Skip to main content

Advertisement

Log in

Intestinal infection triggers mitochondria-mediated α-synuclein pathology: relevance to Parkinson’s disease

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a multifactorial neurodegenerative disease characterized by the loss of dopaminergic neurons in the midbrain. In the prodromal phase several autonomic symptoms including orthostatic hypotension and constipation are correlated with increased α-synuclein pathology in peripheral tissues. It is currently accepted that some idiopathic PD cases may start in the gut (body-first PD) with accumulation of pathological α-synuclein in enteric neurons that may subsequently propagate caudo-rostrally to the central nervous system. In addition to the already-established regulation of synaptic vesicle trafficking, α-synuclein also seems to play a role in neuronal innate immunity after infection. Our goal was to understand if seeding the gut with the foodborne pathogen Listeria monocytogenes by oral gavage would impact gut immunity and eventually the central nervous system. Our results demonstrate that L. monocytogenes infection induced oligomerization of α-synuclein in the ileum, along with a pronounced pro-inflammatory local and systemic response that ultimately culminated in neuronal mitochondria dysfunction. We propose that, having evolved from ancestral endosymbiotic bacteria, mitochondria may be directly targeted by virulence factors of intracellular pathogens, and that mitochondrial dysfunction and fragmentation resulting also from the activation of the innate immune system at the gut level, trigger innate immune responses in midbrain neurons, which include α-synuclein oligomerization and neuroinflammation, all of which hallmarks of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are not publicly available since we do not have a repository but are available from the corresponding author on reasonable request.

References

  1. Cersosimo MG, Raina GB, Pecci C, Pellene A, Calandra CR, Gutiérrez C, Micheli FE, Benarroch EE (2013) Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 260:1332–1338. https://doi.org/10.1007/s00415-012-6801-2

    Article  CAS  PubMed  Google Scholar 

  2. Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536. https://doi.org/10.1007/s00702-002-0808-2

    Article  CAS  PubMed  Google Scholar 

  3. McVey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25:183-e188. https://doi.org/10.1111/nmo.12049

    Article  CAS  PubMed  Google Scholar 

  4. De Vadder F, Grasset E, Mannerås Holm L, Karsenty G, Macpherson AJ, Olofsson LE, Bäckhed F (2018) Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci USA 115:6458–6463. https://doi.org/10.1073/pnas.1720017115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kunze WA, Mao Y-K, Wang B, Huizinga JD, Ma X, Forsythe P, Bienenstock J (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 13:2261–2270. https://doi.org/10.1111/j.1582-4934.2009.00686.x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052. https://doi.org/10.1073/pnas.1010529108

    Article  PubMed  Google Scholar 

  7. Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, Sørensen HT (2015) Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 78:522–529. https://doi.org/10.1002/ana.24448

    Article  PubMed  Google Scholar 

  8. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469-1480.e1412. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim S, Kwon S-H, Kam T-I, Panicker N, Karuppagounder SS, Lee S, Lee JH, Kim WR, Kook M, Foss CA et al (2019) Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103:627-641.e627. https://doi.org/10.1016/j.neuron.2019.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Munoz-Pinto MF, Empadinhas N, Cardoso SM (2021) The neuromicrobiology of Parkinson’s disease: a unifying theory. Ageing Res Rev 70:101396. https://doi.org/10.1016/j.arr.2021.101396

    Article  CAS  PubMed  Google Scholar 

  11. Guan J, Lu Z, Zhou Q (2012) Reversible parkinsonism due to involvement of substantia nigra in Epstein-Barr virus encephalitis. Mov Disord 27:156–157. https://doi.org/10.1002/mds.23935

    Article  PubMed  Google Scholar 

  12. Bu X-L, Wang X, Xiang Y, Shen L-L, Wang Q-H, Liu Y-H, Jiao S-S, Wang Y-R, Cao H-Y, Yi X et al (2015) The association between infectious burden and Parkinson’s disease: a case-control study. Parkinsonism Relat Disord 21:877–881. https://doi.org/10.1016/j.parkreldis.2015.05.015

    Article  PubMed  Google Scholar 

  13. Drevets DA, Bronze MS (2008) Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol Med Microbiol 53:151–165. https://doi.org/10.1111/j.1574-695X.2008.00404.x

