Skip to main content

Advertisement

Log in

Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Lipid species play a critical role in the growth and virulence expression of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). During Mtb infection, foamy macrophages accumulate lipids in granulomas, providing metabolic adaptation and survival strategies for Mtb against multiple stresses. Host-derived lipid species, including triacylglycerol and cholesterol, can also contribute to the development of drug-tolerant Mtb, leading to reduced efficacy of antibiotics targeting the bacterial cell wall or transcription. Transcriptional and metabolic analyses indicate that lipid metabolism-associated factors of Mtb are highly regulated by antibiotics and ultimately affect treatment outcomes. Despite the well-known association between major antibiotics and lipid metabolites in TB treatment, a comprehensive understanding of how altered lipid metabolites in both host and Mtb influence treatment outcomes in a drug-specific manner is necessary to overcome drug tolerance. The current review explores the controversies and correlations between lipids and drug efficacy in various Mtb infection models and proposes novel approaches to enhance the efficacy of anti-TB drugs. Moreover, the review provides insights into the efficacious control of Mtb infection by elucidating the impact of lipids on drug efficacy. This review aims to improve the effectiveness of current anti-TB drugs and facilitate the development of innovative therapeutic strategies against Mtb infection by making reverse use of Mtb-favoring lipid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable. This is a narrative review based on published data.

References

  1. World Health O (2022) Global tuberculosis report 2022. World Health Organization, Geneva

    Google Scholar 

  2. Russell DG, Cardona PJ, Kim MJ et al (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10(9):943–948. https://doi.org/10.1038/ni.1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Datta M, Via LE, Kamoun WS et al (2015) Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci USA 112(6):1827–1832. https://doi.org/10.1073/pnas.1424563112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12(5):352–366. https://doi.org/10.1038/nri3211

    Article  CAS  PubMed  Google Scholar 

  5. Sarathy JP, Dartois V (2020) Caseum: a Niche for Mycobacterium tuberculosis drug-tolerant persisters. Clin Microbiol Rev. https://doi.org/10.1128/cmr.00159-19

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105(11):4376–4380. https://doi.org/10.1073/pnas.0711159105

    Article  PubMed  PubMed Central  Google Scholar 

  7. Garton NJ, Christensen H, Minnikin DE et al (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology (Reading) 148(Pt 10):2951–2958. https://doi.org/10.1099/00221287-148-10-2951

    Article  CAS  PubMed  Google Scholar 

  8. Daniel J, Maamar H, Deb C et al (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7(6):e1002093. https://doi.org/10.1371/journal.ppat.1002093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deb C, Lee CM, Dubey VS et al (2009) A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4(6):e6077. https://doi.org/10.1371/journal.pone.0006077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Menzies D, Benedetti A, Paydar A et al (2009) Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med 6(9):e1000146. https://doi.org/10.1371/journal.pmed.1000146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keshavjee S, Farmer PE (2012) Tuberculosis, drug resistance, and the history of modern medicine. N Engl J Med 367(10):931–936. https://doi.org/10.1056/NEJMra1205429

    Article  CAS  PubMed  Google Scholar 

  12. Horsburgh CR Jr, Barry CE 3rd, Lange C (2015) Treatment of tuberculosis. N Engl J Med 373(22):2149–2160. https://doi.org/10.1056/NEJMra1413919

    Article  CAS  PubMed  Google Scholar 

  13. Koch A, Mizrahi V (2018) Mycobacterium tuberculosis. Trends Microbiol 26(6):555–556. https://doi.org/10.1016/j.tim.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  14. Sloan DJ, Mwandumba HC, Garton NJ et al (2015) Pharmacodynamic modeling of bacillary elimination rates and detection of bacterial lipid bodies in sputum to predict and understand outcomes in treatment of pulmonary tuberculosis. Clin Infect Dis 61(1):1–8. https://doi.org/10.1093/cid/civ195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goodridge A, Cueva C, Lahiff M et al (2012) Anti-phospholipid antibody levels as biomarker for monitoring tuberculosis treatment response. Tuberculosis (Edinb) 92(3):243–247. https://doi.org/10.1016/j.tube.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Wei LL, Shi LY et al (2015) Screening and identification of five serum proteins as novel potential biomarkers for cured pulmonary tuberculosis. Sci Rep 5:15615. https://doi.org/10.1038/srep15615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shivakoti R, Newman JW, Hanna LE et al (2022) Host lipidome and tuberculosis treatment failure. Eur Respir J. https://doi.org/10.1183/13993003.04532-2020

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mitchison DA (1993) Assessment of new sterilizing drugs for treating pulmonary tuberculosis by culture at 2 months. Am Rev Respir Dis 147(4):1062–1063. https://doi.org/10.1164/ajrccm/147.4.1062

