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Abstract
The precise characterization of oxygen-sensing pathways and the identification of  pO2-regulated gene expression are both 
issues of critical importance. The  O2-sensing system plays crucial roles in almost all the pivotal human processes, including 
the stem cell specification, the growth and development of tissues (such as embryogenesis), the modulation of intermediate 
metabolism (including the shift of the glucose metabolism from oxidative to anaerobic ATP production and vice versa), and 
the control of blood pressure. The solid cancer microenvironment is characterized by low oxygen levels and by the consequent 
activation of the hypoxia response that, in turn, allows a complex adaptive response characterized mainly by neoangiogen-
esis and metabolic reprogramming. Recently, incredible advances in molecular genetic methodologies allowed the genome 
editing with high efficiency and, above all, the precise identification of target cells/tissues. These new possibilities and the 
knowledge of the mechanisms of adaptation to hypoxia suggest the effective development of new therapeutic approaches 
based on the manipulation, targeting, and exploitation of the oxygen-sensor system molecular mechanisms.
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Introduction

The molecular response to oxygen pressure variation 
in humans is substantially mediated by activation of 
the hypoxia-inducible transcription factors (HIF) through 
heterodimerization of α and β subunits [1, 2]. Low oxy-
gen levels increase HIF-α protein content that translocates 
into the nucleus, where it interacts with HIF-β protein. The 

heterodimer recognizes the so-called hypoxia response ele-
ments (HREs) generally located at the promoter of target 
genes. In a strict context-dependent fashion, HIF heterodi-
mers, along with many transcriptional coactivators, modu-
late the expression of numerous genes, allowing the response 
to  O2 pressure  (pO2) changes at local and systemic levels 
[1, 3, 4].

While HIF-β protein (also known as arylhydrocarbon 
receptor nuclear translocator) is constitutively present, 
HIF-α subunit shows in normoxia a short half-life being 
rapidly degraded by a RING-E3 ubiquitin ligase/protea-
some mechanism [5–9]. The HIF-α ubiquitinating complex 
includes Cullin 2, Ring Box 1 (RBX1), Elongin C, Elongin 
B, and the von Hippel Lindau (VHL) tumor suppressor pro-
tein [5–9]. VHL, i.e., the substrate recognition subunit of 
the ubiquitinating complex, recognizes HIF-α by interact-
ing with an unusual degron, which is represented by two 
hydroxylated prolines (P402 and P564 in human HIF-1α; 
P405 and P531 in human HIF-2α) located in the so-called 
oxygen-dependent degradation domains (ODDs) [9, 10].

Three different HIF prolyl 4-hydroxylases (i.e., PHD1-
3, prolyl hydroxylase domain-containing enzymes) 
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catalyze the hydroxylation reactions employing oxygen and 
α-ketoglutarate as substrates. Thus, PHD-dependent HIF-α 
prolyl hydroxylation should be viewed as a  pO2 sensor [11, 
12]. HIF-α is also hydroxylated on an asparaginyl residue 
localized in the C-TAD (C-terminal transactivation domain). 
The reaction is carried out by FIH (factor-inhibiting HIF) 
and negatively affects the HIF transactivatory function by 
modifying the recruitment of coactivators [13, 14].

Many HIF target genes are of clinical relevance, espe-
cially in relation to cancer and ischaemic diseases. HIF tar-
gets include genes encoding erythropoietin (EPO) and vas-
cular endothelial growth factor (VEGF), which induce the 
production of red blood cells and angiogenesis, respectively, 
and many other genes involved in metabolic and physiologi-
cal adaptations to hypoxia [15–17]. Modulation of the HIF 
system for therapeutic benefit is hence of considerable inter-
est. To date, major efforts have focused on (1) the upregu-
lation of HIF target genes (e.g., EPO) to treat anemia and 
(2) the inhibition of HIF transcriptional activity as a cancer 
therapy. However, multiple other therapeutic applications of 
HIF system targeting can be envisaged, such as wound heal-
ing and stroke treatment [18, 19]. Furthermore, because HIF 
is a pleiotropic transcription factor rapidly and efficiently 
induced by a small gaseous molecule, it is an attractive 
model system for basic studies on gene expression control 
[20–23].

The regulation of protein–protein interactions by oxy-
gen-dependent post-translational modifications is central 
to the hypoxia-sensing capacity of the HIF system. It has 
been found that hydroxylation of HIF-α subunits signals 
their degradation and regulates the transcriptional activ-
ity of HIF [10, 24]. Identifying these modifications and the 
enzymes responsible for them has opened up a new vista in 
oxygen-dependent signaling, the relevance of which extends 
far beyond the HIF system. However, other protein–protein 
and protein–nucleic acid interactions might play central 
roles in the HIF system and offer therapeutic possibilities. 
The purpose of this review is to give an overview of the HIF 
pathway, its cancer alterations, and the potential importance 
of HIF pathway gene editing in cancer treatment. We briefly 
overview the HIF system, focusing on the main actors' fea-
tures of the processes.

Hypoxia‑response pathway

Von‑Hippel Lindau gene and protein

In 1993, the human VHL gene was mapped to chromosome 
3p25 by genetic linkage studies performed on patients 
affected by a familial autosomal dominant syndrome char-
acterized by several highly vascularized cancers [25–28]. 
The syndrome was initially reported in 1904 by the 

ophthalmologist Engen von Hippel [29] and, subsequently, 
by Arvid Lindau, who described in 1927 the occurrence of 
angiomas of the cerebellum and spine [30]. The associa-
tion of VHL disease to clear cell renal cell carcinoma was 
reported later in the 1970s [31].

VHL gene is formed by three exons. In particular, exon 
1 is of 1180 bps and includes a 3′-UTR of 840 bps and a 
coding sequence of 340 bases. Exon 2 is of 123 bases while 
exon 3 is of 2434 bps of which 179 bps belong to the ORF. 
Three different ORFs were identified. One ORF, including 
exons 1/2/3, is of 642 bps corresponding to a 213 residue 
protein (pVHL213 or pVHL30) [32–34]. An alternative 
ORF includes exons 1/3 and corresponds to 172 amino acid 
proteins (pVHL172 or pVHL17). A third ORF uses a distinct 
ATG and produces a mature transcript including part of exon 
1 (181 bps), exon 2, and exon 3 (pVHL160 or pVHL19) 
[34]. Recently, additional transcripts have been identified 
that employed an intronic E1 exon (E1′) of 259 bps starting 
at 576 bps downstream the 3′-end of intron 1. The use of 
the novel E1’ exon originates two novel transcripts, includ-
ing E1/E1′/E2/E3 and E1/E1′/E3, both with a stop codon 
in the E1’ exon. The translated protein should be of 193 
residues, 114 from E1 and 79 from E1’ [35].