    Article  CAS  PubMed  Google Scholar 

  14. Z O’connell RM, Vaidya SA, Perry AK, Saha SK, Dempsey PW, Cheng G (2005) Immune activation of type I IFNs by Listeria monocytogenes occurs independently of TLR4, TLR2, and receptor interacting protein 2 but involves TNFR-associated NF kappa B kinase-binding kinase 1. J Immunol 174:1602–1607. https://doi.org/10.4049/jimmunol.174.3.1602

    Article  Google Scholar 

  15. Czuprynski CJ, Faith NG, Steinberg H (2003) A/J mice are susceptible and C57BL/6 mice are resistant to Listeria monocytogenes infection by intragastric inoculation. Infect Immun 71:682–689. https://doi.org/10.1128/iai.71.2.682-689.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reutterer B, Stockinger S, Pilz A, Soulat D, Kastner R, Westermayer S, Rülicke T, Müller M, Decker T (2008) Type I IFN are host modulators of strain-specific Listeria monocytogenes virulence. Cell Microbiol 10:1116–1129. https://doi.org/10.1111/j.1462-5822.2007.01114.x

    Article  CAS  PubMed  Google Scholar 

  17. Tchatalbachev S, Ghai R, Hossain H, Chakraborty T (2010) Gram-positive pathogenic bacteria induce a common early response in human monocytes. BMC Microbiol 10:275. https://doi.org/10.1186/1471-2180-10-275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grubišić V, Gulbransen BD (2017) Enteric glia: the most alimentary of all glia. J Physiol 595:557–570. https://doi.org/10.1113/JP271021

    Article  CAS  PubMed  Google Scholar 

  19. Grubišić V, McClain JL, Fried DE, Grants I, Rajasekhar P, Csizmadia E, Ajijola OA, Watson RE, Poole DP, Robson SC et al (2020) Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. Cell Rep 32:108100. https://doi.org/10.1016/j.celrep.2020.108100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, Guilliams M, Malissen B, Agace WW, Mowat AM (2013) Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 6:498–510. https://doi.org/10.1038/mi.2012.89

    Article  CAS  PubMed  Google Scholar 

  21. Dunay IR, Damatta RA, Fux B, Presti R, Greco S, Colonna M, Sibley LD (2008) Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29:306–317. https://doi.org/10.1016/j.immuni.2008.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eitel J, Suttorp N, Opitz B (2011) Innate immune recognition and inflammasome activation in listeria monocytogenes infection. Front Microbiol 1:149. https://doi.org/10.3389/fmicb.2010.00149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swanson KV, Deng M, Ting JPY (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489. https://doi.org/10.1038/s41577-019-0165-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015. https://doi.org/10.1523/jneurosci.22-16-07006.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Toomey CE, Heywood WE, Evans JR, Lachica J, Pressey SN, Foti SC, Al Shahrani M, D’Sa K, Hargreaves IP, Heales S et al (2022) Mitochondrial dysfunction is a key pathological driver of early stage Parkinson’s. Acta Neuropathol Commun 10:134. https://doi.org/10.1186/s40478-022-01424-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haddad D, Nakamura K (2015) Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS Lett 589:3702–3713. https://doi.org/10.1016/j.febslet.2015.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cardanho-Ramos C, Morais VA (2021) Mitochondrial biogenesis in neurons: how and where. Int J Mol Sci 22:13059. https://doi.org/10.3390/ijms222313059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cardoso SM, Santos S, Swerdlow RH, Oliveira CR (2001) Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J 15:1439–1441. https://doi.org/10.1096/fj.00-0561fje

    Article  CAS  PubMed  Google Scholar 

  29. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, Estes JD, Dodiya HB, Keshavarzian A (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6:e28032. https://doi.org/10.1371/journal.pone.0028032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V (2022) Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 22:657–673. https://doi.org/10.1038/s41577-022-00684-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allam-Ndoul B, Castonguay-Paradis S, Veilleux A (2020) Gut microbiota and intestinal trans-epithelial permeability. Int J Mol Sci 21:6402. https://doi.org/10.3390/ijms21176402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mallach A, Weinert M, Arthur J, Gveric D, Tierney TS, Alavian KN (2019) Post mortem examination of Parkinson’s disease brains suggests decline in mitochondrial biomass, reversed by deep brain stimulation of subthalamic nucleus. FASEB J 33:6957–6961. https://doi.org/10.1096/fj.201802628R