    Article  CAS  PubMed  Google Scholar 

  19. Sarathy JP, Via LE, Weiner D et al (2018) Extreme drug tolerance of Mycobacterium tuberculosis in caseum. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.02266-17

    Article  PubMed  PubMed Central  Google Scholar 

  20. Driver ER, Ryan GJ, Hoff DR et al (2012) Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother 56(6):3181–3195. https://doi.org/10.1128/aac.00217-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harper J, Skerry C, Davis SL et al (2012) Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis 205(4):595–602. https://doi.org/10.1093/infdis/jir786

    Article  CAS  PubMed  Google Scholar 

  22. Kim MJ, Wainwright HC, Locketz M et al (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2(7):258–274. https://doi.org/10.1002/emmm.201000079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guerrini V, Prideaux B, Blanc L et al (2018) Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog 14(8):e1007223. https://doi.org/10.1371/journal.ppat.1007223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Z, Gao Y, Yang H et al (2016) Impact of hypoxia on drug resistance and growth characteristics of Mycobacterium tuberculosis clinical isolates. PLoS One 11(11):e0166052. https://doi.org/10.1371/journal.pone.0166052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palaci M, Dietze R, Hadad DJ et al (2007) Cavitary disease and quantitative sputum bacillary load in cases of pulmonary tuberculosis. J Clin Microbiol 45(12):4064–4066. https://doi.org/10.1128/jcm.01780-07

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chang KC, Leung CC, Yew WW et al (2004) A nested case-control study on treatment-related risk factors for early relapse of tuberculosis. Am J Respir Crit Care Med 170(10):1124–1130. https://doi.org/10.1164/rccm.200407-905OC

    Article  PubMed  Google Scholar 

  27. Chang KC, Leung CC, Yew WW et al (2006) Dosing schedules of 6-month regimens and relapse for pulmonary tuberculosis. Am J Respir Crit Care Med 174(10):1153–1158. https://doi.org/10.1164/rccm.200605-637OC

    Article  PubMed  Google Scholar 

  28. Imperial MZ, Nahid P, Phillips PPJ et al (2018) A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis. Nat Med 24(11):1708–1715. https://doi.org/10.1038/s41591-018-0224-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim SH, Shin YM, Yoo JY et al (2021) Clinical factors associated with cavitary tuberculosis and its treatment outcomes. J Pers Med. https://doi.org/10.3390/jpm11111081

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen RY, Yu X, Smith B et al (2021) Radiological and functional evidence of the bronchial spread of tuberculosis: an observational analysis. Lancet Microbe 2(10):e518–e526. https://doi.org/10.1016/s2666-5247(21)00058-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Peyron P, Vaubourgeix J, Poquet Y et al (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M tuberculosis persistence. PLoS Pathog 4(11):e1000204. https://doi.org/10.1371/journal.ppat.1000204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shim D, Kim H, Shin SJ (2020) Mycobacterium tuberculosis infection-driven foamy macrophages and their implications in tuberculosis control as targets for host-directed therapy. Front Immunol 11:910. https://doi.org/10.3389/fimmu.2020.00910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vromman F, Subtil A (2014) Exploitation of host lipids by bacteria. Curr Opin Microbiol 17:38–45. https://doi.org/10.1016/j.mib.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  34. Lee W, VanderVen BC, Fahey RJ et al (2013) Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288(10):6788–6800. https://doi.org/10.1074/jbc.M112.445056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh V, Jamwal S, Jain R et al (2012) Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12(5):669–681. https://doi.org/10.1016/j.chom.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  36. Singh V, Kaur C, Chaudhary VK et al (2015) M. tuberculosis Secretory Protein ESAT-6 Induces Metabolic Flux Perturbations to Drive Foamy Macrophage Differentiation. Sci Rep 5:12906. https://doi.org/10.1038/srep12906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mahajan S, Dkhar HK, Chandra V et al (2012) Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARγ and TR4 for survival. J Immunol 188(11):5593–5603. https://doi.org/10.4049/jimmunol.1103038

    Article  CAS  PubMed  Google Scholar 

  38. Dkhar HK, Nanduri R, Mahajan S et al (2014) Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair. J Immunol 193(1):295–305. https://doi.org/10.4049/jimmunol.1400092

    Article  CAS  PubMed  Google Scholar 

  39. Kim YS, Lee HM, Kim JK et al (2017) PPAR-α activation mediates innate host defense through Induction of TFEB and lipid catabolism. J Immunol 198(8):3283–3295. https://doi.org/10.4049/jimmunol.1601920

    Article  CAS  PubMed  Google Scholar 

  40. Bedard M, van der Niet S, Bernard EM et al (2023) A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages. J Clin Invest. https://doi.org/10.1172/jci161944

    Article  PubMed  PubMed Central  Google Scholar 

  41. de Duve C, de Barsy T, Poole B et al (1974) Commentary. Lysosomotropic agents. Biochem Pharmacol 23(18):2495–2531. https://doi.org/10.1016/0006-2952(74)90174-9

