REVIEW

Hydrogen therapy as a potential therapeutic intervention in heart disease: from the past evidence to future application

Kwannapas Saengsin¹ · Rekwan Sittiwangkul¹ · Siriporn C. Chattipakorn^{2,3,4,5} · Nipon Chattipakorn^{2,3,5}

Received: 23 July 2022 / Revised: 24 April 2023 / Accepted: 20 May 2023 / Published online: 3 June 2023 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

Cardiovascular disease is the leading cause of mortality worldwide. Excessive oxidative stress and inflammation play an important role in the development and progression of cardiovascular disease. Molecular hydrogen, a small colorless and odorless molecule, is considered harmless in daily life when its concentration is below 4% at room temperature. Owing to the small size of the hydrogen molecule, it can easily penetrate the cell membrane and can be metabolized without residue. Molecular hydrogen can be administered through inhalation, the drinking of hydrogen-rich water, injection with hydrogen-rich-saline, and bathing of an organ in a preservative solution. The utilization of molecular hydrogen has shown many benefits and can be effective for a wide range of purposes, from prevention to the treatment of diseases. It has been demonstrated that molecular hydrogen exerts antioxidant, anti-inflammatory, and antiapoptotic effects, leading to cardioprotective benefits of hydrogen molecules obtained from in vitro, in vivo, and clinical investigations are comprehensively summarized and discussed with a focus on the cardiovascular aspects. The potential mechanisms involved in the protective effects of molecular hydrogen are also presented. These findings suggest that molecular hydrogen could be used as a novel treatment in various cardiovascular pathologies, including ischemic–reperfusion injury, cardiac injury from radiation, atherosclerosis, chemotherapy-induced cardiotoxicity, and cardiac hypertrophy.

Keywords Molecular hydrogen · Ischemia · Oxidative stress · Inflammation · Cell death · Apoptosis

Nipon Chattipakorn nchattip@gmail.com

- ¹ Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- ² Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- ³ Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- ⁴ Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- ⁵ Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Introduction

Molecular hydrogen is the lightest of all gas molecules. It is an odorless, colorless, tasteless, nonmetallic, and nontoxic gas at room temperature [1]. Hydrogen is not dangerous when its concentration is under 4% [1]. Owing to its small size, a hydrogen molecule has the ability to diffuse through the cell membrane and enter the cytosol. This characteristic of hydrogen makes it superior when it comes to the transport efficacy of most hydrophilic compounds, which are retained at membranes and cannot reach the cytosol; the majority of hydrophobic ones cannot penetrate biomembranes without specific carriers [2, 3]. Many antioxidants, including vitamins, can enter the cytoplasm but not the mitochondria [2]. It has been shown that hydrogen can be rapidly distributed into the cytosol and organelles, and it can enter the mitochondria and nucleus with excellent efficacy and lack of adverse effects [3].

There is growing evidence to demonstrate that hydrogen could be an effective treatment in various diseases due to its ability to reduce oxidative stress by selectively eliminating toxic reactive-oxygen species (ROS) and reactive nitrogen species (RNS) [4]. Hydrogen was found to increase the level of antioxidants in vitro studies, animal models, and clinical studies [5–7]. Furthermore, anti-inflammation and anticell death have also been reported as hydrogen properties [8]. In addition, the previous studies in both animal models and clinical trials demonstrated the potential benefits of hydrogen application in various pathological conditions, including postcardiac arrest syndrome [9] and cardiovascular diseases [10–13].

In this review, we comprehensively summarize the reports regarding the potential role of the therapeutic application of molecular hydrogen in the cardiovascular aspect and describe the potential mechanisms responsible for the benefits of hydrogen. These findings from both preclinical and clinical studies will encourage further investigations to warrant the application of hydrogen as a novel treatment in a clinical setting in the near future.

Effects of hydrogen treatment on cardiomyocytes: reports from in vitro studies

Hypoxia and reoxygenation (H/R) induced oxidative stress and inflammatory reaction is one of the main factors contributing to myocardial cell injury [6, 14, 15]. It has been demonstrated that hydrogen exerts antioxidative stress, antiapoptotic, and anti-inflammatory effects [16]. Following 4 h of hypoxia and 24 h of reoxygenation, a hydrogen-rich medium was shown to increase the survival of H9c2 cells by decreasing inflammatory cytokine release and apoptosis [15]. The protective effect of hydrogen against cell death, inflammatory process, or oxidative stress was shown to be through various pathways, including the PI3K/Akt signaling pathway and the activation of the Nrf2/HO-1 signaling, leading to increased OH-1 levels which is considered a potent antioxidant, and a decrease in 8-OHdG which is regarded as an indicator of oxidative stress (Figs. 1 and 2) [6, 14].

In cardiotrophin-I (CT-I)-induced hypertrophy neonatal rat cardiomyocytes, a hydrogen-rich medium effectively reduced cardiomyocyte hypertrophy via down-regulation of IL-6 and activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway, leading to attenuation of adverse cardiac remodeling and the cell inflammatory response (Fig. 1) [17, 18]. These in vitro reports are comprehensively summarized in Table 1.

Effects of hydrogen treatment on the heart: reports from in vivo studies

Hydrogen treatment has been investigated in various in vivo models of cardiac pathology, including cardiac ischemia – reperfusion injury, myocardial infarction and chronic intermittent hypoxia, radiation, atherosclerosis, sepsis, cardiotoxicity from chemotherapy, and cardiac hypertrophy. The cardioprotective effects of hydrogen interventions are reported and summarized in Tables 2 and 3. The potential mechanisms of action of molecular hydrogen on selective antioxidants, anti-inflammation, and alleviating cell death are demonstrated in Figs. 1 and 2.

Effects of hydrogen treatment on cardiac ischemia – reperfusion injury models

Cardiac ischemia - reperfusion injury (I/R) could negatively affect outcomes in various clinical settings, including post myocardial infarction, cardiac transplantation, or cardiopulmonary bypass. Oxidative stress induced by I/R was found to cause direct cellular injury and apoptosis, leading to impaired cardiac function [15]. The oxidative stress involved in the cell death pathway is a consequence of the presence of reactive oxygen species (ROS), including the hydroxyl radical ($^{\circ}OH$), superoxide anion (O_2^{-}), hydrogen peroxide (H_2O_2) , in addition to reactive nitrogen species (RNS), including nitric oxide (NO), and peroxynitrite (ONOO⁻). Both ROS and RNS are known to trigger the production of inflammatory cytokines and proteins, including IL-1 β , IL-6, and TNF- α , HMGB1, and ICAM-1 [19]. Hydrogen has been demonstrated to potentially protect against I/R injury through the mechanisms of reducing oxidative stress, inflammation, and cell death in various in vivo experimental settings.

In rats with cardiac I/R, hydrogen-rich saline (HRS) injected intraperitoneally was shown to improve cardiac function, reduce infarct size, and alleviate cardiac injury [5, 15, 20]. Studies using either injection into the myocardial tissue around the infarct zone or inhalation in rats showed consistently beneficial results [21–23]. In swine with cardiac I/R, inhalation of 2–4% hydrogen treatment resulted in the reduction of both myocardial infarct size and the incidence of ventricular fibrillation (VF)/ventricular tachycardia (VT) and improved cardiac function [24].

In the cardiopulmonary bypass model (CPB), rats treated with hydrogen-rich water (HRW) via intravenous injection showed an improvement in cardiac function and a reduction in cardiac injury [6]. Within the last few decades, studies using the heart transplant rat model have demonstrated that hydrogen given either orally or by inhalation resulted in reduced infarct size and cardiac injury and enhanced the survival of cardiac grafts [11, 25]. Overall, evidence from these in vivo reports indicated that hydrogen treatment effectively reduced infarct size and myocardial injury, leading to improved cardiac function.

The precise mechanisms involved during hydrogen treatment with regard to improving cardiac function and

Fig. 1 Potential mechanisms of the action of molecular hydrogen on selective antioxidants and anti-inflammation. The possible mechanisms of molecular hydrogen proposed have been those which increased antioxidants, and decreased oxidative stress, and inflammation. *CAT* catalase, 4-*HNE* 4-hydroxyl-2-nonenal, 8-*OHdG* 8-hydroxydeoxyguanosine, *CCL* chemokine (C–C motif), *DNA* deoxyribonucleic acid, *ER* endoplasmic reticulum, *ETC* electron transport chain, *GPx* glutathione peroxidase, *GPX1* glutathione peroxidase 1, *GRP78* glucose-regulated protein 78, *GSH* glutathione peroxide, *GST* glutathione-S-epoxide transferase, *HMGB* high mobility group box 1,

alleviating myocardial infarction and cardiac injury are still unclear, but the reduction in oxidative stress and inflammation could be key [5, 15, 20–22]. Hydrogen has been shown to effectively decrease oxidative stress indicators, including MDA, 8-OHdG, MPO, and ROS in rats with I/R, CBP, and in transplantation models [5, 6, 15, 20–23] as well as decreasing endoplasmic reticulum (ER) stress including TRAF2, and GRP78 in an I/R rat model [5, 6, 15, 20–23]. An increase in antioxidants, including SOD, was also demonstrated in rat models of I/R injury and CBP [5, 6, 15, 20–23]. Hydrogen treatment also led to a reduction in inflammation via increased autophagy, PINK/Parkin-mediated mitophagy [6, 11, 15, 20, 21, 26], and antiapoptosis [5, 6, 11, 15, 21, 23]. All of these mechanisms could lead to improved cardiac function in these models.

