Skip to main content
Log in

Hedgehog signaling regulates bone homeostasis through orchestrating osteoclast differentiation and osteoclast–osteoblast coupling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Imbalance of bone homeostasis induces bone degenerative diseases such as osteoporosis. Hedgehog (Hh) signaling plays critical roles in regulating the development of limb and joint. However, its unique role in bone homeostasis remained largely unknown. Here, we found that canonical Hh signaling pathway was gradually augmented during osteoclast differentiation. Genetic inactivation of Hh signaling in osteoclasts, using Ctsk-Cre;Smof/f conditional knockout mice, disrupted both osteoclast formation and subsequent osteoclastosteoblast coupling. Concordantly, either Hh signaling inhibitors or Smo/Gli2 knockdown stunted in vitro osteoclast formation. Mechanistically, Hh signaling positively regulated osteoclast differentiation via transactivation of Traf6 and stabilization of TRAF6 protein. Then, we identified connective tissue growth factor (CTGF) as an Hh-regulatory bone formation-stimulating factor derived from osteoclasts, whose loss played a causative role in osteopenia seen in CKO mice. In line with this, recombinant CTGF exerted mitigating effects against ovariectomy induced bone loss, supporting a potential extension of local rCTGF treatment to osteoporotic diseases. Collectively, our findings firstly demonstrate that Hh signaling, which dictates osteoclast differentiation and osteoclastosteoblast coupling by regulating TRAF6 and CTGF, is crucial for maintaining bone homeostasis, shedding mechanistic and therapeutic insights into the realm of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author LY upon reasonable request.

References

  1. Crane J, Cao X (2014) Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. J Clin Investig 124(2):466–472

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kalinkovich A, Livshits G (2021) Biased and allosteric modulation of bone cell-expressing g protein-coupled receptors as a novel approach to osteoporosis therapy. Pharmacol Res 171:105794

    CAS  PubMed  Google Scholar 

  3. Rachner T, Khosla S, Hofbauer L (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bar-Shavit Z (2007) The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem 102(5):1130–1139

    CAS  PubMed  Google Scholar 

  5. Kim J, Kim N (2016) Signaling pathways in osteoclast differentiation. Chonnam Med J 52(1):12–17

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mun SH, Park P, Park-Min KH (2020) The m-csf receptor in osteoclasts and beyond. Exp Mol Med 52(8):1239–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sobacchi C, Schulz A, Coxon F, Villa A, Helfrich M (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9(9):522–536

    CAS  PubMed  Google Scholar 

  8. Makras P, Delaroudis S, Anastasilakis AD (2015) Novel therapies for osteoporosis. Metabolism 64(10):1199–1214

    CAS  PubMed  Google Scholar 

  9. Yang J, Andre P, Ye L, Yang Y (2015) The hedgehog signalling pathway in bone formation. Int J Oral Sci 7(2):73–79

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X, Xu C, Zhang L, Yang H, Hou J, Wang Y, Shi Y (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23(7):1128–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Alman B (2015) The role of hedgehog signalling in skeletal health and disease. Nat Rev Rheumatol 11(9):552–560

    CAS  PubMed  Google Scholar 

  12. Lanske B, Karaplis A, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize L, Ho C, Mulligan R, Abou-Samra A, Juppner H, Segre G, Kronenberg H (1996) Pth/pthrp receptor in early development and Indian hedgehog-regulated bone growth. Science 273(5275):663–666

    CAS  PubMed  Google Scholar 

  13. Wang H, Zheng C, Lu W, He T, Fan J, Wang C, Jie Q, Chan D, Cheah K, Yang L (2022) Hedgehog signaling orchestrates cartilage-to-bone transition independently of smoothened. Matrix Biol 110:76–90

    CAS  PubMed  Google Scholar 

  14. Zhang L, Fu X, Ni L, Liu C, Zheng Y, You H, Li M, Xiu C, Zhang L, Gong T, Luo N, Zhang Z, He G, Hu S, Yang H, Chen D, Chen J (2022) Hedgehog signaling controls bone homeostasis by regulating osteogenic/adipogenic fate of skeletal stem/progenitor cells in mice. J Bone Miner Res 37(3):559–576

    PubMed  Google Scholar 

  15. Mak K, Bi Y, Wan C, Chuang P, Clemens T, Young M, Yang Y (2008) Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling pthrp and rankl expression. Dev Cell 14(5):674–688

    CAS  PubMed  Google Scholar 

  16. Shimo T, Matsumoto K, Takabatake K, Aoyama E, Takebe Y, Ibaragi S, Okui T, Kurio N, Takada H, Obata K, Pang P, Iwamoto M, Nagatsuka H, Sasaki A (2016) The role of sonic hedgehog signaling in osteoclastogenesis and jaw bone destruction. PLoS One 11(3):e151731

    Google Scholar 

  17. Guo Y, Yuan Y, Wu L, Ho TV, Jing J, Sugii H, Li J, Han X, Feng J, Guo C, Chai Y (2018) Bmp-ihh-mediated interplay between mesenchymal stem cells and osteoclasts supports calvarial bone homeostasis and repair. Bone Res 6:30