    Article  PubMed  Google Scholar 

  42. Buter J, Cheng TY, Ghanem M et al (2019) Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nat Chem Biol 15(9):889–899. https://doi.org/10.1038/s41589-019-0336-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grosset J (2003) Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother 47(3):833–836. https://doi.org/10.1128/aac.47.3.833-836.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544. https://doi.org/10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  45. Rodríguez JG, Hernández AC, Helguera-Repetto C et al (2014) Global adaptation to a lipid environment triggers the dormancy-related phenotype of Mycobacterium tuberculosis. mBio 5(3):e01125-01114. https://doi.org/10.1128/mBio.01125-14

    Article  CAS  Google Scholar 

  46. Nazarova EV, Montague CR, La T et al (2017) Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. Elife. https://doi.org/10.7554/eLife.26969

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nazarova EV, Montague CR, Huang L et al (2019) The genetic requirements of fatty acid import by Mycobacterium tuberculosis within macrophages. Elife. https://doi.org/10.7554/eLife.43621

    Article  PubMed  PubMed Central  Google Scholar 

  48. Casali N, Riley LW (2007) A phylogenomic analysis of the Actinomycetales mce operons. BMC Genom 8:60. https://doi.org/10.1186/1471-2164-8-60

    Article  CAS  Google Scholar 

  49. Forrellad MA, McNeil M, Santangelo Mde L et al (2014) Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. Tuberculosis (Edinb) 94(2):170–177. https://doi.org/10.1016/j.tube.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  50. Gioffré A, Infante E, Aguilar D et al (2005) Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect 7(3):325–334. https://doi.org/10.1016/j.micinf.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  51. Lovewell RR, Sassetti CM, VanderVen BC (2016) Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Curr Opin Microbiol 29:30–36. https://doi.org/10.1016/j.mib.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  52. Onwueme KC, Ferreras JA, Buglino J et al (2004) Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc Natl Acad Sci USA 101(13):4608–4613. https://doi.org/10.1073/pnas.0306928101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jain M, Cox JS (2005) Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog 1(1):e2. https://doi.org/10.1371/journal.ppat.0010002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marrakchi H, Lanéelle MA, Daffé M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21(1):67–85. https://doi.org/10.1016/j.chembiol.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  55. Nataraj V, Varela C, Javid A et al (2015) Mycolic acids: deciphering and targeting the Achilles’ heel of the tubercle bacillus. Mol Microbiol 98(1):7–16. https://doi.org/10.1111/mmi.13101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quigley J, Hughitt VK, Velikovsky CA et al (2017) The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of mycobacterium tuberculosis. mBio. https://doi.org/10.1128/mBio.00148-17

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang X, Nesbitt NM, Dubnau E et al (2009) Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 48(18):3819–3821. https://doi.org/10.1021/bi9005418

    Article  CAS  PubMed  Google Scholar 

  58. Roberts DM, Liao RP, Wisedchaisri G et al (2004) Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem 279(22):23082–23087. https://doi.org/10.1074/jbc.M401230200

    Article  CAS  PubMed  Google Scholar 

  59. Baek SH, Li AH, Sassetti CM (2011) Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 9(5):e1001065. https://doi.org/10.1371/journal.pbio.1001065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ouimet M, Koster S, Sakowski E et al (2016) Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol 17(6):677–686. https://doi.org/10.1038/ni.3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rombouts Y, Neyrolles O (2023) The fat is in the lysosome: how Mycobacterium tuberculosis tricks macrophages into storing lipids. J Clin Invest. https://doi.org/10.1172/jci168366

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bosch M, Sánchez-Álvarez M, Fajardo A et al (2020) Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 370:6514. https://doi.org/10.1126/science.aay8085

    Article  CAS  Google Scholar 

  63. Melo RC, Dvorak AM (2012) Lipid body-phagosome interaction in macrophages during infectious diseases: host defense or pathogen survival strategy? PLoS Pathog 8(7):e1002729. https://doi.org/10.1371/journal.ppat.1002729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rosas-Ballina M, Guan XL, Schmidt A et al (2020) Classical activation of macrophages leads to lipid droplet formation without de novo fatty acid synthesis. Front Immunol 11:131. https://doi.org/10.3389/fimmu.2020.00131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Knight M, Braverman J, Asfaha K et al (2018) Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog 14(1):e1006874. https://doi.org/10.1371/journal.ppat.1006874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mayer-Barber KD, Andrade BB, Oland SD et al (2014) Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511(7507):99–103. https://doi.org/10.1038/nature13489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kwon KW, Kim LH, Kang SM et al (2022) Host-directed anti-mycobacterial activity of colchicine, an anti-gout drug, via strengthened host innate resistance reinforced by the IL-1β/PGE(2) axis. Br J Pharmacol 179(15):3951–3969. https://doi.org/10.1111/bph.15838