The 213 aa VHL protein might be structurally divided 
into two major domains: an NH2-domain of approximately 
100 residues (named β-domain) and a carboxy-terminal 
domain defined as α-domain. The β-domain and α-domain 
are held together by two linker sequences (residues 154 
to 156 and 189 to 194) and a polar interface [7, 36–38]. 
β-Domain has been reported to recognize the hydroxylated 
prolines of the target protein substrates. HIF-1α, considered 
the main substrate, is hydroxylated on P402 and P564, both 
placed in ODDs. While the details of hydroxyproline 564 
(HyP564) binding to VHL have been extensively clarified, 
the recognition of HyP402 by VHL is scarcely defined [10, 
39, 40]. More intriguing and confirmed by different authors 
is the observation that hydroxylation reactions occur at dif-
ferent oxygen concentrations [40–42]. It has been demon-
strated that the loss of the hydroxyl group on P402 (giving a 
partial HIF increase) occurs at mild hypoxia. This suggests 
that the occurrence of two proline hydroxylation sites might 
represent a mechanism to graduate HIF stability in response 
to a range of oxygen levels, with P402 playing a minor role 
and P564 a major role [41]. As a matter of fact, at 10% oxy-
gen (around  pO2 of 75 mmHg), the substitution of proline 
564 with alanine abrogates HIF binding to VHL, while the 
mutagenesis at P402 scarcely affects the interaction. This 
suggests that P564 hydroxylation is more dependent on tis-
sue  pO2 [40–42].

The α domain of VHL (residues from 155 to 192) consists 
of three α helices (named H1, H2, and H3) that together 
with one helix of Elongin C forms a structure reminiscent 
of a four-helix cluster (“folded leaf”) [43–46]. Elongin C 
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was first identified as one of the three subunits (Elongin A, 
B and C) of the transcription elongation factor required to 
strongly promote the elongation activity of the RNA poly-
merase [47]. It was later found that the Elongin BC complex 
is structurally related to the substrate recognition subunits, 
acting like scaffold proteins of E3 ubiquitin ligases (as in 
the VCB-CR complex in association to VHL), not only to 
target for degradation the RNA polymerase [48, 49]. These 
findings underlined the importance of VHL as tumor sup-
pressor by modulating transcriptional process. On the other 
hand, recent findings associate Elongin C somatic mutations 
with VHL disease [50].

In addition to being a key component of a ubiquitin-
ligase complex, VHL was reported to localize at mitotic 
spindle where it exerts a regulatory function promoting a 
proper spindle orientation [51–55]. Figure 1 shows unpub-
lished confocal data from our laboratory confirming the 
localization of VHL on the mitotic spindle. Accordingly, 
VHL alterations might result in spindle misorientation and 
chromosome instability [51–55]. Additional findings also 
correlate VHL with primary cilium and suggest that cystic 
lesions of kidney in subjects with mutated VHL gene might 
be due to primary cilium altered function [56–58]. Since 
renal cystic lesions represent an early pathological condition 
that predisposes to tumor progression [56], both VHL role 
in mitotic spindle and primary cilium might be important in 
VHL syndrome carcinogenesis.

Hypoxia‑inducible factor genes and proteins

Three HIF-α proteins exist in humans: HIF-1α, HIF-2α, 
and HIF-3α. While the first two isoforms are largely super-
imposable functionally and structurally, HIF-3α presents 
several peculiar features. HIF1A gene is localized on 
chromosome 14q24. It spans about 53 Kb and includes 15 
exons [1]. At least 3/4 isoforms were described, of which 

isoform 1 (826 residues) is probably the most abundant. 
HIF2A (EPAS1) gene is localized on chromosome 2p21 
and includes 16 exons [59]. The major protein isoform 
consists of 870 residues. The two HIF-α proteins show dif-
ferent expression patterns and do not regulate the expres-
sion of an identical repertoire of target genes [60–62].

The domain structure and major functional regions of 
HIF-1α and HIF-2α are reported in Fig. 2. The sequence 
of identified domains starts with a b-HLH (basic helix-
loop-helix, 17-70/71 aa in HIF-1α) domain followed by 
two PAS (Per-Arnt-Sim) domains PAS-A and PAS-B, 
85–158 and 228–298 aa (HIF-1α) [1]. Then, N-ODD, 
C-ODD, N-TAD (N-terminal transactivation domain, 
531–575 HIF-1α), and C-TAD (786–826 aa HIF-1α) have 
been described. The complete ODD includes the interval 
from 401 to 531, while between the two TAD domains, 
an inhibitory domain (defined as ID) was reported [25]. 
These intervals must be considered not excessively precise 
and the activities associated with their functions probably 
involve different domains. The b-HLH/PAS domains are 
mostly implicated in heterodimerization and binding to 
DNA. HIF-1α ODD region includes the two hydroxylat-
able residues (P402 and P564), while the corresponding 
residues on HIF-2α are P405 and P531. The two TAD 
regions are correlated to transcriptional activity. C-TAD 
is also involved in the binding with several coactivators, 
including p300 and CBP. The FIH asparagine substrate 
(N803 in HIF-1α and N851in HIF-2α) is also located in 
the C-TAD [63, 64]. The mechanisms by which oxygen 
modulate HIF hydroxylation are described in the next 
paragraph.

Two aspects of HIF proteins are important. One is that 
the transcriptional complexes including these proteins are 
extremely dynamic. The second is that HIF-α level might 
be regulated not only by the hydroxylation mechanism but 
also by several transduction pathways and post-transla-
tional modifications. However, here, we focus briefly on 

Fig. 1  VHL localization on microtubules of the  mitotic spindle. 
Localization of VHL on the  mitotic microtubule spindle is inves-
tigated by indirect co-immunofluorescence of VHL and α-Tubulin 
in activated Peripheral Blood Mononuclear Cells (PBMCs). The 
PBMCs were purified from whole blood of healthy donors using dis-

continuous density gradients and activated with Phytohaemaggluti-
nin. Hoechst was used for DNA staining. Merge, overlapped images. 
Scale bar, 10 μm. The immunofluorescence was performed as previ-
ously described [230, 231]
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Fig. 2  Protein domain arrangement of HIF proteins. A Schematic 
representation of the structural domain organization of HIF proteins 
belonging to bHLH/PAS protein family of transcriptional regulators: 
three HIF-α paralogs (HIF-1α, HIF-2α and HIF-3α) and the common 
interacting partner, HIF-1β (ARNT). Starting from the N-terminus, 
the following domains are present: bHLH, basic helix–loop–helix 
DNA-binding domain; PAS, PER-ARNT-SIM, A and B tandem 
domains, required for protein–protein binding and dimerization; PAC, 
PAS-associated C-terminal domain. HIF-α paralogs also present an 
ODD, oxygen-dependent degradation domain; N- and C-term TAD, 

transactivation domains, involved in the transcriptional activation. 
Other highlighted motifs are: NLS, nuclear localization sequence; 
L-ZIP, leucine zipper, DNA-interacting motif present at the C-term 
of HIF-3α. Specific hydroxylated (Pro402, Pro564, and Asn803 in 
HIF-1α and Pro405, Pro531, and Asn847 in HIF-2α) and ubiquit-
inated residues (Ub, Lys 467 in HIF-1α) and the enzymes responsible 
for the post-translational modification are reported. PHD(1–3), Prolyl 
Hydroxylase Domain-containing enzyme; VHL, Von Hippel-Lindau 
protein. B Schematic representation of the reaction of hydroxylation 
on Pro402 of HIF1α by PHD
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the organization/modulation of transcriptional complexes 
that include HIF-α/ARNT heterodimer.

The best known and important interactors of HIF heter-
odimers are CBP and p300, two protein acetyltransferases 
that, utilizing their CH1 (cysteine/histidine-rich 1) domain, 
interact with the HIF-α C-TAD domain. The hydroxylation 
of the asparaginyl residue localized in C-TAD and cata-
lyzed by FIH hampers the binding. It was also reported that 
HIF-1α N-TAD recruits CBP by a CH3 domain. An addi-
tional protein, CBP/p300 interacting ED-rich tail 2 domain 
(CITED2), blocks the interaction of HIF with CBP by com-
peting with the CH1 domain [65–67].

