Skip to main content

Advertisement

Log in

Kindlin-2 controls angiogenesis through modulating Notch1 signaling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Kindlin-2 is critical for development and homeostasis of key organs, including skeleton, liver, islet, etc., yet its role in modulating angiogenesis is unknown. Here, we report that sufficient KINDLIN-2 is extremely important for NOTCH-mediated physiological angiogenesis. The expression of KINDLIN-2 in HUVECs is significantly modulated by angiogenic factors such as vascular endothelial growth factor A or tumor necrosis factor α. A strong co-localization of CD31 and Kindlin-2 in tissue sections is demonstrated by immunofluorescence staining. Endothelial-cell-specific Kindlin-2 deletion embryos die on E10.5 due to hemorrhage caused by the impaired physiological angiogenesis. Experiments in vitro show that vascular endothelial growth factor A-induced multiple functions of endothelial cells, including migration, matrix proteolysis, morphogenesis and sprouting, are all strengthened by KINDLIN-2 overexpression and severely impaired in the absence of KINDLIN-2. Mechanistically, we demonstrate that KINDLIN-2 inhibits the release of Notch intracellular domain through binding to and maintaining the integrity of NOTCH1. The impaired angiogenesis and avascular retinas caused by KINDLIN-2 deficiency can be rescued by DAPT, an inhibitor of γ-secretase which releases the intracellular domain from NOTCH1. Moreover, we demonstrate that high glucose stimulated hyperactive angiogenesis by increasing KINDLIN-2 expression could be prevented by KINDLIN-2 knockdown, indicating Kindlin-2 as a potential therapeutic target in treatment of diabetic retinopathy. Our study for the first time demonstrates the significance of Kindlin-2 in determining Notch-mediated angiogenesis during development and highlights Kindlin-2 as the potential therapeutic target in angiogenic diseases, such as diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data of this study are available within the article or the supplementary materials. All data are available from the corresponding authors upon reasonable request.

Abbreviations

VEGFA:

Vascular endothelial growth factor A

VEGFR2:

Vascular endothelial growth factor receptor 2

NICD:

Notch intracellular domain

DAPT:

N-[N-(3,5-Difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester

Hg:

High glucose

Ng:

Normal glucose

NC:

Negative control

ECs:

Endothelial cells

HUVECs:

Human umbilical vascular ECs

DR:

Diabetic retinopathy

BM:

Basement membrane

MMP:

Matrix metalloprotease

RBP-Jκ:

Recombination signal-binding protein Jκ

Dll4:

Delta-like 4

FERM:

Four-point-one, ezrin, radixin, moesin

TNFα:

Tumor necrosis factor α

PECAM-1:

Platelet endothelial cell adhesion molecule 1

CD31:

Cluster of differentiation 31

CKO:

Conditional knockout

IHC:

Immunohistochemistry

IF:

Immunofluorescence

WB:

Western blotting

AIA:

Angiogenesis invasion assay

QRT-PCR:

Quantitative real time-polymerase chain reaction

IP:

Immunoprecipitation

CHX:

Cycloheximide

HIF-1α:

Hypoxia inducible factor-1α

EdU:

5-Ethynyl-29-deoxyuridine

SiRNA:

Small interfering RNA

References

  1. Ma Q, Reiter RJ, Chen Y (2020) Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis 23(2):91–104

    Article  PubMed  Google Scholar 

  2. Liu Z, Tang W, Liu J, Han Y, Yan Q, Dong Y, Liu X, Yang D, Ma G, Cao H (2023) A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact Mater 20:610–626

    Article  CAS  PubMed  Google Scholar 

  3. Yuan W, Wang X (2021) Propranolol participates in the treatment of infantile hemangioma by inhibiting HUVECs proliferation, migration, invasion, and tube formation. Biomed Res Int 2021:6636891

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF et al (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19(8):915–927

    Article  CAS  PubMed  Google Scholar 

  5. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11(2):109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong Y, Alonso F, Jahjah T, Fremaux I, Grosset CF, Genot E (2022) miR-155 regulates physiological angiogenesis but an miR-155-rich microenvironment disrupts the process by promoting unproductive endothelial sprouting. Cell Mol Life Sci 79(4):208

    Article  CAS  PubMed  Google Scholar 

  7. Cao H, Yan Q, Wang D, Lai Y, Zhou B, Zhang Q, Jin W, Lin S, Lei Y, Ma L et al (2020) Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice. Bone Res 2(8):2