    PubMed  PubMed Central  Google Scholar 

  18. Heller E, Hurchla M, Xiang J, Su X, Chen S, Schneider J, Joeng K, Vidal M, Goldberg L, Deng H, Hornick M, Prior J, Piwnica-Worms D, Long F, Cagan R, Weilbaecher K (2012) Hedgehog signaling inhibition blocks growth of resistant tumors through effects on tumor microenvironment. Cancer Res 72(4):897–907

    CAS  PubMed  Google Scholar 

  19. Zhang L, Yang Y, Liao Z, Liu Q, Lei X, Li M, Saijilafu Z, Zhang D, Hong M, Zhu B, Li H, Yang JC (2020) Genetic and pharmacological activation of hedgehog signaling inhibits osteoclastogenesis and attenuates titanium particle-induced osteolysis partly through suppressing the jnk/c-fos-nfatc1 cascade. Theranostics 10(15):6638–6660

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of fas ligand in osteoclasts. Cell 130(5):811–823

    CAS  PubMed  Google Scholar 

  21. Gao B, Lin X, Jing H, Fan J, Ji C, Jie Q, Zheng C, Wang D, Xu X, Hu Y, Lu W, Luo Z, Yang L (2018) Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell 17(3):e12741

    PubMed  PubMed Central  Google Scholar 

  22. Lu W, Gao B, Fan J, Cheng P, Hu Y, Jie Q, Luo Z, Yang L (2019) Mesenchymal progenitors derived from different locations in long bones display diverse characteristics. Stem Cells Int 2019:5037578

    PubMed  PubMed Central  Google Scholar 

  23. Qu C, Kunkalla K, Vaghefi A, Frederiksen JK, Liu Y, Chapman JR, Blonska M, Bernal-Mizrachi L, Alderuccio JP, Lossos IS, Landgraf R, Vega F (2018) Smoothened stabilizes and protects traf6 from degradation: a novel non-canonical role of smoothened with implications in lymphoma biology. Cancer Lett 436:149–158

    CAS  PubMed  Google Scholar 

  24. Negishi-Koga T, Takayanagi H (2012) Bone cell communication factors and semaphorins. Bonekey Rep 1:183

    PubMed  PubMed Central  Google Scholar 

  25. Pederson L, Ruan M, Westendorf J, Khosla S, Oursler M (2008) Regulation of bone formation by osteoclasts involves wnt/bmp signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 105(52):20764–20769

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Henriksen K, Karsdal MA, Martin T (2014) Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int 94(1):88–97

    CAS  PubMed  Google Scholar 

  27. Veis DJ, O’Brien CA (2022) Osteoclasts, master sculptors of bone. Annu Rev Pathol 18:257–281

    PubMed  Google Scholar 

  28. Zaidi M, Troen B, Moonga B, Abe E (2001) Cathepsin k, osteoclastic resorption, and osteoporosis therapy. J Bone Miner Res 16(10):1747–1749

    CAS  PubMed  Google Scholar 

  29. Lu J, Wang M, Wang Z, Fu Z, Lu A, Zhang G (2018) Advances in the discovery of cathepsin k inhibitors on bone resorption. J Enzyme Inhib Med Chem 33(1):890–904

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng Z, Zhang X, Huang B, Liu J, Wei X, Shan Z, Wu H, Feng Z, Chen Y, Fan S, Zhao F, Chen J (2021) Site-1 protease controls osteoclastogenesis by mediating lc3 transcription. Cell Death Differ 28(6):2001–2018

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee SY, Park KH, Lee G, Kim SJ, Song WH, Kwon SH, Koh JT, Huh YH, Ryu JH (2021) Hypoxia-inducible factor-2alpha mediates senescence-associated intrinsic mechanisms of age-related bone loss. Exp Mol Med 53(4):591–604

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang W, Wang J, Moore D, Liang H, Dooner M, Wu Q, Terek R, Chen Q, Ehrlich M, Quesenberry P, Neel B (2013) Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 499(7459):491–495

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Debnath S, Yallowitz A, Mccormick J, Lalani S, Zhang T, Xu R, Li N, Liu Y, Yang Y, Eiseman M, Shim J, Hameed M, Healey J, Bostrom M, Landau D, Greenblatt M (2018) Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562(7725):133–139

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng H, Xing W, Han Y, Sun J, Kong M, Gao B, Yang Y, Yin Z, Chen X, Zhao Y, Bi Q, Zou W (2020) Tendon-derived cathepsin k-expressing progenitor cells activate hedgehog signaling to drive heterotopic ossification. J Clin Investig 130(12):6354–6365

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kohara Y, Haraguchi R, Kitazawa R, Imai Y, Kitazawa S (2020) Hedgehog inhibitors suppress osteoclastogenesis in in vitro cultures, and deletion of smo in macrophage/osteoclast lineage prevents age-related bone loss. Int J Mol Sci 21(8):2745