ICAM intercellular adhesion molecule, *IFN* γ interferon γ , *IL* interleukin, *iNOS* inducible nitric oxide synthase, *JAK/STAT* janus kinase/signal transducer and activation of transcription signal pathway, *MCP-1* monocyte chemotactic protein-1, *MDA* malondialdehyde, *MPO* myeloperoxidase, *NK cell* natural killer cell, *NOX* Nox protein, *Nrf2* nuclear factor erythroid 2-related factor2, *OH* hydroxyl radicals, *RNS* reactive nitrogen species, *ROS* phosphatidylinositol 3-kinase, *SOD* superoxide dismutase, *TNF-a* tumor-necrosis factor- α , *TRAF2* tumor-necrosis factor-a (TNF-a) receptor-associated factor 2

Effects of hydrogen treatment in myocardial infarction (MI) and chronic intermittent hypoxia (CIH) models

Myocardial infarction (MI), widely accepted as one of the major causes of death, can induce myocardial necrosis and interstitial fibrosis resulting in heart failure, and increasing the mortality rate [27]. In rats with MI, hydrogen treatment via ingestion, inhalation, or intraperitoneal injection was shown to improve cardiac function and attenuate myocardial pathological changes by reducing the infarct size and apoptosis [28–30]. In rats with CIH, hydrogen therapy has been shown to reduce cardiac dysfunction by reducing oxidative stress. In addition, hydrogen attenuated ER stress-induced apoptosis via PERK-eIF2 α -ATF4, IRE 1-XBP1, and ATF6

Fig. 2 Potential mechanisms associated with the action of molecular hydrogen in alleviating cell death. It has been proposed that molecular hydrogen effectively decreases apoptosis, ER stress, and pyroptosis. Molecular hydrogen has been shown to increase autophagy, mitophagy, and survival kinases, leading to the alleviation of cell death. *Akt* protein kinase b, *ASC* apoptosis-associated speck-like protein containing a card, *ATF* activating transcription factor, *ATG* autophagy-related protein, *Bax* apoptosis regulator Bax, *Bcl-2* apoptosis regulator Bcl-2, *CHOP* the proapoptotic transcriptional factor c/ ebp homologous protein, *elF2* α eukaryotic initiation factor 2 alpha, *ER* endoplasmic reticulum, *ERAD* endoplasmic-reticulum-associated protein degradation, *ERK* extracellular signal-regulated kinase,

pathways [31]. Moreover, a combination of HRS with exercise was shown to promote the repair of both the mitochondria and DNA in a rat MI model, which could be involved in the cardioprotective mechanism of hydrogen treatment [29].

Effects of hydrogen treatment in a radiation model

Radiation can cause myocardial damage as a consequence of radiation-induced myocardial fibrosis, leading to the chronic impairment of cardiac function [32]. In a radiated rat model, it has been demonstrated that an intake of oral hydrogen prior to radiation increased survival rate by increasing the level of antioxidants, reducing oxidative

FADD fas associated via death domain, *GRP78* glucose-regulated protein 78, *GSDMD* gasdermin D, *IRE1* Er stress sensor and cell fate executor, *JNK* c-jun N-terminal kinase, *LC3-I* microtubule-associated protein 1 light chain 3α , *MAPK* mitogen-activated protein kinase, *MFN2* mitofusin-2, *mTOR* mammalian target of rapamycin, *NFkB* nuclear factor kappa-light-chain-enhancer of activated b cells, *NLRP3* nod-like receptor (NLR) family pyrin domain containing protein 3, *P38* 38-kda protein, *P53* 53-kda protein, *P62* 62-kda protein, *PERK* protein kinase RNA-like endoplasmic reticulum kinase, *PI3K* phosphatidylinositol 3-kinase, *PINK* PTEN-induced kinase, *TGF* β transforming growth factor beta, *XBP1* x-box binding protein 1, *XBP1s* active/spliced form of XBP1

stress, and preventing DNA damage [33]. However, the effect of hydrogen treatment on cardiac function in these conditions is unknown.

Effects of hydrogen treatment in an atherosclerosis model

Atherosclerosis is a multifactorial process which is related to cardiovascular disease. It represents a state of inflammation and oxidative stress characterized by the accumulation of macrophages and oxidized products of lipoproteins in the affected blood vessels [34]. Interestingly, the consumption of HRS for 6 months effectively decreased oxidative stress

Table 1 Effects of	f hydrogen treatment on cardiomyocyt	tes: reports from	in vitro studi	es				
Cell type/Study	Intervention/Dose/Duration	Major findings					Interpretation	References
model		Cell viability	Oxidative stress	Inflammation	Apoptosis	Autophagy/Mitophagy		
H9c2 cells/ H/R model (4 h/24 h)	H ₂ gas-rich medium/0.6 mmol/l/ throughout H/R period	~	1	$\downarrow \text{IL-1}\beta$ $\downarrow \text{IL-6}$ $\downarrow \text{TNF-}\alpha$ $\downarrow \text{HMGB1}$	↓ Caspase 3 ↑ Bcl-2/ Bax ratio	↑ LC3II/I ↑ ATG5 ↑ ATG12 ↑ Beclin 1 ↑ PINK1 ↑ Parkin	H ₂ increased cell survival via reduced inflammation, apoptosis, and promoted autophagy and mitophagy in H/R model	[15]
	 Treated with rapamycin (autophagy induction)/20 μM/2 h prior to experimentation and throughout H/R period 	←	I	$\downarrow \text{IL-1}\beta$ $\downarrow \text{IL-6}$ $\downarrow \text{TNF-}\alpha$ $\downarrow \text{HMGB1}$	↓ Caspase 3 ↑ Bcl-2/ Bax ratio			
	 Treated with 3-MA (autophagy inhibitor)/1 mM/2 h prior to experiment and throughout H/R period 	\rightarrow	I	$\uparrow IL-1\beta \\\uparrow IL-6 \\\uparrow TNF-\alpha \\\uparrow HMGB1$	↑ Caspase 3 ↓ Bcl-2/ Bax ratio			
	 Treated with PINK1siRNA (inhibition of mitophagy)/50 nM/ throughout H/R period 	I	I	$\uparrow IL-1\beta \\\uparrow IL-6 \\\uparrow TNF-\alpha \\\uparrow HMGB1$	↑ Caspase 3 ↓ Bcl-2/ Bax ratio			
H9c2 cells/ H/R model (2 h/4 h)	Hydrogen-rich water/0.8 mM/1/3 days prior to H/R, prior to hypoxia and during reoxygenation	←	10H↑	1	↓ BAX ↓ Caspase 3 ↑ Bcl-2 ↑ Pl3K ↑ PAKT		H2 increased cell survival and antioxi- dant levels, and decreased apoptosis through PI3K/Akt signaling pathway in H/R model	[9]
	- Treated with LY294002 (PI3K inhibitor/40 μM/l/throughout H/R period	\rightarrow	ТОН↓	I	↑ BAX ↑ Caspase 3 ↓ Bcl-2 ↓ Pl3K ↓ p-AKT			

Table 1 (continu	led)							
Cell type/Study	Intervention/Dose/Duration	Major findings					Interpretation	References
model		Cell viability	Oxidative stress	Inflammation	Apoptosis	Autophagy/Mitophagy		
H9c2 cells/ Hypoxia model :CoCl ₂ model (400–800 μM) (24 h)	H ₂ gas-rich medium/NA/24 h H ₂ gas-rich medium/NA/6, 12, 18 h	¢	1	. 1	. 1	1	H ₂ did not affect cell viability in CoCl ₂ -induced hypoxia; however, it effectively increased cell viability in SGD-induced ischemia via reduced oxidative stress and promoted antioxi-	[14]
Ischemia model SGD model (6, 12, 18 h)		†at 6 and 12 h	I	I	I	I	dants in an Nrf2 and HO1 dependent manner	
SGD model (6 h)	H_2 gas-rich medium/NA/30 h	←	↓ 8-OHdG ↑ HO1 ↑ Nrf2	1	I	I		
	– With ZnPP IX (HO-1 inhibitor)/ 10 µM/30 h	\rightarrow	I	I	I	I		
	- With BR (Nrf2 inhibi- tor)/10 μM/30 h	\rightarrow	I	I	I	I		
	- With Si-Nrf2/20 mmol/l/30 h	\rightarrow	† HO1	I	Ι	I		
Rat car- diomyocytes CT-1-induced cardiomyocyte hypertrophy	Hydrogen-rich saline/0.6 mmol/1/72 h	I	I	↓ IL-6 ↓ JAK ↓ STAT3	I	1	Hydrogen-rich saline reduced cardio- myocyte hypertrophy and inflammation via the JAK/STAT3 pathway	[11]
	 With AG490 (JAK specific antagonists)/0.1 mM/72 h 	I	I	↑ IL-6 ↑ JAK ↑ STAT3	I	I		
Akt protein kina HMGB1 high m pathway, LC3 m kinase 1, SGD se	se B, ATG autophagy-related protein obility group box 1, H/R hypoxia repticrotubule-associated protein 1 light cl rum and glucose deprivation, $TNF-\alpha$ t	, Bax apoptosis erfusion model, a hain 3 α , Nrf2 th tumor-necrosis fa	regulator Ba HRS hydroge e nuclear fac ctor-α, ZnPF	x, Bcl-2 apopto: n-rich saline, IL tor erythroid 2-1 'IX zinc protopoi	sis regulator interleukin, related factor rphyrin IX, 8	Bcl-2, <i>CoCl</i> 2 cobalt chl <i>JAK/STAT</i> Janus kinase/ 2, <i>p</i> phosphorylation, <i>PI</i> 5- OHdG 8-hydroxydeoxyg	oride, <i>CT-1</i> cardiotrophin-1, <i>HO1</i> heme c signal transducer and activation of transcr <i>BK</i> phosphatidylinositol 3-kinase, <i>PINK</i> PT guanosine	xygenase 1, pption signal EN-induced

