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Abstract
Staphylococcus aureus is an important cause of chronic infections resulting from the failure of the host to eliminate the 
pathogen. Effective S. aureus clearance requires CD4+ T cell-mediated immunity. We previously showed that myeloid-
derived suppressor cells (MDSC) expand during staphylococcal infections and support infection chronicity by inhibiting 
CD4+ T cell responses. The aim of this study was to elucidate the mechanisms underlying the suppressive effect exerted by 
MDSC on CD4+ T cells during chronic S. aureus infection. It is well known that activated CD4+ T cells undergo metabolic 
reprogramming from oxidative metabolism to aerobic glycolysis to meet their increased bioenergetic requirements. In this 
process, pyruvate is largely transformed into lactate by lactate dehydrogenase with the concomitant regeneration of NAD+, 
which is necessary for continued glycolysis. The by-product lactate needs to be excreted to maintain the glycolytic flux. 
Using SCENITH (single-cell energetic metabolism by profiling translation inhibition), we demonstrated here that MDSC 
inhibit CD4+ T cell responses by interfering with their metabolic activity. MDSC are highly glycolytic and excrete large 
amount of lactate in the local environment that alters the transmembrane concentration gradient and prevent removal of lac-
tate by activated CD4+ T. Accumulation of endogenous lactate impedes the regeneration of NAD+, inhibit NAD-dependent 
glycolytic enzymes and stop glycolysis. Together, the results of this study have uncovered a role for metabolism on MDSC 
suppression of CD4+ T cell responses. Thus, reestablishment of their metabolic activity may represent a mean to improve 
the functionality of CD4+ T cells during chronic S. aureus infection.

Keywords Staphylococcus aureus · Myeloid-derived suppressor cells (MDSC) · CD4+ T cells · Lactate · NAD+/NADH 
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Introduction

Staphylococcus aureus is a major human pathogen and a 
leading cause of morbidity and mortality worldwide [1]. 
S. aureus can cause recurrent and chronic diseases such as 
chronic implant-related bone infections despite appropriate 
antibiotic treatment [2]. An important factor contributing to 
the chronicity and infection recurrence is the failure of the 
host to develop effective T cell responses against S. aureus 
[3, 4]. An understanding of the factors responsible for the 
host failure to generate effective cellular immunity against 
the pathogen is important for improving the management of 
chronic staphylococcal infections.

Several lines of evidence from animal models and 
human studies have converged to show that CD4+ T cells, 
in particular Th17 and Th1 subsets, are at the frontline of 
the adaptive immune response to S. aureus [5–10]. After 
recognition of antigen via the T cell receptor (TCR) and 
the receipt of costimulatory signals, CD4+ T cells become 
activated, undergo extensive proliferation and acquire 
effector functions, such as the ability to produce cytokines 
and other effector molecules [11]. Thus, although CD4+ 
T cells are not directly involved on bacterial killing, they 
can facilitate S. aureus clearance by increasing the recruit-
ment of phagocytic cells to the site of infection and by 
enhancing their antimicrobial activity via the production 
of cytokines such as IFN-γ and IL-17 [8, 9, 12]. How-
ever, we have reported in previous studies that the func-
tionality of CD4+ T cells become compromised with the 
progression of S. aureus infection toward chronicity [13]. 
CD4+ T cells dysfunction was manifested by a decreased 
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production of effector cytokines and impaired prolifera-
tive responses upon TCR stimulation [13]. We have also 
reported that CD4+ T cell dysfunction observed during 
chronic S. aureus infection was attributed to extrinsic sup-
pressive mechanisms exerted by MDSC [14, 15]. MDSC 
comprise an aberrant population of immature myeloid 
cells that accumulate during pathological conditions such 
as cancer and chronic infections and are potent inhibitors 
of T cell responses [16, 17]. MDSC have been reported to 
play an important role in chronic infections caused by S. 
aureus in humans as well as in experimental infection in 
mice [14, 18–20]. Therefore, targeting the immunosup-
pressive mechanisms exerted by MDSC could be a promis-
ing strategy to restore T cell dysfunction and facilitate S. 
aureus clearance during chronic infection. Although the 
molecular mechanisms underlying the suppressive effect 
of MDSC on T cell responses in the cancer setting have 
been addressed in many studies, the suppressive mecha-
nisms of MDSC in chronic infections remained unclear. 
The aim of the current study was to elucidate the mecha-
nisms through which MDSC mediate T cell dysfunction 
in the setting of S. aureus chronic infection.

Following antigen recognition, CD4+ T cells become 
activated and undergo metabolic reprograming, switching 
from an oxidative phosphorylation-dependent catabolic 
condition to a highly glycolytic state and adopt aerobic gly-
colysis in order to support the increased energetic demands 
required for cell proliferation and for the synthesis of effec-
tor molecules [21–25]. During aerobic glycolysis, glucose 
is converted to pyruvate that is reduced directly to lactate 
in the cytoplasm by the lactate dehydrogenase instead of 
entering the mitochondria for oxidation [25]. In this reaction, 
NAD+, which is an important co-factor for several glyco-
lytic enzymes [26], is regenerated from NADH to enable 
the continuation of glycolysis [25]. Activated CD4+ T cells 
also need to constantly excrete the excess of lactate pro-
duced during aerobic glycolysis in order to avoid the reversal 
of the lactate dehydrogenase reaction that can shut down 
regeneration of NAD+ and discontinue the glycolytic pro-
cess. Lactate is largely exported by activated CD4+ T cells 
via proton-linked monocarboxylate transports following a 
concentration gradient [27]. A limitation in the capacity of 
activated T cells to undergo metabolic shift toward aerobic 
glycolysis either by nutrient limitation or by inhibition of 
lactate excretion has been shown to impair T cell prolifera-
tion and cytokines production [21, 28–32].