    Article  CAS  PubMed  Google Scholar 

  68. Chen M, Divangahi M, Gan H et al (2008) Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J Exp Med 205(12):2791–2801. https://doi.org/10.1084/jem.20080767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Garg SK, Volpe E, Palmieri G et al (2004) Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. J Infect Dis 189(11):2129–2138. https://doi.org/10.1086/386286

    Article  CAS  PubMed  Google Scholar 

  70. Jaisinghani N, Dawa S, Singh K et al (2018) Necrosis driven triglyceride synthesis primes macrophages for inflammation during mycobacterium tuberculosis infection. Front Immunol 9:1490. https://doi.org/10.3389/fimmu.2018.01490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Han M, Liang L, Liu LR et al (2014) Liver X receptor gene polymorphisms in tuberculosis: effect on susceptibility. PLoS One 9(5):e95954. https://doi.org/10.1371/journal.pone.0095954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahsan F, Maertzdorf J, Guhlich-Bornhof U et al (2018) IL-36/LXR axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis. Sci Rep 8(1):1520. https://doi.org/10.1038/s41598-018-19476-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Adams KN, Takaki K, Connolly LE et al (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145(1):39–53. https://doi.org/10.1016/j.cell.2011.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Murray JF, Schraufnagel DE, Hopewell PC (2015) Treatment of tuberculosis. A historical perspective. Ann Am Thorac Soc 12(12):1749–1759. https://doi.org/10.1513/AnnalsATS.201509-632PS

    Article  PubMed  Google Scholar 

  75. Nahid P, Dorman SE, Alipanah N et al (2016) Official American thoracic society/centers for disease control and prevention/infectious diseases society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis 63(7):e147–e195. https://doi.org/10.1093/cid/ciw376

    Article  PubMed  PubMed Central  Google Scholar 

  76. Grace AG, Mittal A, Jain S et al (2019) Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis. Cochrane Database Syst Rev 12(12):Cd012918. https://doi.org/10.1002/14651858.CD012918.pub2

  77. Frieden TR, Sterling T, Pablos-Mendez A et al (1993) The emergence of drug-resistant tuberculosis in New York City. N Engl J Med 328(8):521–526. https://doi.org/10.1056/nejm199302253280801

    Article  CAS  PubMed  Google Scholar 

  78. Seung KJ, Keshavjee S, Rich ML (2015) Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 5(9):a017863. https://doi.org/10.1101/cshperspect.a017863

  79. Espinal MA, Kim SJ, Suarez PG et al (2000) Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA 283(19):2537–2545. https://doi.org/10.1001/jama.283.19.2537

    Article  CAS  PubMed  Google Scholar 

  80. Kim HR, Hwang SS, Kim HJ et al (2007) Impact of extensive drug resistance on treatment outcomes in non-HIV-infected patients with multidrug-resistant tuberculosis. Clin Infect Dis 45(10):1290–1295. https://doi.org/10.1086/522537

    Article  PubMed  Google Scholar 

  81. Gandhi NR, Moll A, Sturm AW et al (2006) Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368(9547):1575–1580. https://doi.org/10.1016/s0140-6736(06)69573-1

    Article  PubMed  Google Scholar 

  82. Keshavjee S, Gelmanova IY, Farmer PE et al (2008) Treatment of extensively drug-resistant tuberculosis in Tomsk, Russia: a retrospective cohort study. Lancet 372(9647):1403–1409. https://doi.org/10.1016/s0140-6736(08)61204-0

    Article  PubMed  Google Scholar 

  83. Conradie F, Diacon AH, Ngubane N et al (2020) Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med 382(10):893–902. https://doi.org/10.1056/NEJMoa1901814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Borisov S, Danila E, Maryandyshev A et al (2019) Surveillance of adverse events in the treatment of drug-resistant tuberculosis: first global report. Eur Respir J. https://doi.org/10.1183/13993003.01522-2019

    Article  PubMed  Google Scholar 

  85. Lan Z, Ahmad N, Baghaei P et al (2020) Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med 8(4):383–394. https://doi.org/10.1016/s2213-2600(20)30047-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lambert ML, Hasker E, Van Deun A et al (2003) Recurrence in tuberculosis: relapse or reinfection? Lancet Infect Dis 3(5):282–287. https://doi.org/10.1016/s1473-3099(03)00607-8

    Article  PubMed  Google Scholar 

  87. Lv X, Tang S, Xia Y et al (2013) Adverse reactions due to directly observed treatment strategy therapy in Chinese tuberculosis patients: a prospective study. PLoS One 8(6):e65037. https://doi.org/10.1371/journal.pone.0065037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yee D, Valiquette C, Pelletier M et al (2003) Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med 167(11):1472–1477. https://doi.org/10.1164/rccm.200206-626OC