Although CBP and p300 are frequently cited together for 
their high homologies, many studies demonstrated that they 
participate in and modulate more than 400 transcriptional 
complexes. In addition, and more importantly, the HIF/
ARNT transcriptosome complex, including CBP, might 
regulate an array of genes partially distinct from those con-
trolled by HIF/ARNT bound to p300. CBP/p300 modulates 
transcription by acetylating lysyl residues on histones and 
non-histone proteins, such as transcription factors or tran-
scriptional co-regulators. The acetylation should enhance/
permit the expression of target genes. Specifically, P300 was 
reported to acetylate HIF-α on K709, increasing its stabil-
ity and, thus, the transcriptional activity of the heterodimer. 
Conversely, CBP (not p300) acetylates HIF-2α (modulating 
EPO expression, among others). In this case, the interac-
tion does not necessarily involve C-TAD. Thus, p300 con-
trols HIF-1α and CBP HIF-2α [68, 69]. Additional proteins 
modulate the interaction of CBP/p300 with the HIF-1(2)
α/ARNT heterodimer, either positively or negatively. For 
instance, PKM2 and Src1 proteins facilitate this interaction 
while FHL (four and a half LIM domain) protein negatively 
affects the CBP/P300 binding with the HIF heterodimer [70, 
71].

Other proteins alter the formation of HIF-α/ARNT com-
plex. For example, FBP1 (Fructose 1,6-bisphosphatase), 
COMMD1 (COMM domain-containing 1), testis-specific 
gene antigen 10 (TSGA10), and  MgcRasGAP (male germ 
cell Rac GTPase activator protein) negatively regulate the 
heterodimerization process [72–74].

The human HIF3A gene is located on chromosome 
19q13.2 spanning 43 kb and contains 19 exons. More than 
ten different human HIF-3α transcripts were reported due to 
alternative splicing. These variants are expressed at different 
times of development and in different tissues. The largest 
protein isoform includes 669 residues (HIF-3α). Compared 
to HIF-1α and HIF-2α, the HIF-3α domain sequence lacks 
the C-TAD domain (and thus the asparaginyl hydroxylation 
by FIH), which is substituted by the L-ZIP (leucine-zipper) 
domain. Probably, the protein presents only one hydroxy-
latable proline (P490) involved in the pVHL binding. 

Intriguingly, the ODD domain is absent from several HIF-3α 
variants [75–77]. These isoforms are unlikely to be regulated 
by PHD/VHL-mediated degradation. Thus, only some of 
them are regulated by hypoxia, whereas other isoforms are 
regulated by signals other than  O2 pressure. HIF-3α func-
tions are complex, and till now, few were known. Several 
aspects have emerged in recent years. Particularly, some iso-
forms frequently different cellular localization with opposite 
functions. For example, HIF-3α4 forms dimers with HIF-1α, 
acting as a dominant-negative, lacking the L-ZIP and ODD 
domains [78]. Moreover, some isoforms show a transcrip-
tional activity independent of oxygen pressure, and bind to 
response elements different from HREs [79].

Prolyl hydroxylase genes and proteins

PHD1 gene is localized on chromosome 19q13.2, includes 
six exons, and encodes a protein of 407 residues. PHD2 
gene is localized on 1q42.2 chromosome, comprises five 
exons, produces a protein of 426 amino acids. The third 
PHD (PHD3) maps on 14q13.1, and includes six exons 
[80, 81]. Mature PHD3 protein is of 239 residues [80, 81]. 
PHD2 is constitutively expressed and is the most abundant 
isoform, except in the testis and heart. The protein com-
prises a long N-terminal intrinsically unstructured region 
(residues 1–187) and a well-structured oxygenase domain 
representing the actual catalytic center (residues 188–418). 
This region involves the sequence that recognizes HIF 
protein, the so-called “facial triad” (H313, D315, H374) 
that binds ferrous ions, and the residue interacting with 
α-ketoglutarate (R383). PHD2 (as the other two PHDs) is 
functionally an oxidoreductase enzyme that incorporates 
both atoms of a molecule of oxygen into substrates [81]. In 
other words, these enzymes are dioxygenases, contraposes 
to monooxygenase.

Detailed kinetic studies suggest that C-ODD is a better 
substrate than N-ODD [82, 83]. The difference is due mainly 
to the efficiency of releasing the hydroxylated peptide. More 
interesting is the comparison between the affinity (Km) for 
oxygen measured at saturating conditions of the other sub-
strates. The data obtained (albeit not conclusive) allow the 
conclusions that oxygen is not bound very tightly and that 
the Km is higher than oxygen concentrations. This indicates 
that oxygen is rate limiting and that these dioxygenases 
might represent good oxygen-sensors. PHD-2 is mostly 
cytoplasmic, but its nuclear localization appears massive 
during cancer progression [82, 83]. A zf-MYND domain 
was evidenced (residues 21–58) at the PHD-2 N-terminus. 
zf-MYND might act as a PHD-2 inhibitor [84], thus sug-
gesting the existence of a specific regulative pathway for this 
enzyme. zf-MYND binds several regulatory proteins (FKBP 
38 and SPOP) that can mediate the proteasomal degradation 
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of PHD-2. Several PHD2 putative phosphorylation sites 
were also identified, suggesting that the enzyme is regulated 
by this post-translational modification.

PHD1 is highly expressed in the testis, while PHD3 is 
mostly expressed in the heart. The ablation of the three 
PHD genes results in distinct phenotypes. Phd2-deficient 
mice show embryonic lethality due to placental and heart 
alterations [85]. Inactivation of the gene in the postnatal 
period results in polycythemia, augmented angiogenesis 
and heart failure. Loss of PHD1 might cause the repro-
gramming of energy metabolism and improved tolerance 
to hypoxia. Finally, the inactivation of PHD3 determines 
diminished blood pressure and adrenal system hypofunc-
tion. The expression of PHDs is regulated at transcriptional 
and translational levels [86]. At the level of protein stabil-
ity, the prolyl cis/trans isomerase FK506 binding protein 38 
(FKBP38) was identified as a negative regulator of PHD2 
[85], whereas the ubiquitin ligase SIAH2 (seven in absentia 
homolog 2) was shown to mediate the degradation of PHD3 
[87].

Genetic changes in the hypoxia‑response 
pathway and human cancer

The correlation between genetic alterations in the hypoxia-
response pathway genetic alterations and the development 
and progression of cancer was demonstrated in both heredi-
tary conditions and sporadic tumors. For clarity, we initially 
describe cancers occurring in the VHL syndrome and, then, 
sporadic cancers with mutations in VHL, HIF, and PHD 
genes.

VHL syndrome

VHL disease is due to heterozygous germline mutations act-
ing through an autosomal dominant and almost complete 
mechanism (97%) [88]. The disease is generally classified 
into two major types, i.e., type 1 and type 2. Type 2 VHL 
syndrome might generally present RCC (renal cell carci-
noma), PCC (pheochromocytoma/paraganglioma cancer), 
retinal hemangioblastomas, tumors of CNS (central nervous 
system), pancreatic NET (neuroendocrine tumors), pancreas 
and kidney cysts. Type 2 can be classified into 2A (without 
RCC), 2B (with RCC), and 2C (isolated PCC) [88]. Type 1 
VHL disease is characterized by a low risk of developing 
PCC [88].