We have recently shown that MDSC have an aberrant 
metabolism with very high glycolytic activity associated 
with the consumption of large amounts of glucose and the 
released of elevated levels of lactate in the extracellular 
milieu [15]. In the present study, we provide evidence that 
the lactate-rich local environment generated by MDSC in 
S. aureus-infected mice hinders CD4+ T cell activation by 

impairing NAD+ regeneration and disruption of glycolytic 
flux.

Materials and methods

Bacteria

The S. aureus strain 6850 was used in this study [33]. S. 
aureus was grown to the mid-log phase in brain heart infu-
sion medium (BHI, Roth) at 37 °C with shaking (120 rpm), 
collected by centrifugation, washed with sterile PBS, and 
diluted to the required concentration.

Experimental murine infection model and spleen 
cells isolation

Pathogen-free 10-week-old C57BL/6 female mice were 
purchased from Charles River (Germany) and maintained 
according to institutional guidelines in individually venti-
lated cages with food and water provided ad libitum. Mice 
were intravenously inoculated with  106 CFU of S. aureus 
in 100 μl of PBS via a lateral tail vein, and sacrificed by 
 CO2 asphyxiation at day 21 after bacterial inoculation. The 
spleen was removed from infected mice and single-cell sus-
pensions were prepared by gently teasing the spleen tissue 
through a 100 µm pore size nylon cell strainer and the bone 
marrow was flushed out of both tibia and femur. Spleen and 
bone marrow cells were spun down, erythrocytes were lysed 
after incubation for 5 min at RT in ammonium-chloride-
potassium lysing buffer (Lonza), washed with PBS + 10% 
FCS and resuspended in RPMI-1640 medium (Gibco) sup-
plemented with 10% FCS and antibiotic–antimycotic (VWR 
International).

Proliferation assay

Spleen cells were seeded in 96-well plates at a concentration 
of 5 ×  106/ml and incubated in the presence of 2 μg/ml of 
Armenian hamster anti-mouse CD3 plus 2 μg/ml of Syrian 
hamster anti-mouse CD28 antibodies (BD Pharmingen) for 
the specified time periods. Before stimulation, spleen cells 
were stained with CellTrace™ CFSE Cell Proliferation kit 
(Invitrogen) according to the manufacturer′s instruction. Cell 
proliferation was monitored by flow cytometry using CFSE 
dilution.

In some experiments, nicotinamide riboside (NR) 
(Sigma-Aldrich) at a concentration of 200 µM or the MCT1-
selective inhibitor AZD3965 (Cayman) at a concentration of 
100 nM was added to the cultures.
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Flow cytometry

Cell suspensions were incubated with anti-mouse CD16/32 
(eBioscience) for 5 min at RT to block Fc receptors and 
stained for 20 min at 4 °C with anti-mouse CD4 antibod-
ies (Biolegend). Cells were washed with PBS + 10% FCS 
and analyzed on a LSRII cytometer (Becton Dickinson).

For intracellular cytokines staining, cells were stained 
first with anti-mouse CD4 antibodies as described above, 
fixed for 15 min at RT with fixation buffer (Biolegend), 
washed twice with permeabilization buffer (BioLegend), 
and stained with anti-mouse IL-2 or anti-mouse IFN-γ 
antibodies. After washing with permeabilization buffer, 
cells were analyzed on a LSRII cytometer.

Cell viability was determined by flow cytometry using 
Zombie fixable viability kit according to the manufactur-
er's recommendations (BioLegend).

MDSC depletion

Ly6C + Ly6G + MDSC were removed from the spleen cell 
suspensions prior to in vitro stimulation using the mouse 
Myeloid-Derived Suppressor Cell Isolation Kit (Miltenyi 
Biotec) according to the manufacturer's instructions. The 
negative fraction constituted the MDSC-depleted spleen 
cells population. Efficacy of depletion was > 90% as con-
firmed by flow cytometry.

SCENITH assay

SCENITH was performed according to protocol published 
by Argüello et al. [34]. In brief, spleen cells isolated from 
either uninfected or S. aureus-infected mice at day 21 of 
infection were seeded in 96-well plates at a concentration 
of 5 ×  106/ml and incubated in the presence of 2 µg/ml 
of anti-CD3/anti plus CD28 antibodies for the specified 
times at 37 °C and 5%  CO2. Cells incubated in medium 
without antibodies were used as control. DMSO or the 
metabolic inhibitors deoxy-d-glucose (2-DG, 100 mM) 
(Sigma-Aldrich), oligomycin (1 μM) (Sigma-Aldrich), 
or 2-DG plus oligomycin were added to the wells at the 
specified time points and further incubated for 1 h. Puro-
mycin (Sigma-Aldrich) was added to the wells at a final 
concentration of 10 μg/ml during the last 30 min of incu-
bation. After washing with cold PBS, cells were stained 
for surface CD4 as described above, fixed and permea-
bilized using the FOXP3 fixation and permeabilization 
kit (eBioScience) according to manufacturer’s instruc-
tions. Intracellular staining of puromycin was performed 
after incubation with anti-puromycin antibodies (Merk) 
for 1 h in permeabilization buffer. After washing with 

permeabilization buffer, cells were analyzed on a LSRII 
cytometer.