    Article  PubMed  Google Scholar 

  89. Menzies D, Adjobimey M, Ruslami R et al (2018) Four months of Rifampin or nine months of isoniazid for latent tuberculosis in adults. N Engl J Med 379(5):440–453. https://doi.org/10.1056/NEJMoa1714283

    Article  CAS  PubMed  Google Scholar 

  90. Nathan C (2012) Fresh approaches to anti-infective therapies. Sci Transl Med 4(140):140–142. https://doi.org/10.1126/scitranslmed.3003081

    Article  CAS  Google Scholar 

  91. Nunn AJ, Phillips PP, Mitchison DA (2010) Timing of relapse in short-course chemotherapy trials for tuberculosis. Int J Tuberc Lung Dis 14(2):241–242

    CAS  PubMed  Google Scholar 

  92. Gillespie SH, Crook AM, McHugh TD et al (2014) Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med 371(17):1577–1587. https://doi.org/10.1056/NEJMoa1407426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jindani A, Harrison TS, Nunn AJ et al (2014) High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med 371(17):1599–1608. https://doi.org/10.1056/NEJMoa1314210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Giraud-Gatineau A, Coya JM, Maure A et al (2020) The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. Elife. https://doi.org/10.7554/eLife.55692

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tousif S, Singh DK, Ahmad S et al (2014) Isoniazid induces apoptosis of activated CD4+ T cells: implications for post-therapy tuberculosis reactivation and reinfection. J Biol Chem 289(44):30190–30195. https://doi.org/10.1074/jbc.C114.598946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Biraro IA, Egesa M, Kimuda S et al (2015) Effect of isoniazid preventive therapy on immune responses to mycobacterium tuberculosis: an open label randomised, controlled, exploratory study. BMC Infect Dis 15:438. https://doi.org/10.1186/s12879-015-1201-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang X, Grace PM, Pham MN et al (2013) Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. Faseb j 27(7):2713–2722. https://doi.org/10.1096/fj.12-222992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Manca C, Koo MS, Peixoto B et al (2013) Host targeted activity of pyrazinamide in Mycobacterium tuberculosis infection. PLoS One 8(8):e74082. https://doi.org/10.1371/journal.pone.0074082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Puyskens A, Stinn A, van der Vaart M et al (2020) Aryl hydrocarbon receptor modulation by tuberculosis drugs impairs host defense and treatment outcomes. Cell Host Microbe 27(2):238-248.e237. https://doi.org/10.1016/j.chom.2019.12.005

    Article  CAS  PubMed  Google Scholar 

  100. Tobin DM (2015) Host-directed therapies for tuberculosis. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a021196

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bhat ZS, Rather MA, Maqbool M et al (2018) Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomed Pharmacother 103:1733–1747. https://doi.org/10.1016/j.biopha.2018.04.176

    Article  CAS  PubMed  Google Scholar 

  102. Morris RP, Nguyen L, Gatfield J et al (2005) Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 102(34):12200–12205. https://doi.org/10.1073/pnas.0505446102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gupta A, Venkataraman B, Vasudevan M et al (2017) Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci Rep 7(1):5868. https://doi.org/10.1038/s41598-017-06003-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li G, Zhang J, Guo Q et al (2015) Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS One 10(2):e0119013. https://doi.org/10.1371/journal.pone.0119013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Narang A, Garima K, Porwal S et al (2019) Potential impact of efflux pump genes in mediating rifampicin resistance in clinical isolates of Mycobacterium tuberculosis from India. PLoS One 14(9):e0223163. https://doi.org/10.1371/journal.pone.0223163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Narang A, Giri A, Gupta S et al (2017) Contribution of putative efflux pump genes to isoniazid resistance in clinical isolates of Mycobacterium tuberculosis. Int J Mycobacteriol 6(2):177–183. https://doi.org/10.4103/ijmy.ijmy_26_17

    Article  CAS  PubMed  Google Scholar 

  107. Louw GE, Warren RM, Gey van Pittius NC et al (2011) Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med 184(2):269–276. https://doi.org/10.1164/rccm.201011-1924OC

    Article  CAS  PubMed  Google Scholar 

  108. Szumowski JD, Adams KN, Edelstein PH et al (2013) Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Curr Top Microbiol Immunol 374:81–108. https://doi.org/10.1007/82_2012_300

    Article  CAS  PubMed  Google Scholar 

  109. Ramón-García S, Mick V, Dainese E et al (2012) Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother 56(4):2074–2083. https://doi.org/10.1128/aac.05946-11

    Article  PubMed  PubMed Central  Google Scholar 

  110. Walter ND, Dolganov GM, Garcia BJ et al (2015) Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J Infect Dis 212(6):990–998. https://doi.org/10.1093/infdis/jiv149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goossens SN, Sampson SL, Van Rie A (2020) Mechanisms of drug-induced tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev. https://doi.org/10.1128/cmr.00141-20