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sakunrangsit N, Pholtaisong J, Sucharitakul J, Wanna-Udom S, Prombutara P, Pisitkun P, Leelahavanichkul A, Aporntewan C, Greenblatt MB, Lotinun S (2021) Identification of candidate regulators of mandibular bone loss in fcgammariib(–/–) mice. Sci Rep 11(1):18726

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, Cui Y, Xu J, Wang Q, Yang X, Li Y, Zhang X, Qiu M, Zhang Z, Zhang Z (2017) Suppressor of fused restraint of hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development. J Biol Chem 292(38):15814–15825

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Miao D, Liu H, Plut P, Niu M, Huo R, Goltzman D, Henderson J (2004) Impaired endochondral bone development and osteopenia in gli2-deficient mice. Exp Cell Res 294(1):210–222

    CAS  PubMed  Google Scholar 

  39. Johnson R, Nguyen M, Padalecki S, Grubbs B, Merkel A, Oyajobi B, Matrisian L, Mundy G, Sterling J (2011) Tgf-beta promotion of gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical hedgehog signaling. Cancer Res 71(3):822–831

    CAS  PubMed  Google Scholar 

  40. Cannonier S, Gonzales C, Ely K, Guelcher S, Sterling J (2016) Hedgehog and tgfbeta signaling converge on gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma. Oncotarget 7(46):76062–76075

    PubMed  PubMed Central  Google Scholar 

  41. Qu C, Liu Y, Kunkalla K, Singh R, Blonska M, Lin X, Agarwal N, Vega F (2013) Trimeric g protein-carma1 axis links smoothened, the hedgehog receptor transducer, to nf-kappab activation in diffuse large b-cell lymphoma. Blood 121(23):4718–4728

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsuhashi Y, Tasaka T, Uehara E, Fujimoto M, Fujita M, Tamura T, Honda T, Kuwajima M, Shimoura Y, Mano S, Nagai M, Ishida T (2004) Diffuse large b-cell lymphoma presenting with hypercalcemia and multiple osteolysis. Leuk Lymphoma 45(2):397–400

    PubMed  Google Scholar 

  43. Najafova Z, Liu P, Wegwitz F, Ahmad M, Tamon L, Kosinsky R, Xie W, Johnsen S, Tuckermann J (2021) Rnf40 exerts stage-dependent functions in differentiating osteoblasts and is essential for bone cell crosstalk. Cell Death Differ 28(2):700–714

    CAS  PubMed  Google Scholar 

  44. Ohba S, Kawaguchi H, Kugimiya F, Ogasawara T, Kawamura N, Saito T, Ikeda T, Fujii K, Miyajima T, Kuramochi A, Miyashita T, Oda H, Nakamura K, Takato T, Chung U (2008) Patched1 haploinsufficiency increases adult bone mass and modulates gli3 repressor activity. Dev Cell 14(5):689–699

    CAS  PubMed  Google Scholar 

  45. Safadi F, Xu J, Smock S, Kanaan R, Selim A, Odgren P, Marks SJ, Owen T, Popoff S (2003) Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 196(1):51–62

    CAS  PubMed  Google Scholar 

  46. Nishida T, Nakanishi T, Asano M, Shimo T, Takigawa M (2000) Effects of ctgf/hcs24, a hypertrophic chondrocyte-specific gene product, on the proliferation and differentiation of osteoblastic cells in vitro. J Cell Physiol 184(2):197–206

    CAS  PubMed  Google Scholar 

  47. Marinkovic M, Dai Q, Gonzalez AO, Tran ON, Block TJ, Harris SE, Salmon AB, Yeh CK, Dean DD, Chen XD (2022) Matrix-bound cyr61/ccn1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biol 111:108–132

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Baojie Li for providing Smoflox/flox mice. We also thank Prof. Minghao Zheng for a kind gift of bovine bone slices.

Funding

This research was financially supported by the National Natural Science Foundation of China (81772377, 81871743, 81902202, 82130070), Innovation Team Projects—Innovation Capability Support Program of Shaanxi Province (2020TD-036), and Clinical Medical Research Center Projects—Innovation Capability Support Program of Shaanxi Province (2020LCZX-03). Key Research and Development Program of Shaanxi (2021SF-024).

Author information

Authors and Affiliations

Authors

Contributions

WL, QJ and LY designed the study and wrote and prepared the manuscript and figures. HZ and HW performed experiments on CKO mice. WL and CZ assisted experiments including western blot and qPCR in vitro. PC and CZ provided support about histomorphology and microCT analysis. SM and TH contributed to the operation and treatment. JF and HL performed mouse feeding and genotyping. YH and XH provided statistical analysis. LJ drew a schematic picture. ZL and JX revised this manuscript.

Corresponding authors

Correspondence to Qiang Jie or Liu Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 373 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Zheng, C., Zhang, H. et al. Hedgehog signaling regulates bone homeostasis through orchestrating osteoclast differentiation and osteoclast–osteoblast coupling. Cell. Mol. Life Sci. 80, 171 (2023). https://doi.org/10.1007/s00018-023-04821-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04821-9

Keywords

Navigation