Glucose dependence was calculated as: 100 × (puromycin 
MFI levels in DMSO-treated cells − puromycin MFI levels in 
2-DG-treated cells)/(puromycin MFI levels in CTR DMSO-
treated cells − puromycin MFI levels in 2-DG + olygomycin-
treated cells) and mitochondrial dependence was calculated as: 
100 × (puromycin MFI levels in DMSO-treated cells − puro-
mycin MFI levels in oligomycin-treated cells)/(puromycin 
MFI levels in CTR DMSO-treated cells − puromycin MFI 
levels in 2-DG + olygomycin-treated cells).

Glut‑1 staining

For intracellular staining of Glut-1, spleen cells were stained 
first with anti-mouse CD4 antibodies as described above, fixed 
for 15 min at RT with fixation buffer (Biolegend), washed 
twice with permeabilization buffer (BioLegend), and stained 
with anti-Glut-1 antibodies (Novus Biologicals). After wash-
ing with permeabilization buffer, cells were analyzed on a 
LSRII cytometer.

Glucose uptake assay

Spleen cells were seeded in 96-well plates at a concentra-
tion of 5 ×  106/ml and incubated in the presence of 2 µg/ml 
of anti-CD3 plus anti-CD28 antibodies at 37 °C and 5%  CO2. 
At the indicated time points, spleen cells were transferred to 
glucose-free RPMI-1640 medium supplemented with 300 μM 
2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl] amino)-2-deoxyglu-
cose (2-NBDG) (Thermo Fisher Scientific) and incubated for 
30 min at 37 °C and 5%  CO2. Cells were labelled for CD4 
surface antigen, washed and analyzed by flow cytometry on a 
LSRII cytometer.

Lactate measurement

Lactate concentrations were measured in culture supernatants 
or in homogenized spleen tissue using the commercially avail-
able Amplite Colorimetric l-Lactate Assay Kit (Elabscience) 
following the manufacture’s instruction.

Isolation of CD4+ T cells

CD4+ T cells were isolated from cultured spleen cells using 
the mouse CD4+ T cell Isolation Kit (Miltenyi Biotec) accord-
ing to the manufacturer's instructions.

NAD/NADH ratio assay

NAD+ and NADH levels were measured in isolated CD4+ 
T cells using Amplite™ Colorimetric NAD/NADH Ration 
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Assay kit according to the manufacturer’s instructions (AAT 
Bioquest).

Analysis

Statistical analysis was performed using GraphPad Prism 
version 9.4.1 software. Differences between two groups were 
determined using a student t test. Groups of three or more 
were analyzed by one-way analysis of variance (ANOVA). 
Data were analyzed using FlowJo v9.3 software.

Results

Inhibition of CD4+ T cell responses by MDSC 
is linked to metabolism

We have previously shown that the functionality of CD4+ T 
cells became compromised during chronic S. aureus infec-
tion [13]. Thus, whereas CD4+ T cells in spleen cells iso-
lated from uninfected mice actively proliferated in response 
to stimulation with anti-CD3/anti-CD28 antibodies (Fig. 1a, 
b) and produced significant amounts of effector cytokines 
such as IL-2 and IFN-γ (Fig. 1c, d), CD4+ T cells in spleen 
cells isolated from S. aureus-infected mice were impaired 
in their capacity to proliferate (Fig. 1a, b) and to produce 
IL-2 and IFN-γ (Fig. 1c, d) upon stimulation with anti-CD3/
anti-CD28 antibodies. We have also previously reported 
that immunosuppression of CD4+ T cell responses in S. 
aureus-infected mice was mediated by MDSC, an aberrant 
population of myeloid cells that expand during pathologi-
cal conditions including chronic infections [14, 15]. MDSC 
accumulate in the spleen (Supplementary Fig. S2a and b) 
and bone marrow (Supplementary Fig. S2c, d) of S. aureus-
infected mice and are responsible for T cell dysfunction 
[14, 15]. Indeed, CD4+ T cells in spleen cells isolated from 
infected mice recovered their capacity to proliferate (Fig. 1a, 
b) and to produce IL-2 and IFN-γ (Fig. 1c, d) in response to 
stimulation with anti-CD3/anti-CD28 antibodies after deple-
tion of MDSC.

In the study presented here, we investigated the mecha-
nisms underlying the suppressive effect exerted by MDSC 
on CD4+ T cell responses in S. aureus-infected mice. 
Because activated CD4+ T cells undergo a shift in metabo-
lism toward aerobic glycolysis which is absolutely required 
to synthesize intermediates required for cell proliferation 
and cytokine production [21–25], we considered the pos-
sibility that MDSC could impair CD4+ T cell responses in 
S. aureus-infected mice by limiting their capacity to undergo 
this metabolic shift. To investigate this hypothesis, we first 
assessed the metabolic activity of CD4+ T cells in spleen 