🖄 Springer

Table 2 Effects	of hydrogen treatment on cardiac	: ischemia – re	perfusion injury mode	els: reports from in v	ivo studies				
Study model	Intervention		Major findings					Interpretation	References
	Dose/Duration	Route	Cardiac function/ Cardiac injury marker	Oxidative stress	Inflammation	Apoptosis	Autophagy/ Mitophagy		
Male Wistar rats J/R model 30 min/24 h	Hydrogen-rich saline under 0.4 MPa dissolved in saline for 6 h (0.6 mmol/1)/10 ml/ kg/5 min prior to reperfu- sion	<u>음</u>	↑ HR ↑ MAP ↑ SBP ↑ DBP ↑ DBP ↑ LV + dP/dt ↑ LV = dP/dt ↑ LVEF ↓ LVEDP ↓ LVEDP ↓ Infarct size ↓ CK-MB		$\downarrow IL-1 \beta$ $\downarrow IL-6$ $\downarrow TNF-\alpha$ $\downarrow HMGB1$	↓ TUNEL ↓ BAX ↓ Caspase 3 ↑ Bcl-2/Bax ratio	↑ LC3II/I ↑ ATG5 ↑ ATG12 ↑ Beclin 1 ↑ PINK1 ↑ Parkin	Hydrogen-rich saline alleviated myocar- dial infarct size, reduced inflamma- tion, apoptosis, and promoted autophagy and mitophagy, lead- ing to improved left ventricular function and hemodynamics follow- ing cardiac <i>I/R</i> injury	[15]
Male SD rats I/R model 30 min/24 h	Hydrogen-rich saline under 0.4 MPa dissolved in saline for 6 h (0.6 mmol/1)/5 ml/ kg/5 min before reperfu- sion	đ	↑ LVSP ↓ LVDP ↑ LV + dP/dt ↑ LV - dP/dt ↓ Infarct size	↓ MDA in tissue and plasma ↓ 8-OHdG	I	L TUNEL L Caspase 3	I	Hydrogen-rich saline improved cardiac func- tion and reduced infarct size from I/R injury by reducing oxidative stress and apoptosis	[5]
Male SD rats I/R model 30 min/24 h	Hydrogen-rich saline under 0.4 MPa dissolved in saline for 6 h (0.6 mmol/l)/10 ml/ kg/5 min prior to reperfu- sion	£	↑ LVSP ↓ LVEDP ↑ LV + dP/dt ↓ LV - dP/dt ↓ Infarct size ↓ PMN accumula- tion ↓ CK-MB	↓ MPO ↓ 3-nitrotyrosine	↓ IL-1 β ↓ TNF-α ↓ ICAM-1	I	1	Hydrogen-rich saline improved cardiac function and reduced infarct size by reducing oxidative stress and inflammation	[20]
Male SD rats VR model 45 min/3 min, 30 min, or 24 h	Hydrogen-rich saline under 0.4 MPa dissolved in saline for 4 h (60 μL)/NA/at onset of reperfusion	Injected into the myocar- dial tissue around the infarct zone	↑ LV + dP/dt ↑ LV – dP/dt ↔ Infarct size ↓ CK ↓ CK-MB	↓ MDA ↑ SOD	↓ TNF-α	↓ TUNEL ↓ Cyt-c ↓ Caspase-8 ↓ p-p38 ↓ p-BRK	1	Hydrogen-rich saline improved cardiac func- tion from <i>I/R</i> injury by reducing oxidative stress, inflammation, apoptosis, and regulat- ing the MAPK signal pathway	[21]

pretation Reference		lation of H ₂ improved [22] rdiac function and luced infarction by lucing oxidative ess after I/R injury	lation of 2% H ₂ gas [23] enuated myocardial ury by attenuating t stress, oxidative ss, apoptosis and	tophagy		lation of 2% H ₂ gas [24] ring <i>LR</i> improved diac function and luced VF/VT inci- nce from myocar-	al stunning, while nalation of 4% H ₂ s during J/R reduced arct size	rogen-rich water [6] proved cardiac func- n and reduced cardiac
Inter	tophagy/ ophagy	Inha car red str	C3II/I Inha eclin 1 att inj ER	auf eclin 1	c3II/I eclin 1	Inha du red red	di in in f	Hyd in tio
	sis Aut Mit	1	-2/ ↓ L ↓ B	-2/ ↓ L	-2/ ↓ L ↓ B	I	I	EL - se 3
	Apopto	1	↓ p-Bcl Bcl2	↓ p-Bcl Bcl2	↓ p-Bcl Bcl2	I	I	↓ TUNI ↓ BAX ↓ caspa
	Inflammation	1	I	1	I	1	I	$\downarrow \text{IL-1} \beta \\ \downarrow \text{IL-6} \\ \downarrow \text{TNF}\alpha$
	Oxidative stress	↓ 8-OHdG	↓ 8-OHdG ↓ MDA ↓ ROS ↓ TRAF2 ↓ GRP78	↓ 8-OHdG ↓ MDA ↓ ROS ↓ TRAF2 ↓ GRP78	↓ 8-OHdG ↓ MDA ↓ ROS ↓ TRAF2 ↓ GRP78	I	I	↓ MDA ↓ MPO ↑ SOD
Major findings	Cardiac function/ Cardiac injury marker	↓ LVEDP ↓ LVEDd ↓ LVESd ↑ LVS ↑ PW ↑ FS ↑ EF ↓ Infract size	↓ Infarct size ↓ TnI	↓ Infarct size ↓ TnI	↓ Infarct size ↓ TnI	↓ Incidence of VF, VT ↑ SS	↓ Infarct size	↑ MAP ↑ LV + dP/dt max ↓ LDH
	Route	Inhalation	Inhalation			Inhalation	Inhalation	IV injection via tail vein
Intervention	Dose/Duration	2% H ₂ /at onset of ischemia and continue for 60 min after reperfusion	2% H ₂ /5 min before reperfu- sion until 2 h after reperfu- sion	Postischemic conditioning treatment (Four cycles of 1 min reperfusion/1 min ischemia (total time, 8 min) was given at the end of 1 h coronary occlusion)	2% H ₂ combined with postischemic conditioning treatment	2% H ₂ /during and after ischemia	4%H ₂ /during and after ischemia	Hydrogen-rich water under 0.8 MPa dissolved in saline for 24 h/6 ml/kg/prior to
Study model		Male Wistar rats VR model 30 min/ 24 h	Male Wistar rats I/R model 1 h/2 h			Swine J/R model Myocardial stunning 12 min/90 min	Myocardial infarction 40 min/120 min	Male SD rats CBP model (1 h)

174 Page 8 of 22

Table 2 (continu	(pər								
Study model	Intervention		Major findings					Interpretation	References
	Dose/Duration	Route	Cardiac function/ Cardiac injury marker	Oxidative stress	Inflammation	Apoptosis	Autophagy/ Mitophagy		
Male Lewis rats Heterotopic heart trans- plantation (I/R model) 6 or 18 h/6 h	1%, 2%, 3%H ₂ /1 h before ischemia and 1 h after reperfusion 1% H ₂ 3% H ₂ 3% H ₂	Inhalation	← CPK ↓ CPK	1	1	1	1	The combination of hydrogen and CO therapy reduced infarct size, cardiac injury, and enhanced cardiac graft survival by decreasing oxidative stress, inflam- mation, and apoptosis	Ξ
	CO (After 6 h cold ischemia) – CO: 50 ppm – CO: 250 ppm	Inhalation	↔ CPK ↓ CPK	I	I	I	I		
	Inhaled gas (After 18 h cold ischemia) Mixed H ₂ and CO		↓ Infarct size ↓ Macrophage ↓ CPK ↓ cTnI ↑ Transplantation score (3 h after storage) ↑ Graft survival after 7 days	3 h after perfu- sion ↓ MDA ↓ MPO 6 h after perfu- sion ↓ MPO	3 h after perfusion sion \downarrow IL-1 β \downarrow IL-6 \downarrow TNF α \downarrow INOS \downarrow HMGB1	↓ TUNEL ↓ ED1 ↓ cleaved caspase 3	1		
	H ₂ alone	Inhalation	↑ Transplantation score (3 h after storage) ↑ Graft survival after 7 days	3 h after perfu- sion ↓ MDA 6 h after perfu- sion ↔ MPO	3 h after perfusion sion $\leftrightarrow IL-1 \beta$ $\leftrightarrow TNF \alpha$ $\leftrightarrow TNR \alpha$ $\downarrow HMGB1$	$\begin{array}{l} \leftrightarrow \text{TUNEL} \\ \leftrightarrow \text{ED1} \\ \leftrightarrow \text{cleaved} \\ \text{caspase 3} \end{array}$	1		