    Article  CAS  PubMed  Google Scholar 

  33. González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, Tkatch T, Stavarache MA, Wokosin DL, Gao L et al (2021) Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 599:650–656. https://doi.org/10.1038/s41586-021-04059-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahul-Mellier AL, Burtscher J, Maharjan N, Weerens L, Croisier M, Kuttler F, Leleu M, Knott GW, Lashuel HA (2020) The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci USA 117:4971–4982. https://doi.org/10.1073/pnas.1913904117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic lewy body disease*. J Biol Chem 281:29739–29752. https://doi.org/10.1074/jbc.M600933200

    Article  CAS  PubMed  Google Scholar 

  36. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291. https://doi.org/10.1212/wnl.38.8.1285

    Article  CAS  PubMed  Google Scholar 

  37. Qian L, Flood PM (2008) Microglial cells and Parkinson’s disease. Immunol Res 41:155–164. https://doi.org/10.1007/s12026-008-8018-0

    Article  CAS  PubMed  Google Scholar 

  38. Aho VTE, Houser MC, Pereira PAB, Chang J, Rudi K, Paulin L, Hertzberg V, Auvinen P, Tansey MG, Scheperjans F (2021) Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol Neurodegener 16:6. https://doi.org/10.1186/s13024-021-00427-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma J, Piao X, Mahfuz S, Long S, Wang J (2022) The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal Nutrition 9:159–174. https://doi.org/10.1016/j.aninu.2021.09.012

    Article  CAS  PubMed  Google Scholar 

  40. Esteves AR, Munoz-Pinto MF, Nunes-Costa D, Candeias E, Silva DF, Magalhães JD, Pereira-Santos AR, Ferreira IL, Alarico S, Tiago I et al (2023) Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria. Gut 72:73–89. https://doi.org/10.1136/gutjnl-2021-326023%JGut

    Article  CAS  PubMed  Google Scholar 

  41. Yang NJ, Chiu IM (2017) Bacterial signaling to the nervous system through toxins and metabolites. J Mol Biol 429:587–605. https://doi.org/10.1016/j.jmb.2016.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Disson O, Lecuit M (2012) Targeting of the central nervous system by Listeria monocytogenes. Virulence 3:213–221. https://doi.org/10.4161/viru.19586

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blevins HM, Xu Y, Biby S, Zhang S (2022) The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci 14:879021. https://doi.org/10.3389/fnagi.2022.879021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boesmans W, Hao MM, Fung C, Li Z, Van den Haute C, Tack J, Pachnis V, Vanden Berghe P (2019) Structurally defined signaling in neuro-glia units in the enteric nervous system. Glia 67:1167–1178. https://doi.org/10.1002/glia.23596

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ruffmann C, Bengoa-Vergniory N, Poggiolini I, Ritchie D, Hu MT, Alegre-Abarrategui J, Parkkinen L (2018) Detection of alpha-synuclein conformational variants from gastro-intestinal biopsy tissue as a potential biomarker for Parkinson’s disease. Neuropathol Appl Neurobiol 44:722–736. https://doi.org/10.1111/nan.12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen G, Liu J, Jiang L, Ran X, He D, Li Y, Huang B, Wang W, Fu S (2017) Galangin reduces the loss of dopaminergic neurons in an LPS-evoked model of Parkinson’s disease in rats. Int J Mol Sci 19:12. https://doi.org/10.3390/ijms19010012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang MJ, Chen YH, Li L, Xu L, Liu H, Qu XL, Xu JJ, Ge BB, Qu HD (2017) Protective effects of DL-3-n-butylphthalide in the lipopolysaccharide-induced mouse model of Parkinson’s disease. Mol Med Rep 16:6184–6189. https://doi.org/10.3892/mmr.2017.7352