cells isolated from either S. aureus-infected or uninfected 
mice upon stimulation with anti-CD3/anti-CD28 antibodies 
using the recently described single-cell energetic metabo-
lism by profiling translation inhibition (SCENITH) method 
[34]. SCENITH is based on the analysis of protein transla-
tion as surrogate of metabolic activity and enables to ana-
lyze the metabolic activity of specific cell subsets within 
heterogenous populations [34]. The degree of protein trans-
lation is determined by measuring the extent of puromycin 
incorporation into nascent polypeptide after staining with 
anti-puromycin antibodies using flow cytometry [34]. The 
results of this analysis showed that stimulation with anti-
CD3/anti-CD28 antibodies induced a significant increase 
in the metabolic activity of CD4+ T cells in spleen cells 
isolated from S. aureus-infected mice (Fig. 2a, c), although 
to a significantly lower extent than that observed in CD4+ 
T cells in spleen cells isolated from uninfected animals 
(Fig. 2b, c). Furthermore, whereas the metabolic activity of 
anti-CD3/anti-CD28-stimulated CD4+ T cells in the spleen 
cells from uninfected mice was maintained at high levels 
during the whole incubation period, the metabolic activity 
progressively decreased in stimulated CD4+ T cells from 
infected mice during the incubation time (Fig. 2a, c).

CD4+ T cells in the spleen of S. aureus‑infected mice 
are not impaired in their capacity to up‑regulate 
Glut‑1 and to uptake glucose upon TCR stimulation

The first step in glucose utilization by CD4+ T cells during 
metabolic reprograming upon activation is an increase in 
glucose uptake via up-regulation of the glucose transporter-1 
(Glut-1) [35]. Therefore, we investigated if the lower meta-
bolic activity of anti-CD3/anti-CD28-stimulated spleen 
CD4+ T cells from S. aureus-infected mice was due to an 
impaired capacity to up-regulate Glut-1. Determination of 
Glut-1 expression by flow cytometry analysis indicated that 
Glut-1 was significantly up-regulated in CD4+ T cells in 
spleen cells from infected mice at 24 h upon stimulation 
and to an extent similar to that observed in CD4+ T cells in 
the spleen from uninfected mice (Fig. 3a, b). We also meas-
ured the levels of glucose uptake by spleen CD4+ T cells 
from infected or uninfected mice in response to stimulation 
with anti-CD3/anti-CD28 antibodies using 2-NBDG. The 
results depicted in Fig. 3c, d show that although glucose 
uptake increased upon stimulation in CD4+ T cells from 
infected mice, the levels of glucose uptake were significantly 
lower than those of CD4+ T cells from uninfected animals. 
Since we have previously shown that MDSC present in the 
spleen of S. aureus-infected mice in high numbers consumed 
elevated amounts of glucose [15], we hypothesize that the 
lower amount of glucose taken up by stimulated CD4+ T 
cells from infected mice may result from a reduced glucose 
bioavailability due to the high consumption by the MDSC. 
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Fig. 1  Suppression of CD4+ T cell responses by MDSC. a Flow 
cytometry histograms showing the kinetic of CD4+ T cells prolifera-
tion in spleen cells isolated from either uninfected (upper panels) or 
S. aureus-infected mice (middle panels) upon stimulation with anti-
CD3/anti-CD28 antibodies. Proliferation of stimulated CD4+ T cells 
in the spleen cell population from S. aureus-infected mice that has 
been depleted of MDSC prior to stimulation is shown in the lower 
panels. The gating strategy is described in Supplementary Fig. S1. 
The percentage of divided CD4+ T cells in each group is shown in 
b. c Flow cytometry contour plots showing the intracellular stain-

ing of IL-2 (upper panels) and IFN-γ (lower panels) in CD4+ T cells 
within the spleen cell population isolated from uninfected (left pan-
els) or S. aureus-infected (middle panels) mice as well as in MDSC-
depleted spleen cells isolated from S. aureus-infected mice (lower 
panels) cultured for 72 h in the presence (green) or absence (red) of 
anti-CD3/anti-CD28 antibodies. The frequencies of CD4+ T cells 
expressing IL-2 (upper panel) or IFN-γ (lower panel) are shown in 
d. Each bar shows the mean ± SD of three independent experiments. 
***p < 0.001, ****p < 0.0001
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To investigate this possibility, we determined the effect of 
adding increasing concentrations of glucose (ranging from 
10 to 100 mM) in the culture medium on the proliferative 
response and production of IL-2 and IFN-γ by CD4+ T cells 
upon activation with anti-CD3/anti-CD28 antibodies. The 
results show that addition of increasing concentrations of 
extracellular glucose did not rescue the capacity of CD4+ T 

cells from infected mice to proliferate (Fig. 3e) or to produce 
cytokines (Fig. 3f) upon stimulation. Thus, glucose depriva-
tion seems not to be the mechanism underlying the inhibi-
tory effect exerted by MDSC on CD4+ T cell responses in 
the spleen of S. aureus-infected mice.