Table 2 (contin	ued)								
Study model	Intervention		Major findings					Interpretation	References
	Dose/Duration	Route	Cardiac function/ Cardiac injury marker	Oxidative stress	Inflammation	Apoptosis	Autophagy/ Mitophagy		
Inbred male LEW (RT11) and BN (RT1n) rats Heterotopic heart trans- plantation (I/R model)	Hydrogen-rich water/dose: NA/60 d, 100d	Oral	 ↑ Viability of car- diac allografts ↑ Tissue ATP ↑ Mito activity ↓ CD3 + T cells ↓ CD68 + mac- rophages 	50 d after trans- plant ↓ MPO ↓ MDA	$\downarrow \text{IFN}_{\gamma}$ $\downarrow \text{TNF}_{\alpha}$ $\downarrow \text{CCL2}$ $\downarrow \text{CCL5}$ $\downarrow \text{CCL5}$	1	1	Hydrogen-rich water enhanced cardiac allo- graft survival by reduc- ing intimal hyperplasia, inhibition of T cell proliferation, reduction of oxidative stress and increased tissue ATP and mitochondrial activity	[25]
Male LEW (RT11) and BN (RT1n) rats Orthotopic Aor- tic transplan- tation			↓ Intimal hyperpla- sia in aortic graft						
AAR area at rish CBF coronary the phosphokinase, tional shortenin molecule 1, IFN protein 1 light (diastolic pressure endodiastolic director PMN polymorph SpO2 pulse oxirr ventricular tachy	Akt protein kinase B, ATG au- lood flow, CCL chemokine (C- cThI cardiac troponin-I, Cyt-c- g, GRP78 glucose-regulated pr l γ interferon γ, IL interleukin, chain 3 α, LDH lactate dehydr ce, LV dp/dt rate of pressure cha ameter, LVESd LV endosystolik intiogen-activated protein kin onuclear neutrophil, PW poste netry, SS segment shortening, 7 cardia, 8-0HdG 8-hydroxydeo	c motify ligate -C motify ligate cytochrome c, otein 78, HOI iNOS inducibl ogenase, LV le nge in left ven nge in left ven ase, MCP-1 mV ase, MCP-1	1 protein, ATP adenosi dd, CD cluster of differ DBP diastolic blood p heme oxygenase 1, H e nitric oxide synthase fit ventricle, $LVSP$ LV systoli PWd LV posterior wall mocyte chemotactic pu PERK protein kinase-F ness, $p33$ 38-kDa prote ness, $p33$ 38-kDa prote	ne triphosphate, <i>BAX</i> entiation, <i>CK-MB</i> cr ressure, <i>EF</i> ejection <i>MGBI</i> high mobilit, <i>J</i> anterior wall thic <i>D</i> anterior wall thic ic pressure, <i>LVDP</i> L I thickness in diastol thickness in diastol thickness in diastol sNA-like endoplasm ein, <i>ROS</i> reactive ox factor-a, <i>TRAF2</i> tun	(apoptosis regulat eatinine kinase-Ma fraction, ER endo y group box 1, HA IVS interventricula kness at end-diast kness at end-diast diastolic/develop di diadehyde, Mfn2 ic reticulum kinas ygen species, SBP nor-necrosis factor	or Bax, <i>Bcl-2</i> ap B, <i>CO</i> carbon m plasmic reticulu S hydrogen-rich ur septum, <i>JNK</i> ole, <i>LVEDd</i> LV ole, <i>LVEDd</i> LV ved pressure, <i>LV</i> ular weight, <i>IV</i> ular weight, <i>IV</i> systolic pressure systolic pressure a (TNF-a) recer	optosis regulatu onoxide, <i>CPB</i> , m, <i>ERK</i> extrace r. Janie, <i>HR</i> hei c. Jun-N-termin endodiastolic <i>DP</i> LV develop <i>N</i> intraventriculk <i>O</i> myeloperox tidylinositol 3. tior-associated tor-associated	or Bcl-2, <i>BNP</i> brain natriur cardiopulmonary bypass, C art arte, <i>ICAM-1</i> intercellu art rate, <i>ICAM-1</i> intercellu diameter, <i>LVEDP</i> left vent diameter, <i>LVEDP</i> left vent ed pressure (LVSP-LVDP) red pressure (LVSP-LVDP) del pressure (LVSP-LVDP) del pressure (LVSP-LVDP) factor 2, <i>VF</i> ventricular fib factor 2, <i>VF</i> ventricular fib	etic peptide, <i>ZPK</i> creatine ase, <i>FS</i> frac- lar adhesion e-associated tricular end- tricular end- tricular end- tricular end- tricular end- tricular end- ed kinase 1, e dismutase, rillation, <i>VT</i>

 $\underline{\textcircled{O}}$ Springer

and had the potential to decrease atherosclerotic lesions in the aorta [35].

Effects of hydrogen treatment on the heart in a sepsis model

Sepsis is systemic inflammation in response to an infection associated with the cardiovascular system. Cardiac myocytes are involved due to the oxygen consumption of the cell being compromised. Correspondingly, mitochondrial dysfunction occurs, leading to cellular energy depletion [36]. A recent study showed that hydrogen gas treatment reduced mitochondrial dysfunction by up-regulating the protein expression of mitofusin-2 (Mfn2), peroxisome proliferator-activated receptor-gamma coactivator-1 α (PGC-1 α), and protein heme-oxygenase-1 (HO-1) [37]. However, the effect of hydrogen treatment on cardiac function in these conditions is unknown.

Effects of hydrogen treatment in a chemotherapy-induced cardiotoxicity model

Doxorubicin is an anthracycline anticancer drug that can cause cardiotoxicity, a condition known as doxorubicininduced cardiomyopathy, via oxidative stress, apoptosis, and intracellular calcium dysregulation [38]. The use of HRS via intraperitoneal injection in rats treated with doxorubicin has been shown to improve survival rate and reduce cardiac dysfunction by attenuating oxidative stress, inflammation, and apoptosis [12].

Effects of hydrogen treatment in a cardiac hypertrophy model

Cardiac hypertrophy, consisting of interstitial and perivascular fibrosis, can lead to heart failure, which results in increased mortality [39]. Hypertension is the major factor associated with left ventricular hypertrophy [40]. Studies into cardiac hypertrophy in rat models reported that hydrogen therapy using HRS via IP resulted in a reduction in heart and atrial weight [13, 17, 18, 41]. Hydrogen also decreased the incidence of atrial fibrillation (AF), atrial fibrosis, apoptosis, and inflammation through the downregulation of the JAK-STAT signaling [17, 18]. In another rat model with cardiac hypertrophy, the benefit of hydrogen therapy was shown via a reduction in oxidative stress, the inflammatory process, and angiotensin II, and the preservation of mitochondrial function in the left ventricle [13, 41]. These benefits could be due to the inhibition of the TGF- β /Smad signaling pathway, leading to reduced cardiac hypertrophy [41].

Effects of hydrogen treatment on the heart: reports from ex vivo studies

Heart transplant is one of the causes of I/R injury. A period of cold ischemia due to tissue matching and transportation is inevitable after retrieval of the heart. The organ preservation solutions have been found to only partially alleviate ischemia injury during storage [42]. In isolated hearts mounted on the Langendorff apparatus for aerobic perfusion, it has been shown that preservation in H2-rich with Histidine - Tryptophan - Ketoglutarate (HTK) significantly improved cardiac function in a hydrogen concentration-dependent manner as well as attenuated the microscopic pathology of the myocardium [43]. The protective mechanism of hydrogen was via inhibition of cold ischemia-induced up-regulation of oxidative stress, inflammation mediators, and apoptosis (Figs. 1 and 2) [43]. In a study using syngeneic heart grafts from elderly donors or allografts from adult donors and exposing them to prolonged cold preservation, the cardiac grafts immersed in the cold-water bath with hydrogen showed ameliorated myocardial injury [26]. The grafts exhibited inflammatory responses, including neutrophil infiltration, and increases in pro-inflammatory cytokines and chemokines, whereas hydrogen induced lower levels of mitochondrial damage and higher adenosine triphosphate content [26]. In a recent study using an isolated heart model with I/R injury, perfusion with HRW resulted in a decrease in apoptosis by up-regulating the JAK-STAT and PI3K-AKT signaling pathways (Fig. 2) [44]. All of these ex vivo reports are comprehensively summarized in Table 4.

Effects of hydrogen treatment on the heart: Evidence from clinical studies

Because molecular hydrogen has various potential therapeutic effects, it has been investigated in various pathophysiological conditions in clinical settings. It has been suggested that hydrogen has an effective therapeutic approach in the heart for improving outcomes associated with I/R injury. A randomized single-center prospective, open-label, blinded study to investigate the feasibility and effects of hydrogen on the infarct size and adverse left ventricular (LV) remodeling in patients with ST-elevated MI (STEMI) was conducted after primary percutaneous coronary intervention (PCI) [10]. This first clinical trial showed that hydrogen inhalation during PCI is genuinely feasible, promotes LV reverse remodeling 6 months after STEMI, and improves cardiac function [10]. Another recent clinical trial enrolled

		•						
Study model	Intervention		Major findings				Interpretation	References
	Dose/Duration	Route	Cardiac function/Cardiac injury marker	Oxidative Inflammation stress	Cell death O	thers		
Male Wistar rats MI model Isoproterenol (Iso) twice/subcutane- ously at interval 24 h/200 mg/kg	Hydrogen-rich saline under 0.4 MPa dis- solved in saline for 6 h/5,7.5, 10 mJ/kg/ before Iso administered	£I	↑ LVSP ↓ LVEDP ↑ LV + dP/dt max ↑ LV - dP/dt max ↓ Infarct size ↓ CK-MB	↓ MDA ↓ IL-6 ↓ 8-OHdG↓ TNF-α ↑ SOD	$\leftarrow \rightarrow$	Na +-K +-ATPase activity Ca2 +-ATPase activity	Hydrogen-rich saline exerted cardioprotec- tive effects against isoproterenol-induced MI by reducing oxidative stress and inflammation	[28]
Male SD rats MI model Ligated LAD	Hydrogen-rich saline under 0.8 MPa concentration of H ₂ 1.6 ppm/10 mJkg/daily for 3 wk and additional 30 min before running training	Oral	↑ LVSP ↓ LVEDP ↑ LV + dP/dt ↑ LV - dP/dt ↑ HC ↓ Infarct size ↓ CTnI ↓ h-FABP Myocardial ultrastructural lesion − Normal structure − Sarcomere and Z line regularly arranged and had no outspread phe- normenon	↓ MDA – ↓ CAT ↑ SOD ↑ GSH ↑ T-AOC	< ↓ < < I	mt DNA repairase OGG1 > TOM 40 TIM 23 TIM 23	A combination of hydrogen-rich saline with exercise ameliorated cardiac dysfunction and injury by reducing oxidative stress and promoting mitochondrial DNA repair	[62]
Male Wistar rats MI model Ligated LAD	2% H ₂ /24 h after the ligation	Inhalation	↓ LVDd ↓ LVDs ↑ EF ↑ FS ↓ Infarct size ↓ BNP ↓ TnI	↓ MDA ↓ IL-1 β ↓ 8-OHdG↓ inflammation ↓ ROS cell	↓ TUNEL - ↓ NLRP3 ↓ Cleaved- Caspase-1 ↓ ASC ↓ GSDMD		Inhalation of 2% H ₂ gas alleviated myocar- dial infarct size and promoted heart func- tion in AMI rats by attenuating inflamma- tion, oxidative stress and pyroptosis	[30]

