Skip to main content

Advertisement

Log in

DDX5 inhibits type I IFN production by promoting degradation of TBK1 and disrupting formation of TBK1 − TRAF3 complex

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

DExD/H-box helicase (DDX) 5 belongs to the DExD/H-box helicase family. DDX family members play differential roles in the regulation of innate antiviral immune response. However, whether DDX5 is involved in antiviral immunity remains unclear. In this study, we found that DDX5 serves as a negative regulator of type I interferon (IFN) response. Overexpression of DDX5 inhibited IFN production induced by Spring viremia of carp virus (SVCV) and poly(I:C) and enhanced virus replication by targeting key elements of the RLR signaling pathway (MAVS, MITA, TBK1, IRF3 and IRF7). Mechanistically, DDX5 directly interacted with TBK1 to promote its autophagy-mediated degradation. Moreover, DDX5 was shown to block the interaction between TRAF3 and TBK1, hence preventing nuclear translocation of IRF3. Together, these data shed light on the roles of DDX5 in regulating IFN response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated in this study are included in the article and the Supplementary Material files, and will be made available on request.

References

  1. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820. https://doi.org/10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  2. Chen IY, Ichinohe T (2015) Response of host inflammasomes to viral infection. Trends Microbiol 23(1):55–63. https://doi.org/10.1016/j.tim.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  3. Tan XJ, Sun LJ, Chen JQ, Chen ZJJ (2018) Detection of microbial infections through innate immune sensing of nucleic acids. Annu Rev Microbiol 72:447–478. https://doi.org/10.1146/annurev-micro-102215-095605

    Article  CAS  PubMed  Google Scholar 

  4. Schlee M, Hartmann G (2016) Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol 16(9):566–580. https://doi.org/10.1038/nri.2016.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737. https://doi.org/10.1038/ni1087

    Article  CAS  PubMed  Google Scholar 

  6. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175(5):2851–2858. https://doi.org/10.4049/jimmunol.175.5.2851

    Article  CAS  PubMed  Google Scholar 

  7. Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC et al (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci USA 104(2):582–587. https://doi.org/10.1073/pnas.0606699104

    Article  CAS  PubMed  Google Scholar 

  8. Xu LG, Wang YY, Han KJ, Li LY, Zhai ZH, Shu HB (2005) VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol Cell 19(6):727–740. https://doi.org/10.1016/j.molcel.2005.08.014

    Article  CAS  PubMed  Google Scholar 

  9. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H et al (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6(10):981–988. https://doi.org/10.1038/ni1243

    Article  CAS  PubMed  Google Scholar 

  10. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R et al (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437(7062):1167–1172. https://doi.org/10.1038/nature04193

    Article  CAS  PubMed  Google Scholar 

  11. Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K et al (2000) Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13(4):539–548. https://doi.org/10.1016/s1074-7613(00)00053-4

    Article  CAS  PubMed  Google Scholar 

  12. Honda K, Takaoka A, Taniguchi T (2006) Type I inteferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 25(3):349–360. https://doi.org/10.1016/j.immuni.2006.08.009

    Article  CAS  PubMed  Google Scholar 

  13. Munz C, Lunemann JD, Getts MT, Miller SD (2009) Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 9(4):246–258. https://doi.org/10.1038/nri2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li S, Lu LF, Li ZC, Zhang C, Zhou XY, Zhou Y et al (2019) Zebrafish MVP recruits and degrades TBK1 to suppress IFN production. J Immunol 202(2):559–566. https://doi.org/10.4049/jimmunol.1801325

    Article  CAS  PubMed  Google Scholar 

  15. Chen LT, Hu MM, Xu ZS, Liu Y, Shu HB (2016) MSX1 modulates RLR-mediated innate antiviral signaling by facilitating assembly of TBK1-associated complexes. J Immunol 197(1):199–207. https://doi.org/10.4049/jimmunol.1600039

    Article  CAS  PubMed  Google Scholar 

  16. Xia Z, Xu G, Nie L, Liu L, Peng N, He Q et al (2019) NAC1 potentiates cellular antiviral signaling by bridging MAVS and TBK1. J Immunol 203(4):1001–1011. https://doi.org/10.4049/jimmunol.1801110