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wilson M, DeRisi J, Kristensen HH et al (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 96(22):12833–12838. https://doi.org/10.1073/pnas.96.22.12833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tudó G, Laing K, Mitchison DA et al (2010) Examining the basis of isoniazid tolerance in nonreplicating Mycobacterium tuberculosis using transcriptional profiling. Future Med Chem 2(8):1371–1383. https://doi.org/10.4155/fmc.10.219

    Article  PubMed  Google Scholar 

  114. Boshoff HI, Myers TG, Copp BR et al (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279(38):40174–40184. https://doi.org/10.1074/jbc.M406796200

    Article  CAS  PubMed  Google Scholar 

  115. Waddell SJ, Stabler RA, Laing K et al (2004) The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb) 84(3–4):263–274. https://doi.org/10.1016/j.tube.2003.12.005

    Article  PubMed  Google Scholar 

  116. Muñoz-Elías EJ, Upton AM, Cherian J et al (2006) Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60(5):1109–1122. https://doi.org/10.1111/j.1365-2958.2006.05155.x

    Article  CAS  PubMed  Google Scholar 

  117. Wipperman MF, Yang M, Thomas ST et al (2013) Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme A dehydrogenase family. J Bacteriol 195(19):4331–4341. https://doi.org/10.1128/jb.00502-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Karakousis PC, Williams EP, Bishai WR (2008) Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J Antimicrob Chemother 61(2):323–331. https://doi.org/10.1093/jac/dkm485

    Article  CAS  PubMed  Google Scholar 

  119. Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18(1):81–101. https://doi.org/10.1128/cmr.18.1.81-101.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Betts JC, McLaren A, Lennon MG et al (2003) Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob Agents Chemother 47(9):2903–2913. https://doi.org/10.1128/aac.47.9.2903-2913.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yu G, Cui Z, Sun X et al (2015) Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance. Tuberculosis (Edinb) 95(3):303–314. https://doi.org/10.1016/j.tube.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  122. Reche Navarro MN (2015) Improving patient safety in the inpatient setting through risk assessment and mitigation. Clin J Oncol Nurs 19(1):24–28. https://doi.org/10.1188/15.Cjon.24-28

    Article  PubMed  Google Scholar 

  123. Huang YS, Ge J, Zhang HM et al (2006) Purification and characterization of the Mycobacterium tuberculosis FabD2, a novel malonyl-CoA:AcpM transacylase of fatty acid synthase. Protein Expr Purif 45(2):393–399. https://doi.org/10.1016/j.pep.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  124. Provvedi R, Boldrin F, Falciani F et al (2009) Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology (Reading) 155(Pt 4):1093–1102. https://doi.org/10.1099/mic.0.024802-0

    Article  CAS  PubMed  Google Scholar 

  125. de Knegt GJ, Bruning O, ten Kate MT et al (2013) Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis (Edinb) 93(1):96–101. https://doi.org/10.1016/j.tube.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  126. Fu LM, Shinnick TM (2007) Genome-wide exploration of the drug action of capreomycin on Mycobacterium tuberculosis using Affymetrix oligonucleotide GeneChips. J Infect 54(3):277–284. https://doi.org/10.1016/j.jinf.2006.05.012

    Article  PubMed  Google Scholar 

  127. Meneguello JE, Arita GS, Silva JVO et al (2020) Insight about cell wall remodulation triggered by rifampicin in Mycobacterium tuberculosis. Tuberculosis (Edinb) 120:101903. https://doi.org/10.1016/j.tube.2020.101903

    Article  CAS  PubMed  Google Scholar 

  128. Bisson GP, Mehaffy C, Broeckling C et al (2012) Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. J Bacteriol 194(23):6441–6452. https://doi.org/10.1128/jb.01013-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bellerose MM, Baek SH, Huang CC et al (2019) Common variants in the glycerol kinase gene reduce tuberculosis drug efficacy. mBio. https://doi.org/10.1128/mBio.00663-19

    Article  PubMed  PubMed Central  Google Scholar 

  130. Parihar SP, Guler R, Khutlang R et al (2014) Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J Infect Dis 209(5):754–763. https://doi.org/10.1093/infdis/jit550

    Article  CAS  PubMed  Google Scholar 

  131. Albanna AS, Bachmann K, White D et al (2013) Serum lipids as biomarkers for therapeutic monitoring of latent tuberculosis infection. Eur Respir J 42(2):547–550. https://doi.org/10.1183/09031936.00064713

    Article  CAS  PubMed  Google Scholar 

  132. Greenwood DJ, Dos Santos MS, Huang S et al (2019) Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science 364(6447):1279–1282. https://doi.org/10.1126/science.aat9689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen YT, Kuo SC, Chao PW et al (2019) Use of lipid-lowering agents is not associated with improved outcomes for tuberculosis patients on standard-course therapy: A population-based cohort study. PLoS One 14(1):e0210479. https://doi.org/10.1371/journal.pone.0210479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang Y, Heym B, Allen B et al (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358(6387):591–593. https://doi.org/10.1038/358591a0