Table 3 (continued)	(
Study model	Intervention		Major findings			Interpretation	References
	Dose/Duration	Route	Cardiac function/Cardiac Oxidative Inflammation injury marker stress	Cell death Others			
Male SD rat CIH model 20 times/h for 8 h/ day	H ₂ .O ₂ mixture (67% hydrogen and 33% oxy gen)/2 h/day for 35 d	Inhalation	$\uparrow EF \qquad \downarrow MDA \\ \downarrow LVEDd \qquad \downarrow NOX2 \\ \downarrow Collagen volume fraction \uparrow SOD \\ in LV \qquad \uparrow GSH$	 ↓ Apoptotic- cell BAX BAX ↓ Caspase 3 ↓ CHOP ↓ P-INE ↓ P-INE ↓ ATF 4 ↓ ATF 6 ↓ XBP 1 		Treatment with an H ₂ -O ₂ mixture reduced cardiac dysfunction by reducing oxidative stress, ER stress and apoptosis	[31]
Male BALB/c mice Radiation model Radiated with ⁶⁰ Co-gamma rays with a dose rate oi 7 Gy Radiated with ⁶⁰ Co-gamma rays with a single dose of 15 Gy locally to the heart	Hydrogen-rich saline under 0.4 MPa dis- solved in saline for 6 h/NA/24 h before f radiation Assessment at 100 d	Oral		- ↑ Survival ra	2	Hydrogen-rich saline increased survival rate and alleviated myo- cardial degeneration caused by radiation- induced myocardial injury through a reduction of oxida- tive stress and DNA damage	[33]
Radiated with ⁶⁰ Co-gamma rays with a single dose of 6 Gy	Assessment at 4 h Assessment at 24 h		- ↑ SOD - ↑ SOD - ↑ GSH - ↓ MDA	UNA dami	ag		
Apolipoprotein E-deficient (apoE ^{-/-}) mice	Hydrogen-rich saline under 0.4 MPa/4.3 ml/ day/6 mo	Oral	- J 4-HNE –	- U Atheroscle aorta	rotic lesion in the	Hydrogen-rich saline decreased oxidative stress and prevented the formation of ath- erosclerosis	[35]

Study model Intervention Bale Wild type Dose/Duration Route Male Wild type 2% H2/ Inhalation WT) 60 min at the 1 h and 6 h Inhalation Sepsis model time points after the points after the puncture (CLP) Procedure Male Nrf2 knockout procedure Procedure Male Nrf2 knockout Time points after the points after the puncture (CLP) Procedure Male Nrf2 knockout Procedure Procedure Male Wistar rat Hydrogen-rich Procedure Male Wistar rat Hydrogen-rich Procedure Male Wistar rat Hydrogen-rich Procedure Poxorubicin model Saline 4 atm for 1 h (IP 2 mg/s) Rg30 d						
Dose/DurationRouteMale Wild type2% H2/Inhalation(WT)60 min at the 1 h and 6 hSepsis modelInhalationSepsis modeltime points after the60 min at the 1 h and 6 hInhalationSepsis modeltime points after thefor min at the 1 h and 6 hInhalationReal ligation andprocedureprocedurefor model/CLPMale Nrf2 knockoutfor model/CLPfor model/CLPfor model/CLPMale Nrf2 knockoutfor model/CLPfor model/CLPfor model/CLPMale Wistar ratHydrogen-richIPDoxorubicin modelsaline 4 atm for 1 hfor kg/30 d(IP 2 mg/kg,(0.55 mmol/I)/10 ml/every 3 days for kg/30 d	Maj	jor findings			Interpretation	References
Male Wild type 2% H2/ Inhalation (WT) 60 min at the 1 h and 6 h 5 Sepsis model time points after the 1 Cecal ligation and procedure 1 puncture (CLP) procedure 1 Male Nrf2 knockout 1 1 (KO) mouse model/CLP 1 1 Male Nrf2 knockout 1 1 1 (KO) mouse model/CLP 1 1 Male Nrf2 knockout 1 1 1 (KO) mouse 1 1 1 Male Nrf2 knockout 1 1 1 Male Nrf2 knockout 1 1 1 Male Wistar rat Hydrogen-rich 1 1 Male Wistar rat Hydrogen-rich 1 1 Doxorubicin model saline 4 atm for 1 h 1 (IP 2 mg/kg, 0 0.55 mmol/1)/10 ml/ 1	Route Car	diac function/Cardiac ry marker	Oxidative Inflammation stress	Cell death Others	1	
Male Nrf2 knockout (KO) mouse model/CLP Zinc protoporphyrin IX (ZnPPIX) prior to cecal ligation and puncture (CLP) Male Wistar rat Hydrogen-rich Doxorubicin model saline 4 atm for 1 h (IP 2 mg/kg, (0.55 mmol/1)/10 ml/ every 3 days for kg/30 d	Inhalation – and 6 h r the		- 10H↑	- ↑ RCR ↑ ATP ↑ MMP ↑ Mfn2 ↑ PGC-1 α ↓ Drp1	Inhaled H ₂ attenu- ated mitochondrial dysfunction associ- ated with severe sepsis by promoting antioxidants through	[37]
Zinc protoporphyrin IX (ZnPPIX) prior to cecal ligation and puncture (CLP) Male Wistar rat Hydrogen-rich IP Doxorubicin model saline 4 atm for 1 h (IP 2 mg/kg, (0.55 mmol/l)/10 ml/ every 3 days for kg/30 d			ГОН↓	↓ RCR ↓ ATP ↓ MMP ↓ Mfn2 ↓ PGC-1 α ↑ Drp1	increased HO-1 and Nrf2	
Male Wistar rat Hydrogen-rich IP Doxorubicin model saline 4 atm for 1 h (IP 2 mg/kg, (0.55 mmol/1)/10 ml/ every 3 days for kg/30 d			1 HOI	↑ RCR ↑ ATP ↑ MMP ↑ Mfn2 ↓ Drp1 α		
30 days)	I h 0 ml/ ↑ ↑EI 0 ml/ ↓ BI	r F S NP	$\downarrow \text{MDA} \downarrow \text{IL-6} \\ \downarrow \text{ROS} \downarrow \text{IL-1} \beta \\ \downarrow \text{TNF-\alpha} \\ \downarrow \text{TNF-\alpha} \end{cases}$	↓ TUNEL ↑ Survival ↓ Bax/Bcl2 ↓ Cleaved caspase 3 ↓ Cleaved caspase 8	Hydrogen-rich saline improved survival rate and reduced cardiac dysfunction against chemotoxicity by reducing oxidative stress, inflammation, and apoptosis	[12]

Table 3 (continued)

Table 3 (continued	(1						
Study model	Intervention		Major findings			Interpretation	References
	Dose/Duration	Route	Cardiac function/Cardiac injury marker	Oxidative Inflammation stress	n Cell death Others		
Male SD rat Cardiac hypertropl model Abdominal aortic constriction (AAC)	Hydrogen-rich saline ny (0.6 mmol/1)/Low dose:3 ml/kg/6 wk	đ	L HW/BW L AW/BW L LVW/BW AW/HW L ATrial fibrosis L CVF L LVPWd L LVPWd T FS L AF incidence J AF duration	- ↔ IL-6 ↓ JAK ↓ STAT3	1	Hydrogen-rich saline reduced pressure ove load-induced cardiac hypertrophy in Rats via suppression of inflammation and the JAK/STAT3 pathway leading to reduced cardiac dysfunction and remodeling	17]
	High dose:6 ml/kg/6 w	41 ¥	↓ HW/BW ↓ AW/BW ↓ LVW/BW ↑ AW/HW ↓ Atrial fibrosis ↓ CVF ↓ HR ↓ LVAWd ↓ LVPWd ↑ FS ↓ AF incidence ↓ AF duration	- ↓ IL-6 ↓ JAK ↓ STAT3	1		
Male SD rat Cardiac hypertropl model Abdominal aortic constriction (AAC)	Hydrogen-rich saline ny under 0.4 MPa dis- solved in saline for 6 (0.6 mmol/1)/3 or 6 rr kg/6 wk	h lg/	L HW/BW L LVW/BW L fibrosis L CVF L BNP L ANP	- JL-6 JJK JSTAT3	↓ TUNEL – staining cells	Hydrogen-rich saline reduced pressure overload-induced cardiac hypertrophy in rats by decreasing apoptosis and sup- pressing inflammatic via the JAK-STAT signaling pathway	[18] n