Many different VHL mutations (more than 1000) have 
been identified, primarly missense mutations (about 50%), 
frameshift mutations (13%), nonsense mutations (11%), 
large deletions (11%), splicing mutations (7%) inframe dele-
tions/insertions [89]. The most common germline genetic 

changes include delF76, N78S, Rl61Stop, R167Q, Rl67W, 
and L178P [89]. It is noteworthy that type 2 VHL disease 
mostly shows missense mutations (from 85 to 92%) that par-
ticularly interest codons 167 and 238. Type 1 VHL disease is 
characterized by truncating alterations. In contrast, somatic 
VHL genetic changes were identified in a large percentage 
(from 50 to 70%) [89].

The heterogeneity of mutations is the probable cause 
of the distinct phenotype observed. Similarly, a different 
genetic background might explain why the same mutation 
might result in distinct phenotypes. Additional studies 
allowed a different stratification of VHL missense muta-
tions. Missense mutations involving the binding site with 
HIF-α or not involving this binding site were differenti-
ated [90, 91]. It is also noteworthy that VHL exerts func-
tion unrelated to the control of HIF level/activity (like the 
above described control of mitotic spindle and primary 
cilium organization) and thus independent of  pO2. These 
activities might be also associated with PCCs development. 
Unexpectedly, the VHL type 2C phenotype might increase 
HIF-α degradation.

VHL disease might be due to a different combination 
of two molecular hits. In addition to mutations, VHL gene 
expression could be modulated by epigenetic changes. 
Accordingly, alterations of the epigenetic pattern appear to 
be responsible for a not yet defined percentage of clear cell 
RCC. Finally, it is also remarkable that some homozygous/
double heterozygous missense VHL germline mutations 
could develop hereditary erytrocytosis. The best known (but 
not the only one) mutation is c.598C > T (p.R200W) that, 
in homozygosity, is the etiology of the so-called Chuvash 
polycythemia [92–96].

Sporadic cancer with VHL mutations

The most common subtype of kidney cancer is the clear 
cell renal cell cancer (ccRCC) type, representing approxi-
mately 75% of cases. VHL inactivation was demonstrated 
in the majority of tumors (50–80% of cases, depending on 
the study) [97]. Moreover, VHL mutation appears to be an 
early event in cancerogenesis. Prevalent alterations appear 
to affect codons 65, 114, 147, and 155 [98]. On the other 
hand, major changes also appear to be distributed in addi-
tional codons in exons 1 and 2. Nickerson et al. reported an 
overall frequency of mutation of 85%, with relative percent-
ages of deletion (34%), insertion (24%), missense (24%), 
nonsense (10%), and splicing (9%). The double mutation 
was evidenced in 3.4% of cases [99, 100].

PHD mutations and cancer

Heterozygous germline mutations in PHD2 gene were first 
reported in familial erythrocytosis [101, 102]. Particularly, 
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it was reported a heterozygous loss-of-function mutation 
of PHD2 (c.1121A > G, p.H374R) with the development 
of both erythrocytosis and recurrent paraganglioma. Func-
tional analysis indicates that H374 is important in the bind-
ing of cofactor  Fe2+, and mutation of this residue is expected 
to impair the catalytic function of PHDs [101, 102]. Yang 
et al. reported heterozygous germline mutations in PHD1 
(c.188T > A, p.S61R and c.682G > T, p.A228S) in patients 
with polycythemia and PCCs, respectively [103]. Further 
research detected PHD2 mutations in non-small cell lung 
cancer and clear cell ovarian cancers [104, 105]. These 
data collectively suggest that mutant PHDs are associated 
with PCCs susceptibility. However, compared to VHL and 
HIF-2A, PHDs mutations are relatively rare in patients with 
PCCs.

HIF genes mutations and tumors

The HIFA genes family includes three members: HIF1A, 
HIF2A, and HIF3A. HIF1A presents few mutations when 
matched to HIF2A [106, 107]. Specifically, the ClinVar 
database (https:// www. ncbi. nlm. nih. gov/ clinv ar/) presents 
only 33 records related to this gene. A germline missense 
change (p.A475S) and a somatic mutation (p.V116G) were 
described in a case of RCC associated with VHL mutation. 
However, it is important to note that p.A475S is probably 
a benign change. On the other hand, several HIF1A SNPs 
were demonstrated to be associated with human cancers 
[106, 107]. HIF2A is frequently mutated in hereditary 
erythrocytosis associated or not to PCC. Some germline 
HIF2A mutations (p.M535V, p.G537R, p.G537W) only 
result in polycythemia but not in cancers, suggesting that 
HIF2A mutation is not sufficient for cancer development 
[108]. Literature data show that p.G537R change might 
give erythrocytosis and needs VHL mutations to origi-
nate an RCC. Similarly, other mutations on the exon 2 
of HIF2A (i.e., p.F374Y) and exon 9 (p.F374Y) cause 
erythrocytosis and predispose to PPC. Also, HIF2A exon 
12 somatic changes (p.A530T and p.A530V) give origin 
to PCCs [109]. These data allowed the hypothesis that 
residue alteration near P531 (the hydroxylation residue) 
affects the protein's capability to act as PHD substrate. 
Two additional HIF2A somatic mutations (p.L529P and 
p.Y532C) were identified in subjects with congenital 
erythrocytosis, PCCs, and increased levels of serum soma-
tostatin. Other reported HIF2A mutations include p.S71Y, 
p.A530V, p.L529P, and p.L542P in polycythemic patients 
affected by PCCs.

Genome editing strategies and human 
cancers

ZNF, TALEN, and CRISPR/Cas9 as powerful tools 
for genome editing

Developing methodologies to target and modify spe-
cific genome sequences represents a major breakthrough 
in recent years. In particular, the availability of distinct 
nucleases (ZFN, zinc finger nuclease; TALEN, transcrip-
tion activator-type effector nuclease, and Cas9, a bacterial 
nuclease directed by an RNA guide) enabled the generation 
of double-strand breaks (DSB) in select genomic regions 
[110–112]. The nucleases present distinct mechanisms for 
identifying the target phosphodiester bond, namely a DNA 
recognition protein domain (ZFN and TALEN) or an RNA 
guide (CRISPR/Cas9). Following the nuclease activity, the 
non-homologous end joining (NHEJ) pathway reconnects 
the two DNA ends. Since NHEJ is not perfect, it might cause 
the introduction or removal of sequences creating indels that 
could alter the open reading frame, causing the target gene 
to lose activity. Alternatively, a sequence of DNA could 
be inserted. This strategy might be used to repair negative 
mutations or, in general, allow genome editing.

A central issue of the method (based on nuclease activity) 
is the precise identification of the sequence to edit. For this 
purpose, both ZFN and TALEN employ a protein domain 
(zinc fingers or sequences similar to transcription activators) 
that need to be designed, synthesized, and validated [110, 
111]. Conversely, CRISPR/Cas9 employs an RNA sequence 
as a guide (gRNA) that is very easy to design/validate in 
silico [112]. However, the occurrence of numerous off-tar-
gets, a low efficiency of DSBs formation and complex cell/
tissue delivering strategies still represent major problems 
[113–115]. Although it is a complex approach, TALEN has 
recently been reported more efficient than CRISPR/Cas9 in 
genome editing, at least for applications in heterochromatin 
[116]. Additional methodologies subsequently evolved from 
CRISPR/Cas9, allowing a single base editing (BE) without 
the necessity of causing DSBs.