Fig. 2  Metabolic activity of spleen CD4+ T cells from uninfected 
or from S. aureus-infected mice upon stimulation with anti-CD3/
anti-CD28 antibodies determined by SCENITH. Flow cytometry his-
tograms showing the levels of protein translation (puromycin MFI) 
in CD4+ T cells within spleen cells isolated from either S. aureus-
infected (a) or from uninfected (b) mice in the presence or absence 

of anti-CD3/anti-CD28 antibodies. Unstained CD4+ T cells (without 
anti-puromycin antibodies) were used as control. The gating strat-
egy is described in Supplementary Fig. S3. Quantification of protein 
translation levels (puromycin MFI) in the different groups is shown 
in c. Each bar shows the mean ± SD of five independent experiments. 
***p < 0.001, ****p < 0.0001
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Fig. 3  Expression of glucose transporter Glut-1 and glucose uptake 
by spleen CD4+ T cells from uninfected or from S. aureus-infected 
mice upon stimulation with anti-CD3/anti-CD28 antibodies. a Flow 
cytometry histograms showing the levels of intracellular Glut-1 
expression in CD4+ T cells in spleen cells isolated from either unin-
fected (left panel) or S. aureus-infected (right panel) mice cultured for 
24 h in the presence (red histogram) or absence (black histogram) of 
anti-CD3/anti-CD28 antibodies. Quantification of intracellular Glut-1 
expression levels in the different groups is shown in b. c Flow cytom-
etry histograms showing the kinetic of glucose uptake in CD4+ T 
cells in spleen cells isolated from either uninfected (upper panel) or S. 
aureus-infected (lower panel) mice unstimulated (black histograms) 
or stimulated for 24 h (pink histograms), 48 h (green histograms) or 

72 h (blue histograms) with anti-CD3/anti-CD28 antibodies. Glucose 
uptake was determined using 2-NBDG. Quantification of glucose 
uptake in the different groups is shown in d. e percentage of divided 
CD4+ T cells in spleen cells from either uninfected (black bars) or S. 
aureus-infected (white bars) mice at 72 h upon stimulation with anti-
CD3/anti-CD28 antibodies in the presence of either 10 mM, 50 mM 
or 100 mM glucose. f Frequencies of CD4+ T cells expressing IL-2 
(left panel) or IFN-γ (right panel) within the spleen cell population 
isolated from uninfected (black bars) or S. aureus-infected (white 
bars) mice at 72  h upon stimulation with anti-CD3/anti-CD28 anti-
bodies in the presence of either 10 mM, 50 mM or 100 mM glucose. 
Each bar shows the mean ± SD of three independent experiments. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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CD4+ T cells in the spleen of S. aureus‑infected 
mice are not able to sustain their glycolytic activity 
upon TCR stimulation

Because CD4+ T cells critically depend on reprogram-
ming their metabolic activity toward aerobic glycolysis to 
meet the bioenergetic demands during activation [21–25], 
we next investigated whether CD4+ T cells in the spleen 
of S. aureus-infected mice were capable to reprogram their 
metabolic activity toward aerobic glycolysis upon stimula-
tion with anti-CD3/anti-CD28 antibodies. To this end, we 
determined the effect of inhibiting glycolysis by treatment 
with 2-DG or oxidative phosphorylation by treatment with 
oligomycin on their metabolic activity using SCENITH. We 
also included in the analysis spleen cells from uninfected 
mice for comparison. In line with previously published data 
[36], we observed that the metabolic activity of unstimulated 
spleen CD4+ T cells from either uninfected (Figs. 4a, 5a) 
or S. aureus-infected (Figs. 4b, 5b) mice heavily relied on 
oxidative phosphorylation since inhibition of glycolysis by 
treatment with 2-DG did not have a significant effect on 
their metabolic activity but inhibition of oxidative phospho-
rylation using oligomycin resulted in marked reduction of 
their metabolic activity. However, the contribution of oxi-
dative phosphorylation to the total metabolic activity was 
reduced upon anti-CD3/anti-CD28 antibodies stimulation 
(from > 80% in unstimulated to 50–60% in stimulated cells) 
in CD4+ T cells from uninfected mice whereas the contribu-
tion of glycolysis increased progressively during the stimu-
lation time (Figs. 4a, 5a). In CD4+ T cells from infected 
mice, the contribution of oxidative phosphorylation to the 
total metabolic activity was also reduced upon anti-CD3/
anti-CD28 antibodies stimulation (from > 80% in unstimu-
lated to 50–60% in stimulated cells) (Figs. 4b, 5b). How-
ever, in contrast to the CD4+ T cells from uninfected mice, 
the contribution of glycolysis to the total metabolic activity 
increased sharply at 24 h and progressively decline during 
the incubation time (Figs. 4b, 5b). These data indicate that 
CD4+ T cells in the spleen of S. aureus-infected mice are 
capable to increase their glycolytic activity during the first 
24 h upon TCR stimulation, but they are unable to sustain 
their glycolytic activity during the entire stimulation time. 

Inhibition of CD4+ T cell responses in the spleen 
cells of S. aureus‑infected mice is mediated 
by increased extracellular lactate and reduction 
of intracellular NAD+/NADH ratio