Study model	Intervention		Major findings			Interpretation	References
	Dose/Duration	Route	Cardiac function/Cardiac injury marker	Oxidative Inflammation Cell de stress	ath Others		
Wistar-Kyoto rat Cardiac hypertroph model Spontaneously hypertensive rats (SHR) Male Spontaneousl; hypertensive rats (SHR) Hypertensive mode	Hydrogen-rich saline y under 0.4 MPa dis- solved in saline for 4 h (0.6 mmol/1)/6 ml/ kg/3 mo yHydrogen-rich saline under 0.4 MPa dis- solved in saline for t 1 4 h (0.6 mmol/1)/6 ml/ kg/10 wk	은 일	↓LVW/BW ↓HW/BW ↓LVM/BW Cardiomyocytes were arranged in an orderly manner ↓CVF	$\downarrow \text{ serum } \downarrow \text{ IL-6} \qquad - \qquad MDA \qquad \downarrow \text{ IL-1} \not \beta \qquad - \qquad \text{IL-1} \not \beta \qquad - \qquad \text{LV} \qquad \downarrow \text{ LV} \qquad \downarrow \text{ LV} \qquad \downarrow \text{ TNF-}\alpha \qquad - \qquad \text{MDA} \qquad \downarrow \text{ LV} \qquad \text{ROS} \qquad - \qquad $	 ↓ NADPH oxidase activity ↓ Nox2 ↔ Nox4 ↑ Activities of complex I and III ↑ Electron-coupling capacity between complexes I and III ↑ Electron-coupling capacity between complexes II and III ↑ Electron-coupling capacity ↓ NF-κ B ↓ NF-κ B ↓ Ang II ↓ PICP ↓ PICP ↓ PIINP ↓ PICP ↓ PIINP ↓ PICP ↓ PIINP ↓ PICP ↓	Hydrogen-rich saline treatment attenu- ated left ventricular hypertrophy via reduc- ing oxidative stress, inflammatory process, and angiotensin II, and preserving mitochon- drial function in left ventricle Hydrogen-rich saline reduced oxidative stress and improved myocardial collagen content through inhi- bition of the TGF- $\beta/$ Smad signaling pathway, leading to a reduction in cardiac hypertrophy	[13]
					\leftrightarrow Smad7		

🖄 Springer

[able 3 (continued)

ventricle, LVAWd LV anterior wall thickness at end-diastole, LVEDP left ventricular end-diastolic pressure, LV dp/dr rate of pressure change in left ventricle, LVSP LV systolic pressure, LVDP ing transcription factor, ATP adenosine triphosphate, AST aspartate transaminase, AW atial weight, Bax apoptosis regulator Bax, Bcl-2 apoptosis regulator Bcl-2, BNP natriuretic peptide, BW body weight, CAT catalase, CK-MB creatinine kinase-MB, CHOP the proapoptotic transcriptional factor C/EBP homologous protein, CVF collagen volume fraction, DNA deoxyribonucleic acid, DrpI dynamin-related protein1, EF ejection fraction, ER endoplasmic reticulum, FS fractional shortening, GPx glutathione peroxidase, GSDMD gasdermin D, GRP78 glucose-regulated protein 78, GSH Glutathione peroxide, GST glutathione-S-epoxide transferase, HC heart coefficient, HOI heme oxygenase 1, h-FABP heart-type fatty acid binding protein, HRS hydrogen-rich ness in systole, JAK/STAT Janus kinase/signal transducer and activation of transcription signal pathway, JNK c-Jun-N-terminal Kinase, LAD left anterior descending coronary artery, LV left LV diastolic/developed pressure, LVEDd LV endodiastolic diameter, LVE3d LV endosystolic diameter, LVDd LV internal diameter in diastole, LVDs LV internal diameter in systole, LVPWd LV aldehyde, MI myocardial infarction, MMP mitochondrial membrane potential, MPO myeloperoxidase, MV mitral valve, NADPH nicotinamide adenine dinucleotide phosphate, NF-K B nuclear trite, p phosphorylation, PERK protein kinase RNA-like endoplasmic reticulum kinase, PICP procollagen type-I C-terminal peptide, PGC-Ia peroxisome proliferator-activated receptor-gamma coactivator-1a, PIINP procollagen typer III N-terminal propeptide, PW posterior wall thickness, p38: 38-kDa protein, RCR respiratory control ratio, ROS reactive oxygen species, SBP systolic 4CE angiotensin converting enzyme, AF atrial fibrillation, Ang II angiotensin II, ANP atrial natriuretic peptide, ASC apoptosis-associated speck-like protein containing a cARd, ATF activatsolution, HR heart rate, HW heart weight, IL interleukin, IP intraperitoneal, IRE inositol-requiring enzyme, IV5d intraventricular septum thickness in diastole, IV5s intraventricular septum thickness posterior wall thickness in diastole, LVW left ventricular weight, IVS intraventricular septum diameter, MAP mean arterial pressure, MCP monocyte chemoattractant protein-1, MDA malondifactor kappa B, NLRP3 Nod-like receptor (NLR) family pyrin domain containing protein 3, NOX Nox protein, OGI 8-oxoguanine DNA glycosylase, OH hydroxyl radicals, ONOO- peroxynipressure, SD: Sprague Dawley rat, SOD superoxide dismutase, SGD serum and glucose deprivation, Smad small mothers against decapentaplegic, SpO2 pulse oximetry, SS segment shortening, FAOC total antioxidant capacity, Tei index (IVCT+IVRT)/ET, TGF transforming growth factor, TIMP tissue inhibitors of metalloproteinases, Tim23 translocase of inner mitochondrial membrane 23, TNF tumor necrosis factor, TnI troponin I, Tom20 translocase of outer membrane 20, Tom40 translocase of the outer mitochondrial membrane 40, troponin I, TNF-a tumor-necrosis factor-a, XBP X-box binding protein, 4-HNE 4-hydroxyl-2-nonenal, 8-OHdG 8-hydroxydeoxyguanosine, a SMA alpha-smooth

	Refer-	ences	n [26] viron- injury infiltra- ory ory ory kine tenuated fitive fittied fortified fortified for or fro	nged chemia- thion s, $a H_2$ bendent		
	Interpretation		Cold preservation i hydrogen-rich en ment ameliorated cardiac by inhibiting the i tion of inflammat cells and upregula of pro-inflammatur cytokines, chemo mRNAs, reduced tive stress, and at inflammation Hydrogen as an add of HTK for cardin	subjected to prole cold ischemia by inhibiting cold iss induced up-regult of oxidative stress inflammation mee and apoptosis in a concentration dep manner		
		Others	↑ PGC-1 α ↑ NRF-1 ↑ PPAR-γ ↓ Tissue ATP level	I	1	1
		Cell death		↓ Apoptotic index ↓ BAX ↓ caspase 3 ↑ Bcl-2	↓ Apoptotic index ↓ BAX ↓ caspase 3 ↑ Bcl-2	↓ Apoptotic index ↓ BAX ↓ caspase 3 ↑ Bcl-2
		Inflammation	$\downarrow \text{IL-1 } \beta$ $\downarrow \text{TNF-}\alpha$ $\downarrow \text{ICAM-1}$ $\downarrow \text{ICAM-1}$ $\downarrow \text{ICOS}$	\downarrow TNF- α	↓ IL-6 ↓ TNF-α	↓ IL-6 ↓ TNF-α
		Oxidative stress/Anti- oxidant	↑ HOI	↓ MDA ↓ 8-OHdG ↑ SOD	↓ MDA ↓ 8-OHdG ↑ SOD	↓ MDA ↓ 8-OHdG ↑ SOD
s from ex vivo studies	Major findings	Cardiac function/injury marker	↑ Transplant score Less macroscopic myo- cardial damage Less PMN infiltration ↓ CPK ↓ cTnI	↑ LVDP* ↑ LV + dP/dt max ↑ LV-dP/dt max ↑ coronary flow ↓ re-beating time ↓↓↓ myocardial edema and disarrayed	↑ LVDP* ↑ LV + dP/dt max ↑ LV-dP/dt max ← > coronary flow ↓ tre-beating time ↓↓ myocardial edema and disarrayed	$\leftrightarrow LVDP^* \\\leftrightarrow LV + dP/dt max \\\leftrightarrow LV-dP/dt max \\\leftrightarrow coronary flow \downarrow e-beating time$
treatment on the heart: report:	Intervention/Dose/Route/	Duration	Hydrogen-rich water (1.27 μg/l)/NA/immersed in the water bath at 4 °C/6 or 8 h Hydrogen-rich HTK under 0.4 MPa/3-4 ml/inject via aorta then immersed in 50 ml/6 h	H ₂ : HTK = 1:1	H ₂ : HTK = 1:2	H ₂ : HTK = 1:3
Table 4 Effects of hydrogen	Study model		Female and male Lewis rats (I/R model) Heterotopic heart trans- plantation using synge- neic grafts from older donors or BN allografts Cold storage 6 h for grafts from syngeneic older Lewis donors or BN male SD rats Heterotopic heart trans- plantation (I/R model)	6 h/30 min		