Base editing

BE must be considered an extraordinary evolution of 
CRISPR/Cas9 in the world of human genome editing. Vari-
ous improvements significantly ameliorated BE's strategies, 
and new ones will certainly develop soon. Three major 
aspects of base editing are briefly discussed: (1) basic BE 
methods, (2) identification of the base to be edited, and (3) 
targetability of BE machinery.

BE consists of changing cytosine into thymine (CBE) or 
adenine into guanine (ABE) (Fig. 3). Both changes initially 

https://www.ncbi.nlm.nih.gov/clinvar/
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require the deamination of cytosine into uracil or adenine 
into hypoxanthine and are due to the activity of cytidine 
deaminase or adenine deaminase capable of acting on DNA 
[117, 118]. The first version of CBE (i.e., CBE1) includes 
rat deaminase rAPOBEC1 (i.e., apolipoprotein B mRNA 
editing enzyme, catalytic polypeptide 1) fused with inac-
tive Streptococcus pyogenes (Sp) dCas9 (dead Cas9). 
rAPOBEC1 was selected for its high deaminase activity. 
Inactive dCas9 was unable to create DSB while it could still 
bind DNA [117]. This first version of BE1 converts a spe-
cifically targeted cytosine into uracil. Then, this uracil is 
identified as a mismatch by the DNA repair engine that usu-
ally removes uracil. To hamper uracil removal, in the second 
version of CBE (i.e., CBE2), uracil glycosylase inhibitor 
(UGI, a small protein of bacteriophage PBS) was added to 
the complex [117, 119].

In a subsequent modification of CBE, CBE3, dCas9 
(SpCas9n, where n is for nickase, APOBEC1–SpCas9n–UGI 

fusion) was modified in that the protein was able to remove 
the G residue (of the couple U:G) occurring in the non-
edited DNA strand [120, 121]. The nicking event favors the 
substitution of G with A (by the repair machinery). Finally, 
uracil is substituted by thymine by the same repairing 
engine, forming the desired T:A couple. In the fourth gen-
eration of CBE (CBE4), a second uracil glycosylase inhibi-
tor was added, ameliorating editing efficiency and product 
purity [122, 123]. Alternative cytidine deaminases were also 
identified for their increased capability of deaminating the 
pyrimidine base, raising additional complexes for efficient 
CBE [124, 125].

For ABE development, a dimeric tRNA adenine deami-
nase from E. coli (defined as TadA) was subjected to com-
plex mutagenesis to obtain an enzyme able of deaminating 
adenine in single-strand DNA. As in CBE3, TadA was 
fused to SpCas9n [118]. Since TadA works as a homodi-
mer, one of the two subunits was left unmodified (and, 

Fig. 3  CRISPR-Cas9 Base editing systems. Schematic representation 
of CRISPR-Cas9 base editing. Cytidine (CBE) and adenosine (ABE) 
base editing systems both employ a Cas9 nickase (or a catalytically 
inactive (dead) Cas9, dCas9) respectively fused to a cytidine and 

adenosine deaminase. In panel A are summarized the reactions cata-
lyzed by the two deaminases. (Panel B) ABE determines the change 
of an adenosine (A) into a guanosine (G), while CBE (Panel C) medi-
ates the conversion of a cytidine (C) into a thymidine (T)
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thus, active) while the other was inactivated by mutagen-
esis. Although not the focus of this review, it must be 
stressed that important studies identified a large series of 
deaminase mutants with distinct and increasing catalytic 
capability [126, 127].

A major problem in BE is the precise identification of 
the cytosine or adenine to be deaminated. The specificity 
depends on the so-called protospacer adjacent motif (PAM) 
that dictates the distances between PAM and the substrate 
[128, 129]. The classical PAM sequence was NGG, where 
N is an undefined nucleotide. Numerous SpCas9n mutants 
were generated (that differed in the PAM sequence), thus 
expanding the targeting base. Moreover, during ABE evolu-
tion, seven generations of ABE were created with a base pair 
efficiency of 50%, remarkable purity (about 99%), and a low 
rate of indels (no more than 0.1%) [130, 131].

Prime editing

In 2019, another CRISPR-based genome editing strategy 
was developed, i.e., the prime editor (PE). In this technique, 
a Cas9n was fused with reverse transcriptase (RT) and not 
with a deaminase [132]. Accordingly, the methodology 
does not employ a guide but a primer template for RT to 
re-write all the base conversion. The technique has already 
been experimented in several eye, liver, skin inherited 
human diseases, neurodegenerative diseases, cystic fibrosis, 
β-talassemia [133]. PE was also used in vivo for HIF-2α in 
mouse endothelial cells to inhibit pulmonary hypertension 
[133]. The possibility to precisely correct point mutations, 
when the ABE and CBE systems are not applicable, without 
creating double strand breaks, has been readily exploited 
in the oncological field to correct missense mutations in 
undruggable driver genes, such as KRAS, APC, and TP53 
[135–138]. However, although extremely promising, the 
method is under development and needs to be improved 
[139].

The targetability of base editing machinery

A key issue in genomic editing is how to deliver CRISPR/
Cas9 or BE machinery to target cells/tissues with high 
efficiency and selectivity. This issue’s relevance prompted 
many studies and different delivery solutions. In brief, DNA 
or mRNA encoding for genome handling machinery was 
employed, and viruses or lipid nanoparticles were selected 
as their molecular carriers. The use of plasmids might rep-
resent the simplest way, and several experiments confirmed 
this view [140]. In contrast, plasmid transfection shows 
some limitations due to the scarce percentage of transfected 
cells and toxicity, particularly (but not exclusively) evident 
in primary cells [141].

Alternatively, viruses (adenoviruses, lentiviruses, and 
others) could be employed. However, immune response and 
off-targets were detected in the case of genome editing of 
hematopoietic cells by lentiviruses [142, 143]. Adenovirus 
(i.e., adeno-associated viral vectors, AAV) use also showed 
negative aspects, including a strong immune response, liver 
damage, and poor cell-specific targeting. The excessive 
immune response (directed against the transfected cells) is 
facilitated by a prolonged Cas9 expression and the frequent 
occurrence of anti-Cas9 antibodies in human sera. AAVs 
were, however, employed in several experiments, although 
they have a limited packaging capacity [144, 145].

The transfection of modified/stabilized mRNA encod-
ing for CRISPR/Cas9 or selected mutants of CBE or ABE 
engines along with gRNA might represent a good alterna-
tive to viruses [144, 145]. The methodology was employed 
in viral vaccines, protein replacement, and cell phenotype 
modification [144–150].

Several improvements were recently described that appear 
safe, effective, and showed great potential in therapy. The 
success of coronavirus vaccines confirmed the relevance of 
the mRNA strategy and validated its therapeutic use [151]. 
Lipid nanoparticles were also used for delivery, and numer-
ous chemical structures were developed (described accu-
rately in recent reviews) [152, 153]. Lipid nanoparticles 
might be injected in the proximity of target cells. However, 
recent studies also suggested that the targets’ specificity 
might be increased by inserting, at the surface of lipid nano-
particles, antibodies, or, in general, ligands that can direct 
the lipidic vectors toward the selected cell phenotype.