Several studies have reported that high levels of extracellular 
lactate can impair T cell proliferation and cytokines produc-
tion [29, 37–39]. Lactate is a byproduct of aerobic glycolysis 
that is produced via lactate dehydrogenase by conversion of 
pyruvate and NADH into lactate and NAD+ [25]. NAD+ is 
an important cofactor that regulates glycolysis through its 
electron transfer function in redox reactions where is revers-
ibly reduced to NADH [26]. NAD+ needs to be regenerated 
from NADH through the conversion of pyruvate to lactate by 
the lactate dehydrogenase to maintain active the glycolytic 
flux [25]. Because this reaction is reversible, lactate needs to 
be continuously excreted by activated T cells to enable the 
reaction to further move toward lactate and NAD+ produc-
tion [25]. Lactate export is largely achieved by transport sys-
tems such as monocarboxylate transporter 1 (MCT1), which 
is a bidirectional proton-assisted transporter that cotransport 
protons and lactate anions through the plasma membrane 
depending on the concentration gradient [27, 40]. In lactate-
rich environments, lactate accumulates within activated T 
cells leading to impaired NAD+ regeneration, blockage of 
glycolytic  NAD+-dependent enzymatic reactions and dras-
tic reduction of intermediates needed for proliferation [29]. 
Since we have previously shown that MDSC in the spleen of 
S. aureus-infected mice excreted high levels of lactate [15], 
we speculated that MDSC generate a lactate-rich environ-
ment in the spleen of infected mice that may hamper the 
lactate excretion and NAD+ regeneration of CD4+ T cells 
during activation. A graphic schema of this hypothesis is 
shown in Fig. 6a. To investigate this assumption, we first 
determined if the concentration of lactate differed between 
the spleen of S. aureus-infected and the spleen of uninfected 
mice. We found a significantly greater concentration of lac-
tate in the spleen of infected mice compared to uninfected 
animals (Fig. 6b). Furthermore, spleen cells from infected 
mice produced significantly greater levels of lactate than 
those from uninfected animals after in vitro incubation 
in culture medium (Fig. 6c). The concentration of lactate 
increased in the culture supernatant of spleen cells from both 
infected and uninfected mice after stimulation with anti-
CD3/anti-CD28 antibodies, although the lactate levels were 
significantly greater in spleen cells from infected than in 
those from uninfected mice (Fig. 6c). Removing the excess 
of lactate by changing the medium every 24 h resulted in sig-
nificant recovery of proliferative capacity of CD4+ T cells 
in spleen from infected mice (Fig. 6d, e). On the other hand, 
abrogation of lactate excretion in stimulated spleen CD4+ 
T cells using the specific MCT1 inhibitor AZD3965 [41] 
resulted in significant reduced proliferation of CD4+ T cells 

Fig. 4  Metabolic profile of spleen CD4+ T cells from either unin-
fected or S. aureus-infected mice upon stimulation with anti-CD3/
anti-CD28 antibodies. Flow cytometry histograms showing the lev-
els of protein translation (puromycin MFI) in CD4+ T cells in spleen 
cells from uninfected (a) or S. aureus-infected (b) mice at the indi-
cated times of stimulation with anti-CD3/anti-CD28 antibodies and 
treated with either the glycolysis inhibitor 2-DG (upper histograms) 
or the oxidative phosphorylation inhibitor oligomycin (lower histo-
grams). Quantification of protein translation levels (puromycin MFI) 
in the different conditions is shown in the lower panels in a and b. 
*p < 0.05, ****p < 0.0001

◂
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from uninfected mice but did affect the unresponsiveness 
of CD4+ T cells from infected animals (Fig. 6f, g). These 
observations underscore the relevance of lactate excretion 
via MCT1 for a proper response of CD4+ T upon activation.

Since high concentration of lactate can alter NAD+/
NADH redox conditions in activated CD4+ T cells that can 
affect cell proliferation [29], we determined the intracellular 
NAD+/NADH ratio in stimulated CD4+ T cells in spleen 
cells isolated from either uninfected or S. aureus-infected 
mice. For this purpose, spleen cells were cultured in the 
presence or absence of anti-CD3/anti-CD28 antibodies and 
NAD+/NADH ratio was determined in isolated CD4+ T 
cells at 24 h, 48 h and 72 h of incubation. The results show 
that whereas the NAD+/NADH ratio was not significantly 
changed during the incubation period in stimulated CD4+ 
T cells from uninfected mice, NAD+/NADH ratio progres-
sively declined with the time of incubation in stimulated 
CD4+ T cells from infected mice, indicating thus a redox 
shift from NAD+ to NADH (Fig. 7a). To further investi-
gate the relevance of redox shift from NAD+ to NADH in 
the suppression of CD4+ T cells responses in the spleen of 
infected mice, we determined the effect of increasing NAD+ 
by supplementing the cell cultures with nicotinamide ribo-
side (NR), a precursor that has been shown to increase the 
levels of NAD+ in cells [42]. We found that NR supplemen-
tation increased NAD+/NADH ratio in activated CD4+ T 
cells from infected mice (Fig. 7a). This increase was most 
evident at 72 h of incubation (Fig. 7a). We also observed 
that NR supplementation improved the capacity of spleen 
CD4+ T cells from infected mice to proliferate after stimula-
tion with anti-CD3/anti-CD28 antibodies but has not major 
effect on the proliferative activity of CD4+ T cells from 
uninfected mice (Fig. 7b, c). Together, these results indi-
cate that the high levels of lactate released by MDSC in 
the spleen of infected mice likely provoked a redox shift in 

activated CD4+ T cells that may be responsible, at least in 
part, for their unresponsiveness to TCR stimulation.

Discussion

We have previously reported that MDSC expand during S. 
aureus infection and exert a suppressive effect of CD4+ T 
cells that support infection chronicity [14]. We have also 
shown that MDSC exhibited a dysregulated metabolism in 
chronically infected mice characterized by high glycolytic 
activity and release of large amounts of lactate [15]. In this 
study, we have investigated the mechanism underlying the 
immunosuppressive effect exerted by MDSC on CD4+ 
T cells responses during chronic S. aureus infection. Our 
results support the notion that the dysregulated metabolic 
activity of MDSC generates a lactate-rich local environ-
ment in the spleen of infected mice that is responsible for 
the suppression of CD4+ T cell responses. The sensitivity 
of CD4+ T cells toward high concentrations of exogenous 
lactate can be attributed to the specific metabolic reprogram-
ing that CD4+ T cells undergo upon activation to supply the 
energetic requirements associated with highly proliferative 
and biosynthetic processes [21, 23–25, 36, 43–45].