    Article  CAS  PubMed  Google Scholar 

  17. Iggo R, Picksley S, Southgate J, McPheat J, Lane DP (1990) Identification of a putative RNA helicase in E. coli. Nucleic acids Res 18(18):5413–5417. https://doi.org/10.1093/nar/18.18.5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iggo RD, Jamieson DJ, MacNeill SA, Southgate J, McPheat J, Lane DP (1991) p68 RNA helicase: identification of a nucleolar form and cloning of related genes containing a conserved intron in yeasts. Mol Cell Biol 11(3):1326–1333. https://doi.org/10.1128/mcb.11.3.1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyashita M, Oshiumi H, Matsumoto M, Seya T (2011) DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol 31(18):3802–3819. https://doi.org/10.1128/mcb.01368-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pattabhi S, Knoll ML, Gale M, Loo YM (2019) DHX15 is a coreceptor for RLR signaling that promotes antiviral defense against RNA virus infection. J Interferon Cytokine Res 39(6):331–346. https://doi.org/10.1089/jir.2018.0163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goncalves A, Bauch A, Stefanovic A, Hantschel O, Bennett KL, Decker T, Superti-Furga G (2008) The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J 27(15):2135–2146. https://doi.org/10.1038/emboj.2008.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schroder M, Baran M, Bowie AG (2008) Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKK epsilon-mediated IRF activation. EMBO J 27(15):2147–2157. https://doi.org/10.1038/emboj.2008.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu LL, Fullam A, Brennan R, Schroder M (2013) Human DEAD box helicase 3 couples IκB kinase epsilon to interferon regulatory factor 3 activation. Mol Cell Biol 33(10):2004–2015. https://doi.org/10.1128/mcb.01603-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fullam A, Gu LL, Hohn Y, Schroder M (2018) DDX3 directly facilitates IKK α activation and regulates downstream signalling pathways. Biochem J 475:3595–3607. https://doi.org/10.1042/bcj20180163

    Article  CAS  PubMed  Google Scholar 

  25. Zhang KL, Zhang YF, Xue J, Meng QW, Liu HY, Bi CH et al (2019) DDX19 inhibits type I interferon production by disrupting TBK1-IKK epsilon-IRF3 interactions and promoting TBK1 and IKK epsilon degradation. Cell Rep 26(5):1258–1272. https://doi.org/10.1016/j.celrep.2019.01.029

    Article  CAS  PubMed  Google Scholar 

  26. Li D, Fu SZ, Wu ZQ, Yang WP, Ru Y, Shu HB et al (2020) DDX56 inhibits type I interferon by disrupting assembly of IRF3-IPO5 to inhibit IRF3 nucleus import. J Cell Sci 133(4):1. https://doi.org/10.1242/jcs.244681

    Article  Google Scholar 

  27. Ma Z, Moore R, Xu XX, Barber GN (2013) DDX24 negatively regulates cytosolic RNA-mediated innate immune signaling. PLoS Pathog 9(10):13. https://doi.org/10.1371/journal.ppat.1003721

    Article  CAS  Google Scholar 

  28. Chen JY, Chen WN, Poon KMV, Zheng BJ, Lin X, Wang YX et al (2009) Interaction between SARS-CoV helicase and a multifunctional cellular protein (Ddx5) revealed by yeast and mammalian cell two-hybrid systems. Arch Virol 154(3):507–512. https://doi.org/10.1007/s00705-009-0323-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou XX, Luo J, Mills L, Wu SX, Pan T, Geng GN et al (2013) DDX5 facilitates HIV-1 replication as a cellular co-factor of Rev. PLoS One 8(5):12. https://doi.org/10.1371/journal.pone.0065040

    Article  CAS  Google Scholar 

  30. Li C, Ge LL, Li PP, Wang Y, Sun MX, Huang L et al (2013) The DEAD-box RNA helicase DDX5 acts as a positive regulator of Japanese encephalitis virus replication by binding to viral 3′ UTR. Antiviral Res 100(2):487–499. https://doi.org/10.1016/j.antiviral.2013.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goh PY, Tan YJ, Lim SP, Tan YH, Lim SG, Fuller-Pace F et al (2004) Cellular RNA helicase p68 relocalization and interaction with the hepatitis C virus (HCV) NS5B protein and the potential role of p68 in HCV RNA replication. J Virol 78(10):5288–5298. https://doi.org/10.1128/jvi.78.10.5288-5298.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang H, Xing Z, Mani SKK, Bancel B, Durantel D, Zoulim F et al (2016) RNA helicase DEAD box protein 5 regulates polycomb repressive complex 2/Hox transcript antisense intergenic RNA function in hepatitis B virus infection and hepatocarcinogenesis. Hepatology 64(4):1033–1048. https://doi.org/10.1002/hep.28698

    Article  CAS  PubMed  Google Scholar 

  33. Zhao S, Ge X, Wang X, Liu A, Guo X, Zhou L et al (2015) The DEAD-box RNA helicase 5 positively regulates the replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp9 in vitro. Virus Res 195:217–224. https://doi.org/10.1016/j.virusres.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  34. Kolluru V, Pal D, John A, Ankem MK, Freedman JH, Damodaran C (2017) Induction of Plac8 promotes pro-survival function of autophagy in cadmium-induced prostate carcinogenesis. Cancer Lett 408:121–129. https://doi.org/10.1016/j.canlet.2017.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ugalde AP, Bretones G, Rodriguez D, Quesada V, Llorente F, Fernandez-Delgado R et al (2022) Autophagy-linked plasma and lysosomal membrane protein PLAC8 is a key host factor for SARS-CoV-2 entry into human cells. Embo J 41(21):22. https://doi.org/10.15252/embj.2022110727