Genome editing and human diseases

The focus of this paragraph is only on studies that, in 
our view, have clear connections to human diseases. For 
more thorough data descriptions in the field, we redirect to 
detailed reviews [154, 155].

Genome editing might either correct disease-causing 
mutations or eliminate disease-responsible genes. An exam-
ple is represented by the CRISPR/Cas9-mediated gene edit-
ing of Vegfr2 to abrogate angiogenesis in vivo, testing its 
effectiveness in two mouse models of laser-induced choroid 
neovascularization and oxygen-induced retinopathy [134]. 
Although double-strand nuclease can be employed for both 
these aims, specific base deamination (i.e., CBE and ABE) 
seems most appealing (see the above description). On the 
other hand, the only reported study in humans employed a 
CRISPR/Cas9 nuclease and a modified RNA guide deliv-
ered by lipid nanoparticles [156]. This clinical investiga-
tion, published in August 2021, showed the inactivation of 
transthyretin gene by in vivo editing and consequent correc-
tion of transthyretin amyloidosis [156]. The employed gene 
editing methodology is based on DSBs formation, although, 
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according to a generally accepted view, it is preferable to 
avoid these DNA modifications and alternatively employ 
base deaminase as a tool.

Most studies were performed in cellular or mouse mod-
els of diseases, while studies in primates that employ CBE/
ABE are still rare. Thus, the translation into clinical settings 
is substantially elusive. The clinical trials under develop-
ment generally involve the ex vivo handling of hematopoi-
etic stem cells to treat various clinical conditions (thalas-
semia, sickle cell anemia, X-linked chronic granulomatous 
disease, severe congenital neutropenia, X-linked hyper-IgM 
syndrome, SCID-X1, mucopolysaccharidosis type I, and 
Wiskott–Aldrich syndrome) [157–164].

Several genetic pathologies have been corrected in mouse 
models and the relative approaches are still in a preclinical 
status [165–179]. Conversely, two intriguing base editing 
studies have been performed in primates (macaques and 
cynomolgus monkeys) to inactivate the PCSK9 gene and 
reduce low-density lipoprotein and hematic cholesterol 
levels. Importantly, lipid nanoparticles were employed for 
the delivery [180, 181]. In the cynomolgus monkey report, 
the ABE approach (using ABE 8.8 mRNA) was used to alter 
splice donor at the boundary of PCSK9 exon 1 and intron 1 
with an efficiency of about 50% editing in the liver [182]. A 
similar methodology was used in the macaques' study (i.e., 
lipid nanoparticles, ABE mRNA, and a splicing acceptor as 
target) [181]. However, about 26% editing was demonstrated 
in this study [181].

Investigations into the use of genome editing in cancer 
treatment are so far much more limited than in genetic dis-
eases therapy. As a result, there is scarce conclusive data 
from clinical trials [182]. Indeed, there are limits not yet 
overcome and on which scientific efforts have focused in 
recent years, such as improvement of delivery methods, off- 
targeting, the unsolicited generation of mutations in the p53 
gene, the immunogenicity of CRISPR-Cas9 systems and, 
not less important, the ethical requirement. In other words, 
efficacy and safety have to be improved for a proper design 
of a clinical trial. Thus, untill now, gene editing for cancer 
treatment has been an appealing and promising technology, 
but still at pre-clinical stage, at least for solid tumors.

We focus our review on specific aspects of this topic, 
particularly on ex vivo/in vivo DNA editing in adoptive cell 
therapies (including CAR-T cells, chimeric antigen receptor 
T cells) and ex vivo/in vivo silencing of a dominant onco-
gene. Although the possibility of correcting an inactivating 
mutation of tumor suppressor genes is a fascinating possibil-
ity, very few data exist in the literature on this topic.

Adoptive cell therapies (ACTs) include the isolation/
expansion of endogenous T cells against tumor antigens, the 
introduction of transgenic T cell receptors to redirect their 
specificity and transduction in T cells of the chimeric antigen 
receptor (CAR) [183]. In particular, CAR-T cells strategy 

requires preparation of T cells from the patient, introduction 
(by a virus) of CAR to develop a specific cytotoxic activ-
ity, and, finally, a re-introduction in the human body of the 
modified cells. Although CAR-T approach produced remark-
able antitumoral clinical responses, some limitations were 
evident [184]. These include a limited trafficking of cells, the 
possibility of antigen escape, and scarce tumor infiltration. 
In addition, the local tumor environment alters/reduces the T 
cell-dependent activity. Different genome editing strategies 
have been proposed to overcome these negative effects and 
enhance CAR-T anticancer activity. In particular, almost all 
the approaches include CRISPR/Cas9-dependent inactiva-
tion of the gene encoding programmed cell death protein 
1 (i.e., PD-1) and, in some instances, silencing the expres-
sion of endogenous T cell receptor (TCR) chains, TCRα 
(TRAC), and TCRβ (TRBC) to increase the activity of the 
chimeric antigen receptor [185]. In a previous study, Cas9 
was delivered by engineered lentiviruses [186]. An alterna-
tive ex vivo approach was employed in a recent report. PD-1 
was inactivated by delivering Cas9 machinery into T cells 
by electroporation, and the modified cells were subsequently 
infused into refractory non-small cell lung tumor patients 
[186].

A different one-step strategy was recently developed 
for facilitating the treatment of solid cancers. Lentivirus 
particles charged with Cas9 ribonucleoproteins and CAR 
transgene were used to target primary T cells [187, 188]. 
By using this approach, the specificity of targets (by lentivi-
rus particles) is associated with transient activity (to avoid 
prolonged genome editing). CAR transgene should allow 
the expression of a cancer-directed TCR. Other technologies 
were proposed for specific targeting, including decorating 
nanoparticles or a method defined by the authors as SORT 
(Selective ORgan Targeting), wherein different classes of 
lipid nanoparticles are modified to identify target extra-
hepatic tissues [189].

Several studies described the effects of CRISPR/Cas9-
mediated inactivation of dominant oncogenes in established 
human cancer cells. These investigations, based on in vitro 
experiments and in vivo implantation of modified cells, 
confirmed the central role of numerous oncogenes in the 
malignant phenotype. However, these studies are mostly 
proofs of concept and do not consider human cancer's com-
plex aggressiveness, heterogeneity, and continuous genetic/
molecular evolution. An interesting attempt has been to 
modify the genome of an experimental tumor by CRISPR/
Cas directly delivered to animal models. So far, few exam-
ples are available. In 2017, co-delivery of Cas9 and a gRNA 
targeting mutated malignant EGFR (L858R) resulted in 
reducing tumor size in a mouse model of human lung can-
cer. Adenovirus was employed as a vector. The virus was 
intratumorally injected when the implanted cancer reached a 
sufficient size [190]. Cas9 reduced tumor size by about 80% 
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with few variations considering saline or Cas9 alone (i.e., 
without gRNA) as controls [190].

Most recently, a single intracerebral injection of CRISPR/
Cas9 directed against PLK1 into an aggressive glioblastoma 
in a mouse model causes a 70% editing. In this experiment, 
Cas9 mRNA and sgRNA were encapsulated in lipid nano-
particles formed by a novel amino-ionizable lipid [191]. The 
treatment induced apoptosis and reduced tumor growth by 
50%, thus increasing survival by about 30%. The authors 
also investigated the possibility of targeting solid metasta-
sizing malignancies in vivo. In this case, they used a dis-
seminated ovarian tumor in a mouse model. Lipid nano-
particles coated with anti-EGFR antibodies were employed 
for delivering RNA with an efficiency of PLK1 editing of 
about 80% [191]. The treatment resulted in about an 80% 
survival increase. In conclusion, data emerging from genetic 
disease correction and cancer treatment strongly suggest that 
genome editing might represent an important strategy to be 
pursued in the field of precision medicine therapy.