Duration Cardiac function/injury Oxidative stress/Anti- oxidant Inflammation Cell death Others Male Wistar albino rats Hydrogen-rich water - 1 1-1 1 25 DEPs Hydrogen-rich vater Male Wistar albino rats Hydrogen-rich water - - 1 1-1 1 25 DEPs Hydrogen-rich vater NAperfusion 20 min (0.6 mmol/L, PH 7.3)/ - - 1 1-1 1 25 DEPs Hydrogen-rich vater Reperfusion 20 min NA/perfused after reverse - 1 1-1 1 25 DEPs Hydrogen-rich vater Reperfusion 20 min NA/perfused after reverse - - 1 1-1 1 25 DEPs Hydrogen-rich vater Reperfusion 20 min NA/perfused after reverse - - 1 1-1 1 25 DEPs Hydrogen-rich vater 1 Reperfusion 20 min NA/perfused after reverse - - 1 1 1 25 DEPs Hydrogen-rich vater 1 Reverse - - - - 1 1 25 1 </th <th>Study model</th> <th>Intervention/Dose/Route/</th> <th>Major findings</th> <th></th> <th></th> <th></th> <th></th> <th>Interpretation</th> <th>Refer-</th>	Study model	Intervention/Dose/Route/	Major findings					Interpretation	Refer-
Male Wistar albino ratsHydrogen-rich water↑P-JAK2/↓↓↓ 25 DEPsHydrogen-rich vI/R model(0.6 mmol/L, PH 7.3)/(0.6 mmol/L, PH 7.3)/JAK2Apoptosisdecreased apolI/R model(0.6 mmol/L, PH 7.3)/TAT2Apoptosisdecreased apolI/R model(0.6 mmol/L, PH 7.3)/TAT2Apoptosisdecreased apolI/R model(0.6 mmol/L, PH 7.3)/TAT2Apoptosisdecreased apolI/R modelNA/perfusion 20 minthethethetheReperfusion 20 minNA/perfusedTAT3Apoptosisdecreased apolReperfusion 20 minNA/perfusedTAT3Apoptosisdecreased apolReperfusion 20 minNA/perfusedSTAT3Apoptosisdecreased apolReperfusion 20 minNA/perfusedSTAT3Apoptosisdecreased apolNA/perfusedSTAT3AKTSTAT3signaling pathtered at room temperaturefor 20 min, and reperfusesignaling pathsignaling pathsion was performed for20 min20 mindecreaseddecreased20 min20 mindecreaseddecreaseddecreaseddecreasedNA/PERFUNCTNA/PERFUNCTNA/PERFUNCTdecreaseddecreasedNA/PERFUNCTNA/PERFUNCTNA/PERFUNCTdecreaseddecreasedNA/PERFUNCTNA/PERFUNCTNA/PERFUNCTdecreaseddecreasedNA/PERFUNCTNA/PERFUNCTNA/PERFUNCTdecreaseddecreased <th></th> <th>Duration</th> <th>Cardiac function/injury marker</th> <th>Oxidative stress/Anti- oxidant</th> <th>Inflammation</th> <th>Cell death</th> <th>Others</th> <th>1</th> <th>ences</th>		Duration	Cardiac function/injury marker	Oxidative stress/Anti- oxidant	Inflammation	Cell death	Others	1	ences
	Male Wistar albino rats I/R model Reperfusion 20 min	Hydrogen-rich water (0.6 mmol/L, PH 7.3)/ NA/perfused after reverse perfusion for 10 min, the treatment was adminis- tered at room temperature for 20 min, and reperfu- sion was performed for 20 min	1	1	↑P.JAK2/ JAK2 ↑P-STAT3/ STAT3	↓ Apoptosis ↑P-AKT/ AKT	↓ 25 DEPs	Hydrogen-rich water decreased apoptosis by up-regulation of the JAK STAT and PI3K-AKT signaling pathway and alleviated I/R in rats	[4]

posterior wall thickness in diastole, LVW left

systolic pressure, LVDP* LV developed pressure (LVSP-LVDP), LVEDd LV endodiastolic diameter, LVESd LV endosystolic diameter, LVPWd LV

malondialdehyde, NRF-I nuclear respiratory factor 1, $PGC-1 \alpha$: peroxisome proliferator-activated

SD Sprague Dawley rat, SOD superoxide

phil, *PPAR-y*: peroxisome proliferator-activated receptor γ ,

ventricular weight, MDA

sine

receptor-gamma coactivator-1 α , *PMN*: polymorphonuclear neutro-

Tnl troponin I, 8-OHdG 8-hydroxydeoxyguano-

factor- α ,

tumor-necrosis

 $TNF-\alpha$

dismutase,

🖄 Springer

five comatose postcardiac arrest patients [45]. The study demonstrated that oxidative stress was reduced while the cytokine levels were unchanged in cardiogenic patients. However, the oxidative stress was unchanged in septic patients, but the cytokine levels were diminished. Nevertheless, the effect of inhaled hydrogen on oxidative stress and cytokines remained inconclusive due to potential methodological weaknesses [45].

Various in vivo and in vitro studies demonstrate hydrogen's ability to reduce inflammation and antiapoptotic properties. A randomized, double-blind, controlled trial showed hydrogen increases antioxidant capacity, thereby reducing inflammatory responses and apoptosis in healthy adults [46].

Because metabolic syndrome remains a serious concern, those patients are at increased risk of developing cardiovascular disease. Hydrogen decreases serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and apo-B levels. Moreover, hydrogen therapy was shown to improve high-density lipoprotein (HDL) function and reduced oxidative stress in patients with metabolic syndrome [47, 48]. All of these clinical studies are comprehensively summarized in Table 5. The potential mechanism of action of molecular hydrogen on selective antioxidants, anti-inflammation, and alleviating cell death are demonstrated in Figs. 1 and 2.

Conclusion and future perspectives

Molecular hydrogen has versatile therapeutic effects due to its small size. It can penetrate the cell membrane and affect metabolism in the body. Molecular hydrogen can be administered via several methods including inhalation, drinking of hydrogen-rich water, injection with hydrogen-rich-saline, and bathing of an organ in a preservation solution. Cumulative evidence from in vivo, in vitro, ex vivo, and clinical studies demonstrated the possible mechanisms underlying the potential benefits of molecular hydrogen, including those increasing antioxidants and decreasing oxidative stress, cell death, metabolism, and inflammation.

For future research, searching for the mechanism of molecular hydrogen to reduce ventricular dilation, decrease wall stress, and reverse adverse cardiac remodeling should be thoroughly investigated. In addition, future clinical studies investigating oxidative stress and inflammatory pathways may provide information to improve the current treatment of various inflammatory diseases, including Kawasaki disease, COVID-19 infection, a multisystem inflammatory syndrome in children or adult (MIS-C or A). Although various in vitro and in vivo models have demonstrated the beneficial effects of molecular hydrogen treatment on the heart,

Study model	Intervention		Major finding	S			Interpretation	References
	Dose/Duration	Route	Cardiac function/ injury marker	Oxidative stress/Antioxi- dant	Inflammation	Others		
20 adult patients with an initial diagnosis of STEMI also undergoing primary percutaneous coronary intervention	H ₂ (1.3% H ₂ with 26% oxygen/)at emergency room and continued during primary PCI	Inhalation via face mask	\leftrightarrow cardiac salvage iindex \leftrightarrow ST- segment change \leftrightarrow Angio- graphic myocardial blush score \rightarrow CK <i>Hemody-</i> <i>namic</i> <i>ment (at 6</i> <i>mo)</i> \leftrightarrow LVESVi \uparrow LVSVi \uparrow LVFF	1	1	No adverse event	H ₂ gas was feasible, safe and improved the recov- ery of LV function dur- ing reoxygenation after anoxia in the isolated perfused heart	[01]
5 adult patients with post- cardiac arrest syndrome• Sepsis post-CA (n = 1)	H ₂ (2% H ₂ with titrated oxygen)/18 h	Inhalation via using ventilator system	· 1	↓ BAP/dROM ↔ 8-OHdG ↔ HEL	↓ IL-6 ↓ TNF-α	I	Oxidative stress was reduced, and cytokine levels were unchanged in cardiogenic patients, whereas oxidative stress was unchanged and	[45]
• Cardiogenic post-CA (<i>n</i> = 4)			I	$\downarrow BAP/dROM \downarrow B-OHdG \downarrow HEL (n = 1) \leftrightarrow LPO$	$\leftrightarrow \text{ IL-6 } (n=3)$ $\leftrightarrow \text{ TNF-}\alpha$	I	cytokine levels were diminished in the septic patient. The effect of inhaled H_2 oxidative stress and cytokines remained indefinite due to potential methodo- logical weaknesses	
38 healthy adults	Hydrogen-rich water/dose: 1.5L/d/4 wk	Oral		↔ BAP ↔ dROM ↔ 8-OHdG	¢.π-6	↓ Apoptotic cells (Annexin V+ DAP1+) ↓ CD14 ↓ NF-κ B	Hydrogen-rich saline increases antioxidant capacity thereby reducing inflammatory responses and apoptosis in healthy adults	[46]

Table 5 Effects of Hydrogen treatment on the heart: Reports from clinical studies

lable 5 (continued)								
Study model	Intervention		Major finding	SS			Interpretation	References
	Dose/Duration	Route	Cardiac function/ injury marker	Oxidative stress/Antioxi- dant	Inflammation	Others		
• Age≥30 y				↓ BAP ↓ dROM ↓ 8-OHdG				
20 adult patients with potential metabolic syndrome	Hydrogen-rich water/dose: 1.5–2 L/d/8 wk			↑ SOD	L TBARS in urine	↑ HDL-C ↓ TC/HDL-C	Hydrogen-rich saline decreases serum TC/ HDL-C levels, improves HDL-C level, and reduces oxidative stress in patients with potential metabolic syndrome	[47]
20 adult patients with potential metabolic syndrome	Hydrogen-rich water/dose: 0.9–1 L/d/10 wk			↑ SOD	↓ TNF-α	↓ TC ↓ LDL-C ↓ apo B 100 ↓ apo E ↑ HDL function	Hydrogen-rich saline decreases serum TC and LDL-C and apo B levels, improves HDL function, and reduces oxidative stress in patients with potential metabolic syndrome	[48]
ano anolinonrotein BAP	viological antioxidant notentia	al CA cardiac arrest syndr	ome <i>CK</i> creati	nine kinase IV le	ft ventricle HDL-C	high-density linon	rotein cholesterol dROMs de	rivatives of

apo apolipoprotein, *BAP* biological antioxidant potential, *CA* cardiac arrest syndrome, *CK* creatinine kinase, *LV* left ventricle, *HDL-C* high-density lipoprotein cholesterol, *dKOMs* derivatives of reactive oxygen metabolites, *HEL* N-hexanoyl-lysine, *IL* interleukin, *LPO* lipid hydroperoxide, *LDL-C* low-density lipoprotein cholesterol, *LVEDV*; LV end-diastolic volume index, *LVSVi* LV end-systolic volume index, *LVSVi* LV stroke volume index, *LVEYi* LV estocordial infarction, *PCI* percutaneous coronary intervention, *SOD* superoxide dismutase, *STEMI* ST-elevated MI, *TBARS* thiobarbituric acid reactive substances, *TC* total cholesterol, *TNF-a* tumor-necrosis factor-*a*

clinical investigations are still limited. Future large-scale randomized control trials are needed to determine the crucial clinical impact of using hydrogen as a therapy, and to verify the efficacy and safety of clinical interventions with molecular hydrogen to warrant its use and to improve medical treatment in this field.