    Article  Google Scholar 

  8. Chen S, Wu X, Lai Y, Chen D, Bai X, Liu S, Wu Y, Chen M, Lai Y, Cao H et al (2022) Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc. Bone Res 10(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu X, Zhou B, Yan Q, Tao C, Qin L, Wu X, Lin S, Chen S, Lai Y, Zou X et al (2020) Kindlin-2 regulates skeletal homeostasis by modulating PTH1R in mice. Signal Transduct Target Ther 5(1):297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, Deng W, Song P, Zhu K, Cao H et al (2015) Kindlin-2 controls TGF-beta signalling and Sox9 expression to regulate chondrogenesis. Nat Commun 6:7531

    Article  PubMed  Google Scholar 

  11. Gao H, Zhou L, Zhong Y, Ding Z, Lin S, Hou X, Zhou X, Shao J, Yang F, Zou X et al (2022) Kindlin-2 haploinsufficiency protects against fatty liver by targeting Foxo1 in mice. Nat Commun 13(1):1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu K, Lai Y, Cao H, Bai X, Liu C, Yan Q, Ma L, Chen D, Kanaporis G, Wang J et al (2020) Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice. Nat Commun 11(1):484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao H, Guo Y, Yan Q, Yang W, Li R, Lin S, Bai X, Liu C, Chen D, Cao H et al (2019) Lipoatrophy and metabolic disturbance in mice with adipose-specific deletion of kindlin-2. JCI Insight 4(13):e128405

    Article  PubMed  PubMed Central  Google Scholar 

  14. He X, Song J, Cai Z, Chi X, Wang Z, Yang D, Xie S, Zhou J, Fu Y, Li W et al (2020) Kindlin-2 deficiency induces fatal intestinal obstruction in mice. Theranostics 10(14):6182–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liao Z, Kato H, Pandey M, Cantor JM, Ablooglu AJ, Ginsberg MH, Shattil SJ (2015) Interaction of kindlin-2 with integrin beta3 promotes outside-in signaling responses by the alphaVbeta3 vitronectin receptor. Blood 125(12):1995–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pluskota E, Dowling JJ, Gordon N, Golden JA, Szpak D, West XZ, Nestor C, Ma YQ, Bialkowska K, Byzova T et al (2011) The integrin coactivator kindlin-2 plays a critical role in angiogenesis in mice and zebrafish. Blood 117(18):4978–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ying J, Luan W, Lu L, Zhang S, Qi F (2018) Knockdown of the KINDLIN-2 gene and reduced expression of Kindlin-2 affects vascular permeability in angiogenesis in a mouse model of wound healing. Med Sci Monit 24:5376–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei CY, Zhu MX, Zhang PF, Yang X, Wang L, Ying JH, Luan WJ, Chen C, Liu JQ, Zhu M et al (2019) Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY) 11(16):6273–6285

    Article  CAS  PubMed  Google Scholar 

  19. Pluskota E, Ma Y, Bledzka KM, Bialkowska K, Soloviev DA, Szpak D, Podrez EA, Fox PL, Hazen SL, Dowling JJ et al (2013) Kindlin-2 regulates hemostasis by controlling endothelial cell-surface expression of ADP/AMP catabolic enzymes via a clathrin-dependent mechanism. Blood 122(14):2491–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong Z, Huo J, Liang A, Chen J, Chen G, Liu D (2021) Gamma-Secretase Inhibitor (DAPT), a potential therapeutic target drug, caused neurotoxicity in planarian regeneration by inhibiting Notch signaling pathway. Sci Total Environ 781:146735

    Article  CAS  PubMed  Google Scholar 

  21. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230(2):230–242

    Article  CAS  PubMed  Google Scholar 

  22. Shea K, Geijsen N (2007) Dissection of 6.5 dpc mouse embryos. J Vis Exp 2:160

    Google Scholar 

  23. Lin J, Shi Y, Miao J, Wu Y, Lin H, Wu J, Zeng W, Qi F, Liu C, Wang X et al (2019) Gastrodin alleviates oxidative stress-induced apoptosis and cellular dysfunction in human umbilical vein endothelial cells via the nuclear factor-erythroid 2-related factor 2/heme oxygenase-1 pathway and accelerates wound healing in vivo. Front Pharmacol 10:1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fortini F, Vieceli Dalla Sega F, Caliceti C, Aquila G, Pannella M, Pannuti A, Miele L, Ferrari R, Rizzo P (2017) Estrogen receptor beta-dependent Notch1 activation protects vascular endothelium against tumor necrosis factor alpha (TNFalpha)-induced apoptosis. J Biol Chem 292(44):18178–18191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsu KS, Guan BJ, Cheng X, Guan D, Lam M, Hatzoglou M, Kao HY (2016) Translational control of PML contributes to TNFalpha-induced apoptosis of MCF7 breast cancer cells and decreased angiogenesis in HUVECs. Cell Death Differ 23(3):469–483