    Article  CAS  Google Scholar 

  36. Adamek M, Rakus KŁ, Chyb J, Brogden G, Huebner A, Irnazarow I, Steinhagen D (2012) Interferon type I responses to virus infections in carp cells: in vitro studies on Cyprinid herpesvirus 3 and Rhabdovirus carpio infections. Fish Shellfish Immunol 33(3):482–493. https://doi.org/10.1016/j.fsi.2012.05.031

    Article  CAS  PubMed  Google Scholar 

  37. Winton J, Batts W, deKinkelin P, LeBerre M, Bremont M, Fijan N (2010) Current lineages of the epithelioma papulosum cyprini (EPC) cell line are contaminated with fathead minnow, Pimephales promelas, cells. J Fish Dis 33(8):701–704. https://doi.org/10.1111/j.1365-2761.2010.01165.x

    Article  CAS  PubMed  Google Scholar 

  38. Huang WJ, Ji N, Zhao X, Guo JH, Feng JH, Chen KY, Wu YX, Wang JY, Zou J (2022) RNA-Seq analysis of a zebrafish caudal fin cell line in response to infection with spring viraemia of carp virus. Aquac Fish. https://doi.org/10.1016/j.aaf.2022.11.004

    Article  Google Scholar 

  39. Huang WJ, Zhao X, Ji N, Guo JH, Feng JH, Chen KY et al (2022) IRF2 cooperates with phosphoprotein of spring viremia of carp virus to suppress antiviral response in zebrafish. J Virol 96(22):17. https://doi.org/10.1128/jvi.01314-22

    Article  CAS  Google Scholar 

  40. Costes B, Fournier G, Michel B, Delforge C, Raj VS, Dewals B et al (2008) Cloning of the koi herpesvirus genome as an infectious bacterial artificial chromosome demonstrates that disruption of the thymidine kinase locus induces partial attenuation in Cyprinus carpio koi. J Virol 82(10):4955–4964. https://doi.org/10.1128/jvi.00211-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun F, Zhang YB, Liu TK, Shi J, Wang B, Gui JF (2011) Fish MITA serves as a mediator for distinct fish IFN gene activation dependent on IRF3 or IRF7. J Immunol 187(5):2531–2539. https://doi.org/10.4049/jimmunol.1100642

    Article  CAS  PubMed  Google Scholar 

  42. Michel B, Fournier G, Lieffrig F, Costes B, Vanderplasschen A (2010) Cyprinid herpesvirus 3. Emerg Infect Dis 16(12):1835–1843. https://doi.org/10.3201/eid1612.100593

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cheng WY, Chen GH, Jia HJ, He XB, Jing ZZ (2018) DDX5 RNA helicases: emerging roles in viral infection. Int J Mol Sci 19(4):15. https://doi.org/10.3390/ijms19041122

    Article  CAS  Google Scholar 

  44. Zhang H, Zhang YQ, Zhu XY, Chen C, Zhang C, Xia YZ et al (2019) DEAD box protein 5 inhibits liver tumorigenesis by stimulating autophagy via interaction with p62/SQSTM1. Hepatology 69(3):1046–1063. https://doi.org/10.1002/hep.30300

    Article  CAS  PubMed  Google Scholar 

  45. Cai B, Wu J, Yu X, Su X-z, Wang R-F (2017) FOSL1 inhibits type I interferon responses to malaria and viral infections by blocking TBK1 and TRAF3/TRIF interactions. MBio. https://doi.org/10.1128/mBio.02161-16

    Article  PubMed  PubMed Central  Google Scholar 

  46. Seth RB, Sun LJ, Ea CK, Chen ZJJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κ B and IRF3. Cell 122(5):669–682. https://doi.org/10.1016/j.cell.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  47. Zhang K, Zhang Y, Xue J, Meng Q, Liu H, Bi C et al (2019) DDX19 inhibits type I interferon production by disrupting TBK1-IKKepsilon-IRF3 interactions and promoting TBK1 and IKKepsilon degradation. Cell Rep 26(5):1258–1272. https://doi.org/10.1016/j.celrep.2019.01.029. (e4)

    Article  CAS  PubMed  Google Scholar 

  48. Zhang ZQ, Kim T, Bao MS, Facchinetti V, Jung SY, Ghaffari AA et al (2011) DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 34(6):866–878. https://doi.org/10.1016/j.immuni.2011.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang ZQ, Yuan B, Bao MS, Lu N, Kim T, Liu YJ (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 13(2):196. https://doi.org/10.1038/ni0212-196b