Acknowledgements This work was supported by the NSTDA Research Chair Grant from the National Science and Technology Development Agency Thailand (NC), the Distinguished Research Professor Grant from the National Research Council of Thailand (N42A660301 to SCC), and the Chiang Mai University Center of Excellence Award (NC).

Author contributions KS, SCC and NC: conceptualization. KS: wrote the original manuscript. RS, SCC and NC: edited the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by National Science and Technology Development Agency (Research Chair Grant). National Research Council of Thailand (Distinguished Research Professor Grant). Chiang Mai University (Center of Excellence Award).

Availability of data and material Enquiries about data availability should be directed to the authors.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

References

- 1. Dixon BJ, Tang J, Zhang JH (2013) The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance. Med Gas Res 3:10
- Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8:E521–E531
- Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K et al (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694
- Ohta S (2012) Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim Biophys Acta 1820:586–594
- Sun Q, Kang Z, Cai J, Liu W, Liu Y, Zhang JH et al (2009) Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp Biol Med (Maywood) 234:1212–1219
- Song D, Liu X, Diao Y, Sun Y, Gao G, Zhang T et al (2018) Hydrogen-rich solution against myocardial injury and aquaporin expression via the PI3K/Akt signaling pathway during cardiopulmonary bypass in rats. Mol Med Rep 18:1925–1938
- LeBaron TW, Kura B, Kalocayova B, Tribulova N, Slezak J (2019) A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules 24:2076

- Ohta S (2014) Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther 144:1–11
- Tamura T, Hayashida K, Sano M, Onuki S, Suzuki M (2017) Efficacy of inhaled HYdrogen on neurological outcome following BRain Ischemia During post-cardiac arrest care (HYBRID II trial): study protocol for a randomized controlled trial. Trials 18:488
- Katsumata Y, Sano F, Abe T, Tamura T, Fujisawa T, Shiraishi Y et al (2017) The effects of hydrogen gas inhalation on adverse left ventricular remodeling after percutaneous coronary Intervention for ST-elevated myocardial infarction—first pilot study in humans. Circ J 81:940–947
- Nakao A, Kaczorowski DJ, Wang Y, Cardinal JS, Buchholz BM, Sugimoto R et al (2010) Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both. J Heart Lung Transplant 29:544–553
- 12. Gao Y, Yang H, Fan Y, Li L, Fang J, Yang W (2016) Hydrogenrich saline attenuates cardiac and hepatic injury in doxorubicin rat model by inhibiting inflammation and apoptosis. Mediators Inflamm 2016:1320365
- Yu YS, Zheng H (2012) Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats. Mol Cell Biochem 365:233–242
- 14. Xie Q, Li XX, Zhang P, Li JC, Cheng Y, Feng YL et al (2014) Hydrogen gas protects against serum and glucose deprivationinduced myocardial injury in H9c2 cells through activation of the NF-E2-related factor 2/heme oxygenase 1 signaling pathway. Mol Med Rep 10:1143–1149
- Yao L, Chen H, Wu Q, Xie K (2019) Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy. Int J Mol Med 44:1048–1062
- 16. Li J, Hong Z, Liu H, Zhou J, Cui L, Yuan S et al (2016) Hydrogen-rich saline promotes the recovery of renal function after ischemia/reperfusion injury in rats via anti-apoptosis and antiinflammation. Front Pharmacol 7:106
- Wang C, Pan Z (2020) Hydrogen-rich saline mitigates pressure overload-induced cardiac hypertrophy and atrial fibrillation in rats via the JAK-STAT signalling pathway. J Int Med Res 48:300060520936415
- Fan Z, Gao Y, Huang Z, Xue F, Wu S, Yang J et al (2018) Protective effect of hydrogen-rich saline on pressure overloadinduced cardiac hypertrophyin rats: possible role of JAK-STAT signaling. BMC Cardiovasc Disord 18:32
- Buckley LF, Libby P (2019) Inhibiting NLRP3 inflammasome activity in acute myocardial infarction: a review of pharmacologic agents and clinical outcomes. J Cardiovasc Pharmacol 74:297–305
- Zhang Y, Sun Q, He B, Xiao J, Wang Z, Sun X (2011) Antiinflammatory effect of hydrogen-rich saline in a rat model of regional myocardial ischemia and reperfusion. Int J Cardiol 148:91–95
- 21. Zhang G, Gao S, Li X, Zhang L, Tan H, Xu L et al (2015) Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats. Sci Rep 5:9858
- 22. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K et al (2008) Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia–reperfusion injury. Biochem Biophys Res Commun 373:30–35
- 23. Gao Y, Yang H, Chi J, Xu Q, Zhao L, Yang W et al (2017) Hydrogen gas attenuates myocardial ischemia reperfusion injury independent of postconditioning in rats by attenuating endoplasmic reticulum stress-induced autophagy. Cell Physiol Biochem 43:1503–1514

- Sakai K, Cho S, Shibata I, Yoshitomi O, Maekawa T, Sumikawa K (2012) Inhalation of hydrogen gas protects against myocardial stunning and infarction in swine. Scand Cardiovasc J 46:183–189
- 25. Noda K, Tanaka Y, Shigemura N, Kawamura T, Wang Y, Masutani K et al (2012) Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration. Transpl Int 25:1213–1222
- Noda K, Shigemura N, Tanaka Y, Kawamura T, Hyun Lim S, Kokubo K et al (2013) A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J Heart Lung Transplant 32:241–250
- 27. Kitakaze M, Asakura M, Kim J, Shintani Y, Asanuma H, Hamasaki T et al (2007) Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet 370:1483–1493
- Jing L, Wang Y, Zhao XM, Zhao B, Han JJ, Qin SC et al (2015) Cardioprotective effect of hydrogen-rich saline on isoproterenol-induced myocardial infarction in rats. Heart Lung Circ 24:602–610
- 29. Feng R, Cai M, Wang X, Zhang J, Tian Z (2019) Early aerobic exercise combined with hydrogen-rich saline as preconditioning protects myocardial injury induced by acute myocardial infarction in rats. Appl Biochem Biotechnol 187:663–676
- Yang H, Liu S, Du H, Hong Z, Lv Y, Nie C et al (2021) Hydrogen attenuates myocardial injury in rats by regulating oxidative stress and NLRP3 inflammasome mediated pyroptosis. Int J Med Sci 18:3318–3325
- 31. Zhao YS, An JR, Yang S, Guan P, Yu FY, Li W et al (2019) Hydrogen and oxygen mixture to improve cardiac dysfunction and myocardial pathological changes induced by intermittent hypoxia in rats. Oxid Med Cell Longev 2019:7415212
- 32. Wang B, Wang H, Zhang M, Ji R, Wei J, Xin Y et al (2020) Radiation-induced myocardial fibrosis: mechanisms underlying its pathogenesis and therapeutic strategies. J Cell Mol Med 24:7717–7729
- 33. Qian L, Cao F, Cui J, Wang Y, Huang Y, Chuai Y et al (2010) The potential cardioprotective effects of hydrogen in irradiated mice. J Radiat Res 51:741–747
- Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 17:48–54
- 35. Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M, Ohta S (2008) Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun 377:1195–1198
- 36. Landesberg G, Levin PD, Gilon D, Goodman S, Georgieva M, Weissman C et al (2015) Myocardial dysfunction in severe sepsis and septic shock: no correlation with inflammatory cytokines in real-life clinical setting. Chest 148:93–102
- Zhang Y, Dong A, Xie K, Yu Y (2020) Protective effects of hydrogen on myocardial mitochondrial functions in septic mice. Biomed Res Int 2020:1568209

- Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52:1213–1225
- Ku HC, Lee SY, Wu YA, Yang KC, Su MJ (2016) A model of cardiac remodeling through constriction of the abdominal aorta in rats. J Vis Exp. https://doi.org/10.3791/54818
- Paolisso G, Galzerano D, Gambardella A, Varricchio G, Saccomanno F, D'Amore A et al (1995) Left ventricular hypertrophy is associated with a stronger impairment of non-oxidative glucose metabolism in hypertensive patients. Eur J Clin Invest 25:529–533
- Liu L, Shi Q, Liu X, Li Y, Li X (2021) Attenuation of myocardial fibrosis using molecular hydrogen by inhibiting the TGF-β signaling pathway in spontaneous hypertensive rats. Am J Hypertens. https://doi.org/10.1093/ajh/hpab159
- 42. Salahudeen AK (2004) Cold ischemic injury of transplanted kidneys: new insights from experimental studies. Am J Physiol Renal Physiol 287:F181–F187
- 43. Tan M, Sun X, Guo L, Su C, Xu Z (2013) Hydrogen as additive of HTK solution fortifies myocardial preservation in grafts with prolonged cold ischemia. Int J Cardiol 167:383–390
- 44. Li L, Liu T, Li X, Liu X, Liu L, Li S et al (2019) Protein chip and bioinformatic analyses of differentially expressed proteins involved in the effect of hydrogen-rich water on myocardial ischemia–reperfusion injury. Int J Med Sci 16:1254–1259
- 45. Tamura T, Suzuki M, Hayashida K, Kobayashi Y, Yoshizawa J, Shibusawa T et al (2020) Hydrogen gas inhalation alleviates oxidative stress in patients with post-cardiac arrest syndrome. J Clin Biochem Nutr 67:214–221
- 46. Sim M, Kim CS, Shon WJ, Lee YK, Choi EY, Shin DM (2020) Hydrogen-rich water reduces inflammatory responses and prevents apoptosis of peripheral blood cells in healthy adults: a randomized, double-blind, controlled trial. Sci Rep 10:12130
- 47. Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N (2010) Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome—an open label pilot study. J Clin Biochem Nutr 46:140–149
- 48. Song G, Li M, Sang H, Zhang L, Li X, Yao S et al (2013) Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome. J Lipid Res 54:1884–1893

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.