The primary metabolic adaptation of CD4+ T cells upon 
TCR stimulation is a switch from oxidative phosphorylation 
to aerobic glycolysis involving a marked increase in glucose 
uptake and a change in the fate of glucose carbons [23–25, 
36, 44, 46–48]. In resting CD4+ T cells, glucose is con-
verted into pyruvate that enters the TCA in the mitochondria 
to undergo oxidative phosphorylation leading to the produc-
tion of ATP [49]. Activate CD4+ T cells, on the other hand, 
use predominantly aerobic glycolysis where a large propor-
tion of pyruvate is not entering the TCA in the mitochondria 
but rather converted into lactate in the cell cytosol through 

Fig. 5  Contribution of glycolysis and oxidative phosphorylation to 
the metabolic activity of spleen CD4+ T cells from either uninfected 
or S. aureus-infected mice upon stimulation with anti-CD3/anti-CD28 
antibodies. Metabolic dependence on glycolysis (cyan bars) or oxida-
tive phosphorylation (purple bars) of spleen CD4+ T cells isolated 

from uninfected (a) or S. aureus-infected (b) mice upon stimulation 
with anti-CD3/anti-CD28 antibodies. Metabolic dependence was 
determined as described in the “Materials and methods” section. 
Each bar shows the mean ± SD of five independent experiments. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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the action of lactate dehydrogenase [49]. Although aerobic 
glycolysis is less efficient than oxidative phosphorylation 
yielding only four moles of ATP per glucose molecule, this 
pathway produces ATP faster than oxidative phosphorylation 
to meet the energy demand of rapidly dividing cells [22]. 
However, lactate molecules have to be exported by activated 
CD4+ T cells to ensure the continuation of glycolysis. Since 
lactate anions cannot cross the plasma membrane by free 
diffusion [50], lactate is exported via monocarboxylate trans-
porter systems, which cotransport protons and lactate anions 
following a concentration gradient [27, 51]. A high concen-
tration of extracellular lactate can reverse lactate flux and, 
in this way, interfere with CD4+ T cell activation. Indeed, 

inhibition of lactate export by monocarboxylate transporter 
MCT1 using pharmacological inhibitors have been shown 
to suppress T cell proliferation [52]. In this study, we pro-
vide evidence that the high concentration of extracellular 
lactate resulting from the metabolic activity of MDSC may 
be responsible for the suppression of CD4+ T cell responses 
in the spleen of S. aureus-infected mice. A situation similar 
to that described in the cancer setting where lactate released 
by tumor cells in the local environment opposes lactate 
efflux from T cells, leading to decreased cytokine produc-
tion and cytotoxic activity which hampers the anti-tumor 
activity of effector T cells and favors tumor growth [31, 32, 
53–55]. Lactate has been also implicated in dysregulation of 

Fig. 6  Lactate levels in spleen tissue and in the supernatant of cul-
tured spleen cells from uninfected or S. aureus-infected mice a 
Scheme showing the potential role of lactate in the suppression of 
CD4+ T cell responses by MDSC in the spleen of S. aureus-infected 
mice. LDH (lactate dehydrogenase), NAD+ (oxidized nicotinamide 
adenine dinucleotide), NADH (reduced nicotinamide adenine dinu-
cleotide), MCT1 (monocarboxylate transporter 1), MDSC (myeloid-
derived suppressor cells). b Lactate concentration in spleen tissue 
of uninfected (black bar) or S. aureus-infected (white bar) mice. c 
Lactate concentration in the supernatant of spleen cells isolated from 
either uninfected (black symbols) or S. aureus-infected (white sym-
bols) mice at progressing times of incubation in either medium alone 
(left panel) or with anti-CD3/anti-CD28 antibodies  (right panel). d 
Flow cytometry histograms showing proliferation of CD4+ T cells in 

spleen cells isolated from S. aureus-infected mice at 72 h upon stimu-
lation with anti-CD3/anti-CD28 antibodies without changing (upper 
panel) or after changing the medium every 24 h (lower panel). The 
percentage of divided CD4+ T cells in each group is shown in e. f 
Flow cytometry histograms showing proliferation of CD4+ T cell in 
spleen cells isolated either from uninfected (left histograms) or from 
S. aureus-infected (right histograms) mice at 72  h upon stimulation 
with anti-CD3/anti-CD28 antibodies in the presence of either  the 
MCT1 inhibitor AZD3965 (100  nM) (lower histograms) or vehicle 
control DMSO (upper histograms). The percentage of divided CD4+ 
T cells in each group is shown in g. Each bar shows the mean ± SD of 
five independent experiments. *p < 0.05, **p < 0.005, ***p < 0.001, 
****p < 0.0001
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immunometabolism during chronic inflammatory processes 
and autoimmune diseases [30, 39].