Genome editing and hypoxia‑response 
pathway

Strategies targeting hypoxia‑related genes 
for cancer therapy

Hypoxia is a key feature of human solid cancers. Accord-
ingly, tumor cells adapt to the hypoxic microenvironment 
by increasing HIF-α levels, which in turn, represents an 
additional factor facilitating tumor development and dif-
fusion. In particular, the hypoxic condition disadvantages 
the lymphocytes' activity by reducing the local immune 
response against the malignancy [192, 193]. A HIF-α 
increase also causes the expression of PD-L1 (PD-1 ligand 
1), which further decreases anticancer immunity [194, 
195]. HIF-α accumulation induces VEGF production, 
stimulating angiogenesis and, in turn, facilitating cancer 
development. In addition, hypoxia facilitates the EMT 
(epithelial-mesenchymal transformation) process that 
causes the release of malignant cells from the cancer mass, 
allowing metastasization that represents a major cause of 
cancer-dependent death [196]. Although the molecular 
details of metastasization event are still elusive, the rele-
vance of hypoxia and, in particular, the role of HIF-α (and 
its targets, including TGF-β, SMAD, TWIST, Snail, Slug, 
SIP1, and ZEB1) has been confirmed in this process. To be 
noted, HIF1-α induces the expression of drug efflux pro-
teins, such as MDR-1 (multidrug resistance 1 protein) and 
MRP-1 (multidrug resistance-associated Protein 1), which 
belong to the ABCC ATP-dependent transporter family, 
responsible for the efflux of conventional chemotherapeu-
tic agents used for the treatment of several solid tumors 

[197]. Finally, metabolic reprogramming and the protec-
tion from apoptosis and from DNA damage of cancer 
cells promoted by HIF-α expression have been associated 
with cancer therapy resistance [198]. Therefore, all these 
aspects that contribute to the adaptation of cancer cells to 
hypoxia suggested that HIF-α targeting could represent a 
good anticancer strategy. In agreement with these obser-
vations, many published and ongoing trials suggest using 
HIF inhibitors in cancer therapy [199–201]. So far, several 
classes of HIF inhibitors have been identified, including 
inhibitors of HIF transcription, translation, and protein 
stability (including EZN-2208, PX-478, BIX01294, and 
bortezomib) and inhibitors of HIF heterodimerization 
(PT2385, PT2399, PT2977, and 0X3) [178, 179]. Sev-
eral tumors were reported as susceptible to HIF inhibitors 
treatment, including glioblastoma, pancreatic, breast, and 
renal clear cell cancers [202–206].

PT2385 is the first-in-class HIF-2α inhibitor that ham-
pers ARNT heterodimerization [203]. This is due to the 
drug's ability to interact with a cavity within the HIF-2α 
PAS-B domain. A phase 1 dose escalation/expansion 
trial demonstrated that the molecule was well tolerated. 
PT-2385 also showed inhibitory activity against glioblas-
toma by increasing the survival in orthotopic models of 
this cancer [206]. The target specificity was confirmed by 
a more recent study [207].

Very recently (August 2021), FDA approved the use of 
PT2977 (MK-6482, belzutifan) for cancers associated with 
VHL disease. Belzutifan was investigated in phase 2, open-
labeling, single-group trial of 61 subjects with renal cell 
carcinoma associated with VHL disease. The study con-
cluded that the molecule showed positive activity in a sig-
nificant percentage of VHL disease patients with renal cell 
carcinoma and non-renal cell carcinomas [207]. Belzutifan 
was also demonstrated efficacious in treating Pacak–Zhuang 
syndrome, a disease characterized by polycythemia and mul-
tiple parangliomas [208] and due to activating mutations of 
HIF2A gene [209].

HIF2A gene silencing was also obtained using short 
interfering RNA. Data in the literature demonstrated that 
this treatment could counteract glioblastoma cell phenotype 
[210].

Altogether, these data strongly suggest that a selective 
genome editing of HIF1A/HIF2A gene might represent a 
more stable strategy for HIF down-regulation. This is par-
ticularly relevant for difficult-to-treat tumors like brain 
cancer and pancreatic carcinoma. Unfortunately, scarce 
data exist to confirm this view experimentally. HEP-2 cells 
CRISPR/Cas9 deleted of HIF-1α (and its target Glut-1) were 
prepared [211]. These cells showed an apparent decrease 
in proliferation, migration, and invasiveness. An additional 
intriguing finding regards transarterial embolization, a pal-
liative strategy employed in non-resectable hepatocellular 
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carcinoma [212]. The strategy frequently fails since HIF-1α 
induces VEGF and other factors facilitating the development 
of new vases. A subcutaneous hepatic cancer was injected 
with a lentivirus delivering CRISPR/Cas9 system targeting 
HIF1A, and a remarkably low level of HIF-1α was verified. 
Accordingly, a significant reduction of microvascular density 
and cancer development was evidenced by increased animal 
survival [212].

Strategies to exploit hypoxia for cancer therapy

The main objectives currently achievable for genomic edit-
ing in cancer therapy might be summarized as: (a) engineer-
ing CAR T cells for ameliorating their efficiency, and (b) 
silencing of specific (onco)genes for facilitating/inducing 
tumor cell death. Major obstacles in applying these thera-
peutic strategies include the difficulty of targeting a specific 

malignant phenotype, the still limited editing efficiency, 
and the occurrence in human serum of antiCas9 antibodies. 
However, two major strategies are under implementation that 
use hypoxia-related molecular mechanisms as a selection 
criterion for a more effective and less toxic cancer therapy.

The first strategy is related to the improvement of the 
safety of CAR T. In most CAR T systems, the recognition 
of tumor cells depends on the bio-distribution of the CAR. 
Thus, on-target/off-tumor toxicity can occur due to the pres-
ence of the antigen also on non tumoral cells, as in the case 
of anti-ErbB2 CAR T cells for the treatment of metastatic 
colorectal cancer. Accordingly, several strategies have been 
experimented to spatiotemporally control the activity of 
CAR-T, including the tumor hypoxic microenvironment. 
Particularly, one approach was based on the idea of creating 
an oxygen-sensitive chimeric antigen receptor by fusing the 
CAR with the ODD HIF domain (ODD-CAR), in order to 