    Article  CAS  PubMed  Google Scholar 

  26. Howe GA, Kazda K, Addison CL (2017) MicroRNA-30b controls endothelial cell capillary morphogenesis through regulation of transforming growth factor beta 2. PLoS ONE 12(10):e0185619

    Article  PubMed  PubMed Central  Google Scholar 

  27. Diaz B (2013) Invadopodia detection and gelatin degradation assay. Bio Protoc 3(24):e997

    Article  PubMed  Google Scholar 

  28. Wang Z, Zhou L, Wang Y, Peng Q, Li H, Zhang X, Su Z, Song J, Sun Q, Sayed S et al (2021) The CK1delta/epsilon-AES axis regulates tumorigenesis and metastasis in colorectal cancer. Theranostics 11(9):4421–4435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lenter M, Uhlig H, Hamann A, Jenö P, Imhof B, Vestweber D (1993) A monoclonal antibody against an activation epitope on mouse integrin chain beta 1 blocks adhesion of lymphocytes to the endothelial integrin alpha 6 beta 1. Proc Natl Acad Sci USA 90(19):9051–9055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gombash Lampe SE, Kaspar BK, Foust KD (2014) Intravenous injections in neonatal mice. J Vis Exp 93:e52037

    Google Scholar 

  31. Hu J, Popp R, Fromel T, Ehling M, Awwad K, Adams RH, Hammes HP, Fleming I (2014) Muller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. J Exp Med 211(2):281–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu M, Jiang L, Yuan Y, Chen L, Liu X, Liang J, Zhu Q, Ding D, Song E (2019) Intravitreal Ets1 siRNA alleviates choroidal neovascularization in a mouse model of age-related macular degeneration. Cell Tissue Res 376(3):341–351

    Article  PubMed  Google Scholar 

  33. Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119(3):651–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Xu J, Zhang X, Wang C, Huang Y, Dai K, Zhang X (2017) TNF-alpha-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis 8(3):e2715

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fu X, Zhou B, Yan Q, Tao C, Qin L, Wu X, Lin S, Chen S, Lai Y, Zou X et al (2020) Kindlin-2 regulates skeletal homeostasis by modulating PTH1R in mice. Signal Transduct Target Ther 5(1):297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teichert M, Milde L, Holm A, Stanicek L, Gengenbacher N, Savant S, Ruckdeschel T, Hasanov Z, Srivastava K, Hu J et al (2017) Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun 8:16106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Payne LB, Tewari BP, Dunkenberger L, Bond S, Savelli A, Darden J, Zhao H, Willi C, Kanodia R, Gude R et al (2022) Pericyte progenitor coupling to the emerging endothelium during vasculogenesis via connexin 43. Arterioscler Thromb Vasc Biol 42(4):e96–e114

    Article  CAS  PubMed  Google Scholar 

  38. Dehghan M, Narimani N (2020) The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model. Eng Comput 36(4):1517–1537

    Article  Google Scholar 

  39. Barrow-McGee R, Kishi N, Joffre C, Menard L, Hervieu A, Bakhouche BA, Noval AJ, Mai A, Guzman C, Robbez-Masson L et al (2016) Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes. Nat Commun 7:11942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arjonen A, Alanko J, Veltel S, Ivaska J (2012) Distinct recycling of active and inactive beta1 integrins. Traffic 13(4):610–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian Y, Xu Y, Fu Q, Chang M, Wang Y, Shang X, Wan C, Marymont JV, Dong Y (2015) Notch inhibits chondrogenic differentiation of mesenchymal progenitor cells by targeting Twist1. Mol Cell Endocrinol 403:30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hsu KW, Hsieh RH, Huang KH, Fen-Yau Li A, Chi CW, Wang TY, Tseng MJ, Wu KJ, Yeh TS (2012) Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression. Carcinogenesis 33(8):1459–1467

    Article  CAS  PubMed  Google Scholar 

  44. Anant S, Roy S, VijayRaghavan K (1998) Twist and Notch negatively regulate adult muscle differentiation in Drosophila. Development 125(8):1361–1369

    Article  CAS  PubMed  Google Scholar 

  45. Li L, Liu Q, Shang T, Song W, Xu D, Allen TD, Wang X, Jeong J, Lobe CG, Liu J (2021) Aberrant activation of notch1 signaling in glomerular endothelium induces albuminuria. Circ Res 128(5):602–618

    Article  CAS  PubMed  Google Scholar 

  46. Jarrett SM, Seegar TCM, Andrews M, Adelmant G, Marto JA, Aster JC, Blacklow SC (2019) Extension of the Notch intracellular domain ankyrin repeat stack by NRARP promotes feedback inhibition of Notch signaling. Sci Signal 12(606):easy2369