Regarding the mechanisms underlying the suppressive 
effect of extracellular lactate on CD4+ T cell responses, 
some studies have reported that lactic acid causes an acidi-
fication of the medium that can impair T cells activation 
[56–58]. For example, Calcinotto et al. [56] reported that 
acidic pH impaired cytolytic activity and cytokine secretion 
of T cells after TCR activation, although the mechanisms 
mediating these effects were not identified in that study. 
Other studies, however, have provided strong evidence for 
a pH-independent suppressive effect [29, 31]. Thus, treat-
ment of T cells with hydrochloric acid resulted only in one 
half of the suppressive effect on T cell proliferation and 
cytokine production than that induced by lactic acid [31]. 
Furthermore, Quinn et al. [29] reported that lactate impairs 
T cell responses by inducing reductive stress, independently 
from extracellular acidification. They showed that, in lac-
tate-rich conditions, export of lactate by activated T cells is 
blocked, leading to an accumulation of intracellular lactate 
that impedes recycling of NADH to NAD+ and the con-
tinuation of glycolysis [29]. NAD+ plays an important role 
in glycolysis, as it is required for enzymatic reactions such 
as glyceraldehyde 3-phosphate dehydrogenase and 3-phos-
phoglycerate dehydrogenase [59]. Therefore, a low NAD+/
NADH ratio inhibits these reactions and dampen the glyco-
lytic process. For this reason, to maintain active aerobic gly-
colysis, NAD+ needs to be continuously regenerated from 
NADH through the conversion of pyruvate to lactate by the 
lactate dehydrogenase [29]. Excretion of lactate is pivotal for 

this process since this reaction is reversible. The observation 
that lactate can impair T cell proliferation through a redox 
shift from NAD+ to NADH led us to question whether the 
detrimental effect of lactate on CD4+ T cell responses in 
the spleen of infected mice may be associated by redox shift 
form NAD+ to NADH resulting in altered NAD+/NADH 
ratio. We found that the NAD+/NADH ratio in activated 
CD4+ T cells was lower in spleen cells from S. aureus-
infected mice than in spleen cells from uninfected animals. 
We also demonstrated that supplementing cultured spleen 
cells isolated form infected mice with the NAD+ precur-
sor NR increased significantly the proliferative capacity of 
CD4+ T cell, further supporting a role for altered NAD+/
NADH ratio on the suppression mechanism.

In summary, the results of our study suggest that release 
of high concentration of lactate by MDSC in the local micro-
environment suppresses CD4+ T cell activation via blockade 
of lactate efflux, resulting in altered redox homeostasis and 
thereby disturbance of CD4+ T cell metabolism. Therefore, 
therapeutic manipulation of lactate levels or redox metabo-
lism may open new approaches to overcome CD4+ T cells 
immunosuppression and improve immunity during chronic 
S. aureus infection. This could be accomplished for example 
by blocking the production of lactate using inhibitors of key 
enzymes involved in this process such as lactate dehydro-
genase or by blocking lactate transport using inhibitors of 
the lactate transporters monocarboxylate transporters. These 
strategies have been shown to be effective at reducing lac-
tate levels in the tumor environment in preclinical studies 
[60]. However, these therapeutic strategies still face many 

Fig. 7  NAD+/NADH ratio in stimulated spleen CD4+ T cells from 
uninfected or S. aureus-infected mice. a NAD+/NADH ratio in 
CD4+ T cell isolated from cultured spleen cells from either unin-
fected (black symbols) or S. aureus-infected mice in the presence 
(white symbols) or absence (grey symbols) of 200 µM NR and stimu-
lated with anti-CD3/anti-CD28 antibodies. Each symbol shows the 
mean ± SD of three independent experiments. b Flow cytometry his-

tograms showing proliferation of CD4+ T cell in spleen cells isolated 
from either uninfected (left histograms) or S. aureus-infected (right 
histograms) mice at 72 h upon stimulation with anti-CD3/anti-CD28 
antibodies in the absence (upper histogram) or presence (lower histo-
grams) of NR (200 µM). The percentage of divided CD4+ T cells in 
each group is shown in c. Each bar shows the mean ± SD of five inde-
pendent experiments. *p < 0.05, **p < 0.005, ***p < 0.001



Myeloid‑derived suppressor cells impair CD4+ T cell responses during chronic Staphylococcus…

1 3

Page 13 of 15 221

challenges and may have unintended adverse consequences 
due to their off-target effects and the important role of lac-
tate in the maintenance of cellular functions and immune 
regulation. Alternatively, boosting NAD+ content either by 
supplementation of NAD+ precursors such as nicotinamide 
mononucleotide may provide another strategy to ameliorate 
T cells immunosuppression [61]. However, further stud-
ies are needed to determine the optimal dosing and effects 
of NAD+ supplementation on immune function during 
infection.

One major limitation of this study is that the experiments 
have been performed with ex vivo isolated spleen cells, 
which may not accurately reflect the complex interactions 
and responses that occur in the in vivo system. Furthermore, 
although MDSCs have been extensively studied in mouse 
models, the role of MDSC in humans is less well-defined. 
Human and mouse MDSC differ in the phenotypic markers 
that characterize the specific MDSC subsets as well as in 
some physiological aspects [62]. However, they also exhibit 
some similarities for example in the expression of cell sur-
face markers such as CD11b and in their immunosuppressive 
functions on T cell activation [62]. Overall, while the role of 
MDSCs in human diseases is still being elucidated, there is 
growing evidence that these cells play an important role in 
immune regulation and disease progression. Further research 
is needed to fully understand the function of human MDSCs 
and develop effective therapies that target these cells.
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