    Article  CAS  PubMed  Google Scholar 

  135. Dutta NK, Bruiners N, Pinn ML et al (2016) Statin adjunctive therapy shortens the duration of TB treatment in mice. J Antimicrob Chemother 71(6):1570–1577. https://doi.org/10.1093/jac/dkw014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Soetaert K, Rens C, Wang XM et al (2015) Increased vancomycin susceptibility in mycobacteria: a new approach to identify synergistic activity against multidrug-resistant mycobacteria. Antimicrob Agents Chemother 59(8):5057–5060. https://doi.org/10.1128/aac.04856-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Huang L, Nazarova EV, Tan S et al (2018) Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med 215(4):1135–1152. https://doi.org/10.1084/jem.20172020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chandra P, He L, Zimmerman M et al (2020) Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of Mycobacterium tuberculosis. mBio. https://doi.org/10.1128/mBio.01139-20

    Article  PubMed  PubMed Central  Google Scholar 

  139. Davuluri KS, Singh AK, Singh AV et al (2023) Atorvastatin potentially reduces mycobacterial severity through its action on lipoarabinomannan and drug permeability in granulomas. Microbiol Spectr. https://doi.org/10.1128/spectrum.03197-22

    Article  PubMed  PubMed Central  Google Scholar 

  140. Duan H, Liu T, Zhang X et al (2020) Statin use and risk of tuberculosis: a systemic review of observational studies. Int J Infect Dis 93:168–174. https://doi.org/10.1016/j.ijid.2020.01.036

    Article  CAS  PubMed  Google Scholar 

  141. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63. https://doi.org/10.1146/annurev.bi.64.070195.000333

    Article  CAS  PubMed  Google Scholar 

  142. Jankute M, Cox JA, Harrison J et al (2015) Assembly of the Mycobacterial cell wall. Annu Rev Microbiol 69:405–423. https://doi.org/10.1146/annurev-micro-091014-104121

    Article  CAS  PubMed  Google Scholar 

  143. Singh P, Rameshwaram NR, Ghosh S et al (2018) Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol 13:689–710. https://doi.org/10.2217/fmb-2017-0135

    Article  CAS  PubMed  Google Scholar 

  144. Sarathy JP, Dartois V, Lee EJ (2012) The role of transport mechanisms in mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals (Basel) 5(11):1210–1235. https://doi.org/10.3390/ph5111210

    Article  CAS  PubMed  Google Scholar 

  145. Yang Y, Kulka K, Montelaro RC et al (2014) A hydrolase of trehalose dimycolate induces nutrient influx and stress sensitivity to balance intracellular growth of Mycobacterium tuberculosis. Cell Host Microbe 15(2):153–163. https://doi.org/10.1016/j.chom.2014.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. VanderVen BC, Fahey RJ, Lee W et al (2015) Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog 11(2):e1004679. https://doi.org/10.1371/journal.ppat.1004679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nuermberger EL, Martínez-Martínez MS, Sanz O et al (2022) GSK2556286 is a novel antitubercular drug candidate effective in vivo with the potential to shorten tuberculosis treatment. Antimicrob Agents Chemother 66(6):e0013222. https://doi.org/10.1128/aac.00132-22

    Article  CAS  PubMed  Google Scholar 

  148. Brown KL, Wilburn KM, Montague CR et al (2023) Cyclic AMP-mediated inhibition of cholesterol catabolism in mycobacterium tuberculosis by the novel drug candidate GSK2556286. Antimicrob Agents Chemother 67(1):e0129422. https://doi.org/10.1128/aac.01294-22

    Article  CAS  PubMed  Google Scholar 

  149. Grzegorzewicz AE, Pham H, Gundi VA et al (2012) Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8(4):334–341. https://doi.org/10.1038/nchembio.794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Degiacomi G, Benjak A, Madacki J et al (2017) Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression. Sci Rep 7:43495. https://doi.org/10.1038/srep43495

    Article  PubMed  PubMed Central  Google Scholar 

  151. Xu Z, Meshcheryakov VA, Poce G et al (2017) MmpL3 is the flippase for mycolic acids in mycobacteria. Proc Natl Acad Sci USA 114(30):7993–7998. https://doi.org/10.1073/pnas.1700062114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tahlan K, Wilson R, Kastrinsky DB et al (2012) SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56(4):1797–1809. https://doi.org/10.1128/aac.05708-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. La Rosa V, Poce G, Canseco JO et al (2012) MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212. Antimicrob Agents Chemother 56(1):324–331. https://doi.org/10.1128/aac.05270-11