    Article  Google Scholar 

  47. Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thurston G, Kitajewski J (2008) VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. Br J Cancer 99(8):1204–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakagawa T, Kosugi T, Haneda M, Rivard CJ, Long DA (2009) Abnormal angiogenesis in diabetic nephropathy. Diabetes 58(7):1471–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pedrosa AR, Trindade A, Fernandes AC, Carvalho C, Gigante J, Tavares AT, Dieguez-Hurtado R, Yagita H, Adams RH, Duarte A (2015) Endothelial Jagged1 antagonizes Dll4 regulation of endothelial branching and promotes vascular maturation downstream of Dll4/Notch1. Arterioscler Thromb Vasc Biol 35(5):1134–1146

    Article  CAS  PubMed  Google Scholar 

  51. Ai X, Jia Z, Liu S, Wang J, Zhang X (2014) Notch-1 regulates proliferation and differentiation of human bladder cancer cell lines by inhibiting expression of Kruppel-like factor 4. Oncol Rep 32(4):1459–1464

    Article  CAS  PubMed  Google Scholar 

  52. Li D, Xu D, Zhang Y, Chen P, Xie J (2022) Effect of Notch1 signaling on cellular proliferation and apoptosis in human laryngeal carcinoma. World J Surg Oncol 20(1):262

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ubezio B, Blanco RA, Geudens I, Stanchi F, Mathivet T, Jones ML, Ragab A, Bentley K, Gerhardt H (2016) Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion. Elife 5:e12167

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang Z, Wang S, Liu C, Xie R, Hu W, Zhou P (2022) All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat Nanotechnol 17(1):27–32

    Article  PubMed  Google Scholar 

  55. Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI et al (2010) The mouse retina as an angiogenesis model. Investig Ophthalmol Vis Sci 51(6):2813–2826

    Article  Google Scholar 

  56. Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    Article  CAS  PubMed  Google Scholar 

  57. Drake CJ, Fleming PA (2000) Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95(5):1671–1679

    Article  CAS  PubMed  Google Scholar 

  58. Prior BM, Yang HT, Terjung RL (2004) What makes vessels grow with exercise training? J Appl Physiol (1985) 97(3):1119–1128

    Article  PubMed  Google Scholar 

  59. Moya IM, Umans L, Maas E, Pereira PN, Beets K, Francis A, Sents W, Robertson EJ, Mummery CL, Huylebroeck D et al (2012) Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev Cell 22(3):501–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo L, Cui C, Zhang K, Wang J, Wang Y, Lu Y, Chen K, Yuan J, Xiao G, Tang B et al (2019) Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nat Commun 10(1):845

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wei X, Xia Y, Li F, Tang Y, Nie J, Liu Y, Zhou Z, Zhang H, Hou FF (2013) Kindlin-2 mediates activation of TGF-β/Smad signaling and renal fibrosis. J Am Soc Nephrol 24(9):1387–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guo B, Gao J, Zhan J, Zhang H (2015) Kindlin-2 interacts with and stabilizes EGFR and is required for EGF-induced breast cancer cell migration. Cancer Lett 361(2):271–281

    Article  CAS  PubMed  Google Scholar 

  63. Fallah A, Sadeghinia A, Kahroba H, Samadi A, Heidari HR, Bradaran B, Zeinali S, Molavi O (2019) Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 110:775–785

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Deng Yi, Prof. Ji Shengjian and master student Long Gaoxin of Southern University of Science and Technology (SUSTech) for technical assistance. We acknowledge the assistance of Core Research Facilities of Southern University of Science and Technology.

Funding

This work was supported, in part, by the National Key Research and Development Program of China Grants (2019YFA0906001), National Natural Science Foundation of China Grants (82022047 and 81972100), Guangdong Provincial Science and Technology Innovation Council Grant (2017B030301018).

Author information

Authors and Affiliations

Authors

Contributions

YD, GM and HC contributed to study design. YD, GM, XH, YH, ZD, WT, YC and HC contributed to study conducts, data collection and analysis. YD, XH, YH, FR, KL, CD, GM and HC contributed to data interpretation. Drafting the manuscript: YD, HC and GM. DY, GM and HC take the responsibility for the integrity of the data analysis.

Corresponding authors

Correspondence to Guixing Ma or Huiling Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Ethical approval and consent to participate

There are no human samples used in this study.

Consent for publication

All authors have agreed for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7203 KB)

Supplementary file2 (MP4 184 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Ma, G., Hou, X. et al. Kindlin-2 controls angiogenesis through modulating Notch1 signaling. Cell. Mol. Life Sci. 80, 223 (2023). https://doi.org/10.1007/s00018-023-04866-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04866-w

Keywords

Navigation