools for 
investigating potential cell division phase-specific structural 
roles of lncRNAs [115–119].

In conclusion, unraveling the unexpected roles of epige-
netic regulators during mitosis and cytokinesis in different 
organisms presents a significant challenge in the field of cell 
biology that can be met through the combined application of 
the aforementioned approaches.
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