    Article  PubMed  PubMed Central  Google Scholar 

  154. Poce G, Bates RH, Alfonso S et al (2013) Improved BM212 MmpL3 inhibitor analogue shows efficacy in acute murine model of tuberculosis infection. PLoS One 8(2):e56980. https://doi.org/10.1371/journal.pone.0056980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dupont C, Viljoen A, Dubar F et al (2016) A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus. Mol Microbiol 101(3):515–529. https://doi.org/10.1111/mmi.13406

    Article  CAS  PubMed  Google Scholar 

  156. Lun S, Guo H, Onajole OK et al (2013) Indoleamides are active against drug-resistant Mycobacterium tuberculosis. Nat Commun 4:2907. https://doi.org/10.1038/ncomms3907

    Article  CAS  PubMed  Google Scholar 

  157. Rao SP, Lakshminarayana SB, Kondreddi RR et al (2013) Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3007355

    Article  PubMed  Google Scholar 

  158. Makarov V, Manina G, Mikusova K et al (2009) Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324(5928):801–804. https://doi.org/10.1126/science.1171583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mikusová K, Huang H, Yagi T et al (2005) Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J Bacteriol 187(23):8020–8025. https://doi.org/10.1128/jb.187.23.8020-8025.2005

    Article  PubMed  PubMed Central  Google Scholar 

  160. Piton J, Foo CS, Cole ST (2017) Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors. Drug Discov Today 22(3):526–533. https://doi.org/10.1016/j.drudis.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  161. Imran M, Thabet HK et al (2021) Synthetic molecules as DprE1 inhibitors: a patent review. Expert Opin Ther Pat 31(8):759–772. https://doi.org/10.1080/13543776.2021.1902990

    Article  CAS  PubMed  Google Scholar 

  162. Mahajan R (2013) Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int J Appl Basic Med Res 3(1):1–2. https://doi.org/10.4103/2229-516x.112228

    Article  PubMed  PubMed Central  Google Scholar 

  163. Khoshnood S, Goudarzi M, Taki E et al (2021) Bedaquiline: current status and future perspectives. J Glob Antimicrob Resist 25:48–59. https://doi.org/10.1016/j.jgar.2021.02.017

    Article  CAS  PubMed  Google Scholar 

  164. Matsumoto M, Hashizume H, Tomishige T et al (2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3(11):e466. https://doi.org/10.1371/journal.pmed.0030466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. von Groote-Bidlingmaier F, Patientia R, Sanchez E et al (2019) Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial. Lancet Respir Med 7(3):249–259. https://doi.org/10.1016/s2213-2600(18)30426-0

    Article  CAS  Google Scholar 

  166. Stinson K, Kurepina N, Venter A et al (2016) MIC of Delamanid (OPC-67683) against Mycobacterium tuberculosis clinical isolates and a proposed critical concentration. Antimicrob Agents Chemother 60(6):3316–3322. https://doi.org/10.1128/aac.03014-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gler MT, Skripconoka V, Sanchez-Garavito E et al (2012) Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 366(23):2151–2160. https://doi.org/10.1056/NEJMoa1112433

    Article  CAS  PubMed  Google Scholar 

  168. Maryandyshev A, Pontali E, Tiberi S et al (2017) Bedaquiline and delamanid combination treatment of 5 patients with pulmonary extensively drug-resistant tuberculosis. Emerg Infect Dis 23(10):1718–1721. https://doi.org/10.3201/eid2310.170834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kim CT, Kim TO, Shin HJ et al (2018) Bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis: a multicentre cohort study in Korea. Eur Respir J. https://doi.org/10.1183/13993003.02467-2017

    Article  PubMed  Google Scholar 

  170. Ginsberg A (2011) The TB Alliance: overcoming challenges to chart the future course of TB drug development. Future Med Chem 3(10):1247–1252. https://doi.org/10.4155/fmc.11.82

    Article  CAS  PubMed  Google Scholar 

  171. Liu Y, Tan S, Huang L et al (2016) Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J Exp Med 213(5):809–825. https://doi.org/10.1084/jem.20151248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kumar P, Schelle MW, Jain M et al (2007) PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc Natl Acad Sci USA 104(27):11221–11226. https://doi.org/10.1073/pnas.0611649104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank both the associate editor and the reviewers for providing valuable feedback that enhanced the quality of this paper. MID (Medical Illustration & Design), a part of the Medical Research Support Services of Yonsei University College of Medicine, for providing excellent support with medical illustration.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government Ministry of Science and ICT (MSIT) (RS-2023-00208115) and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare (HI22C0177), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

HK and SJS wrote the manuscript. HK designed the figures. SJS conceptualized and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sung Jae Shin.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have read the manuscript and agreed to give their consent for the publication of information in the Journal of Cellular and Molecular Life Sciences.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Shin, S.J. Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism. Cell. Mol. Life Sci. 80, 291 (2023). https://doi.org/10.1007/s00018-023-04914-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04914-5

Keywords

Navigation