    Article  CAS  Google Scholar 

  50. Sadler AJ, Latchoumanin O, Hawkes D, Mak J, Williams BRG (2009) An antiviral response directed by PKR phosphorylation of the RNA helicase A. PLoS Pathog 5(2):11. https://doi.org/10.1371/journal.ppat.1000311

    Article  CAS  Google Scholar 

  51. Zhao LC, Zhao YZ, Liu QZ, Huang JJ, Lu YL, Ping JH (2022) DDX5/METTL3-METTL14/YTHDF2 axis regulates replication of influenza A virus. Microbiol Spectr 10(3):17. https://doi.org/10.1128/spectrum.01098-22

    Article  CAS  Google Scholar 

  52. Xu J, Cai YH, Ma ZB, Jiang B, Liu WX, Cheng J et al (2021) The RNA helicase DDX5 promotes viral infection via regulating N-6-methyladenosine levels on the DHX58 and NFκB transcripts to dampen antiviral innate immunity. PLoS Pathog 17(4):30. https://doi.org/10.1371/journal.ppat.1009530

    Article  CAS  Google Scholar 

  53. Rios-Marco P, Romero-Lopez C, Berzal-Herranz A (2016) The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation. Sci Rep 6:15. https://doi.org/10.1038/srep25729

    Article  CAS  Google Scholar 

  54. Sparrer KMJ, Gableske S, Zurenski MA, Parker ZM, Full F, Baumgart GJ et al (2017) TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat Microbiol 2(11):1543–1557. https://doi.org/10.1038/s41564-017-0017-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun MW, Yu SX, Ge HL, Wang T, Li YF, Zhou PP et al (2022) The A137R protein of African swine fever virus inhibits type I interferon production via the autophagy-mediated lysosomal degradation of TBK1. J Virol 96(9):16. https://doi.org/10.1128/jvi.01957-21

    Article  CAS  Google Scholar 

  56. Deng TJ, Hu BL, Wang XB, Lin LL, Zhou JW, Xu YT et al (2021) Inhibition of antiviral innate immunity by avibirnavirus VP3 via blocking TBK1-TRAF3 complex formation and IRF3 activation. MSystems 6(3):17. https://doi.org/10.1128/mSystems.00016-21

    Article  Google Scholar 

  57. Zhou ZH, Sun Y, Xu JY, Tang XY, Zhou L, Li QN et al (2021) Swine acute diarrhea syndrome coronavirus nucleocapsid protein antagonizes interferon-beta production via blocking the interaction between TRAF3 and TBK1. Front Immunol 12:13. https://doi.org/10.3389/fimmu.2021.573078

    Article  CAS  Google Scholar 

  58. Zhang WW, Weng JH, Yao L, Jia P, Yi MS, Jia KT (2022) Nectin4 antagonises type I interferon production by targeting TRAF3 for autophagic degradation and disrupting TRAF3-TBK1 complex formation. Int J Biol Macromol 218:654–664. https://doi.org/10.1016/j.ijbiomac.2022.07.151

    Article  CAS  PubMed  Google Scholar 

  59. Cai BW, Wu J, Yu X, Su XZ, Wang RF (2017) FOSL1inhibits type I interferon responses to malaria and viral infections by blocking TBK1 and TRAF3/TRIF interactions. MBio 8(1):14. https://doi.org/10.1128/mBio.02161-16

    Article  Google Scholar 

  60. Sui C, Xiao TY, Zhang SY, Zeng HX, Zheng Y, Liu BY et al (2022) SARS-CoV-2 NSP13 inhibits type I IFN production by degradation of TBK1 via p62-dependent selective autophagy. J Immunol 208(3):753–761. https://doi.org/10.4049/jimmunol.2100684

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Mingxian Chang for providing SVCV.

Funding

This work is funded by the National Natural Science Foundation of China (32030112 and U21A20268).

Author information

Authors and Affiliations

Authors

Contributions

YZ: investigation, methodology, data curation, writing original draft. Jing Cen, GY, ZJ, KC, WG, Jing Chen: investigation, methodology. MA, ZJ: methodology, materials, manuscript editing. JZ: conceptualization, funding acquisition, project administration, supervision, review and editing.

Corresponding author

Correspondence to Jun Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors have approved this article for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 86 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cen, J., Yuan, G. et al. DDX5 inhibits type I IFN production by promoting degradation of TBK1 and disrupting formation of TBK1 − TRAF3 complex. Cell. Mol. Life Sci. 80, 212 (2023). https://doi.org/10.1007/s00018-023-04860-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04860-2

Keywords

Navigation