    Article  CAS  PubMed  Google Scholar 

  48. Liu Y, Qin L, Wilson B, Wu X, Qian L, Granholm AC, Crews FT, Hong JS (2008) Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. Neurotoxicology 29:864–870. https://doi.org/10.1016/j.neuro.2008.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Portz P, Lee MK (2021) Changes in Drp1 function and mitochondrial morphology are associated with the α-synuclein pathology in a transgenic mouse model of Parkinson’s disease. Cells 10:885. https://doi.org/10.3390/cells10040885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stavru F, Cossart P (2011) Listeria infection modulates mitochondrial dynamics. Commun Integr Biol 4:364–366. https://doi.org/10.4161/cib.4.2.15506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837. https://doi.org/10.1038/nri2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grozdanov V, Bliederhaeuser C, Ruf W, Roth V, Fundel-Clemens K, Zondler L, Brenner D, Martin-Villalba A, Hengerer B, Kassubek J et al (2014) Inflammatory dysregulation of blood monocytes in Parkinson’s disease patients. Acta Neuropathologica. 128:651–663. https://doi.org/10.1007/s00401-014-1345-4

  53. Clairembault T, Leclair-Visonneau L, Coron E, Bourreille A, Le Dily S, Vavasseur F, Heymann MF, Neunlist M, Derkinderen P (2015) Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun 3:12. https://doi.org/10.1186/s40478-015-0196-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Popoff MR, Poulain B (2010) Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins 2:683–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N, Magnes C, Fröhlich E et al (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155. https://doi.org/10.1016/j.bbi.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shameli A, Xiao W, Zheng Y, Shyu S, Sumodi J, Meyerson HJ, Harding CV, Maitta RW (2016) A critical role for alpha-synuclein in development and function of T lymphocytes. Immunobiology 221:333–340. https://doi.org/10.1016/j.imbio.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  57. Park SC, Moon JC, Shin SY, Son H, Jung YJ, Kim NH, Kim YM, Jang MK, Lee JR (2016) Functional characterization of alpha-synuclein protein with antimicrobial activity. Biochem Biophys Res Commun 478:924–928. https://doi.org/10.1016/j.bbrc.2016.08.052

    Article  CAS  PubMed  Google Scholar 

  58. Lee EY, Srinivasan Y, de Anda J, Nicastro LK, Tükel Ç, Wong GCL (2020) Functional reciprocity of amyloids and antimicrobial peptides: rethinking the role of supramolecular assembly in host defense, immune activation, and inflammation. Front Immunol 11:1629. https://doi.org/10.3389/fimmu.2020.01629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia through projects PTDC/MED-NEU/3644/2020 (including a Junior Investigator contract to E. C.), PTDC/BIA-MIC/0122/2021, UIDB/04539/2020, UIDP/04539/2020 and LA/P/0058/2020. J.D.M. is supported by PD/BD/146409/2019 PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SMC and NE conceived and designed this study. Material preparation, data collection and analysis were performed by JDM, EC, IM-M, DFS and SMC. A draft version of the manuscript was prepared by JDM. NE and SMC revised the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nuno Empadinhas or Sandra Morais Cardoso.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The animal study protocol was approved by the Ethics Committee of Center for Neuroscience and Cell Biology (ORBEA and DGAV, 30-06-2017).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2023_4819_MOESM1_ESM.tif

Supplementary file1 Supplemental Figure 1. Neurons secrete inflammatory cytokines in response to Lm4b infection. (A) IL-1β and (B) IL-6 levels were measured in neuronal conditioned media with ELISA kits (B, Unt vs Lm4b, *p<0.05). (C) Representative image of Western Blot against aSyn in untreated (Unt) and infected (Lm4b) cells. (D) aSyn relative abundance (Unt vs Lm4b, **p<0.01). Data represents mean + SEM. Unpaired Student’s t-test was performed in A, C, D. (TIF 2157 KB)

Supplementary file2 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D. Magalhães, J., Candeias, E., Melo-Marques, I. et al. Intestinal infection triggers mitochondria-mediated α-synuclein pathology: relevance to Parkinson’s disease. Cell. Mol. Life Sci. 80, 166 (2023). https://doi.org/10.1007/s00018-023-04819-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04819-3

Keywords

Navigation