Fig. 4  Mechanisms of hypoxia-sensitive CAR T activation. Represen-
tation of the selective activation of the hypoxia-sensitive CAR T cells 
able to better discriminate tumor cells from healthy cells by exploit-
ing the hypoxia of   the  tumor microenvironment. The coding 
sequence of the CAR has been engineered, introducing nine repeats 
of HRE in the promoter and an ODD sequence in the C-end of the 
CAR. Thus, the expression of the hypoxiCAR is enhanced at low 

oxygen pressure being under the control of HIF-1α/HIF-1β (upper 
panel). In addition, the presence of the ODD domain guarantees a 
post-translational control on the hypoxiCAR stability, being degraded 
at normal oxygen pressure (low panel) or stabilized and exposed on 
the plasma membrane in hypoxic conditions (upper panel). The figure 
was created with Biorender.com
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create a hypoxia-dependent molecular “switch” of the expo-
sure of the ODD-CAR on the membrane of the engineered T 
cell. Basically, in normoxia/physoxia the ODD-CAR would 
be polyubiquitinated and degraded. Conversely, in tumor 
hypoxic sites, the ODD-CAR would be stabilized and con-
sequently exposed on cell surface, allowing a more selective 
antigen recognition by CAR T [213]. However, a low level of 
off-tumor killing activity was still observed. An upgrade of 
this system was recently proposed by Kosti and colleagues, 
which increased the stringency of hypoxic tumor cell recog-
nition through the insertion of a dual oxygen-sensing control 
element. Beyond the fusion of the ODD sequence at the 
C-terminus of the CAR, a 9-tandem repetition of HRE was 
introduced in the promoter of the CAR, creating what the 
authors called the “HypoxiCAR” (HiCAR) (Fig. 4) [214]. 
The promising efficacy of this approach has been proven 
in vitro and in vivo, overcoming two main limitations, i.e., 
a more stringent control of CAR expression and a greater 
anti-tumor activity with no apparent on-target/off-tumor tox-
icity. In addition, a gene panel including VEGFA, PGK1, 
CA9, SLC2A1, and ALDOA has been proposed to select 
those patients who could best benefit from this promising 
approach [215]. He et al. proposed an additional strategy to 
significantly increase the expression of the CAR in hypoxia 
compared to normoxia/physoxia, by transforming the trans-
activator system Gal4-UAS (upstream activating sequence) 
into an oxygen-dependent one [216, 217]. More specifically, 
the authors integrated the HiCAR system with a conditional 

trans-activator protein made of a zinc finger portion (ZFD, 
zinc finger domain), that specifically recognize the UAS 
(ZFDBD, zinc finger domain-binding domain), fused with 
an ODD domain for oxygen-dependent regulation. In addi-
tion, multiple HRE sequences have been introduced in the 
promoter region of the trans-activator, creating a bidirec-
tional control exerted by HIF, both on the expression of the 
CAR and on the trans-activator, creating what the authors 
called “HiTA-CAR T”, which is a bidirectional hypoxia-
inducible transcriptional amplification system [218]. This 
allowed a strong and a more stringent induction of CAR 
expression under hypoxia, not observed in normoxia, with 
not reported off-tumor toxicity, thus improving the safety 
of the CAR T [216]. However, beyond ErbB and Her2, 
more CAR antigens have to be tested and more preclinical 
tests have to be performed to guarantee the safety of the 
developed systems [219, 220]. To be noted, these strate-
gies remind those employed to synthesize prodrugs targeting 
hypoxic tumor tissues, according to which the prodrug is 
activated by hypoxia (HAPs, hypoxia-activated prodrugs) 
(Fig. 5) [221]. Unlike HiCAR T or HiTA CAR T, several 
HAPs entered clinical trials, even in combination with radio- 
and chemotherapy [222]. However, none of them has been 
approved for clinical therapy and needs further investigation, 
probably due to a lack of patient stratification in relation to 
hypoxia tumor level [223].

The second very recent strategy that exploits tumor 
hypoxia for cancer therapy is related to the so called suicide 

Fig. 5  Alternative strategies to target hypoxic tumors. Schematic rep-
resentation of additional strategies under implementation to target 
hypoxic tumors. LNPs, lipid nanoparticles encapsulating plasmids 

for the expression of suicide genes or CRISPR-Cas9 under the control 
of the VEGF promoter (5xHRE). HAPs, hypoxia activated prodrugs. 
The figure was created with Biorender.com
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gene therapy. This strategy represented a clear step forward 
for gene therapy, finding appealing applications for cancer 
therapies as well, since it can drastically reduce the toxic 
effect on healthy cells [224, 225]. Particularly, this system 
contemplates the delivery (with viral or non-viral vectors) 
of a transgene (viral or bacterial) into tumor cells in order 
to activate a prodrug or to express the “suicide” gene prod-
uct in the targeted tumor cells (Fig. 5) [226]. However, this 
strategy is not completely free from toxic effects. Indeed, 
a “bystander effect” has been observed in adjacent cells of 
several treated tumors [227]. An emblematic example of 
this strategy is the suicide HSV-tk/GCV system, in which 
the thymidine kinase gene of Herpes simplex virus (HSV-
tk) phosphorylates ganciclovir (GCV), a synthetic analog 
of 2′-deoxyguanosine, to GCV monophosphate, that can be 
converted by cells into the triphosphate form. This latter 
is incorporated into DNA, determining mainly a delay of 
proliferation and consequent apoptosis of tumor cells [228]. 
Some authors investigated the possibility of exploiting this 
suicide gene system to target hypoxic cells by putting it 
under the control of HIF. Interestingly, the CRISPR-Cas9 
system has been experimented for cancer therapy, due to its 
ability to disrupt the expression of undruggable driver genes 
or oncogenes, but not in hypoxic condition. Last year, Davis 
and colleagues proposed and validated a technology that 
coupled HRE-driven HSV-tk and CRISPR-Cas9 delivered in 
lipid nanoparticles to target hypoxic tumor cells and induce 
their cell death. More specifically, the authors used CRISPR-
HRE-Cas9 to abrogate the expression of genes involved in 
multidrug resistance and the HIF-guided HSV-tk to potenti-
ate the killing effect [229]. Although this technology needs 
improvement, the choice to combine CRISPR-Cas9 with sui-
cide gene therapy seems promising. Therefore, deepening 
the knowledge related to the alterations of hypoxia-response 
pathway in cancer cells and to tumor-specific molecular 
mechanisms could undoubtedly help to improve both HIF 
targeting and gene editing strategies, and finally the strati-
fication of patients that can benefit from such treatments.

Conclusion and future perspectives

The astonishing genome editing development  marks the 
fulfillment of the human hope to eradicate hereditary or 
acquired human pathologies, including cancer. Although 
certainly associated with important bioethical and regula-
tory problems, the techniques developed are important to 
open up scenarios unimaginable until now.

Numerous methodological features need to be improved, 
some of which substantially affect the possibility of editing 
the human genome and have been discussed here, e.g., the 
effectiveness and precision of delivery, the percentage of 
targeted cells, and the reduction of off-targets. Furthermore, 

while for some genetic diseases it does not appear neces-
sary that all cells are targeted, the percentage of edited cells 
appears to be of fundamental importance for diseases such 
as cancer.

The molecular system of metabolic and functional adap-
tation to  O2 pressure variation appears to be fundamental 
to the survival of individual cells, tissues, and the whole 
organism. The genome editing of hypoxia-related genes can 
have two major objectives. The first is to handle the hypoxia-
responsive mechanisms hampering the survival of targeted 
cells (i.e., cancer cells) at low  O2 pressures. This objective 
appears important for exploiting the hypoxic condition of 
solid tumors, especially in the stem cell component, and may 
be partially achievable. The second objective is the correc-
tion of mutations present in some specific tumors. Indeed, 
as described here, mutations of VHL, HIF, and PHD were 
demonstrated in several cancers. This second objective is 
theoretically achievable based on BE and prime editing 
developed so far. On the other hand, the number of genetic 
mutations, including those related to the response system to 
 O2 variations, is too heterogeneous to be considered achiev-
able. In the near future, true genetic precision medicine will 
be a reality.
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