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Abstract
Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine 
(SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and 
RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins 
to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the 
predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, 
have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore 
not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus–host interac-
tions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement 
in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review 
the structure–function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals 
against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates 
targeted by SRPKs as potential antiviral therapeutic candidates.
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Introduction

A multitude of studies have consolidated the interaction 
between virus infection and host alternative splicing [1, 2]. 
Serine-arginine (SR) proteins are a class of highly conserved 
splicing factors with one or two RNA recognition motifs 
(RRMs) at the N-terminal and a serine-arginine dipeptide 
highly repetitive domain (RS domain) at the C-terminal 
(Fig. 1A) [3]. As RNA binding proteins, SR proteins are 
critical for the spliceosome maturation, splice site selection, 
alternative splicing and RNA metabolism, including mRNA 
export, translation, localization and nonsense-mediated RNA 

decay [4–8]. Notably, distribution and activities of SR pro-
teins are mainly regulated by the reversible phosphorylation 
within the RS domain [9], and two protein kinase families, 
cdc2-like kinases (CLKs) [10] and serine-arginine protein 
kinases (SRPKs) [11, 12], are predominantly involved in 
the sequential phosphorylation modification process. SRPKs 
phosphorylate SR proteins in the cytoplasm to promote 
their nuclear import and storage in interchromatin speckles, 
whereas CLKs further phosphorylate SR proteins to stimu-
late their translocation and participation in RNA splicing 
(Fig. 1B). Under stress stimuli, SRPKs also translocate to 
the nucleus to regulate the hyperphosphorylation of SR pro-
teins. Therefore, CLKs and SRPKs-mediated phosphoryla-
tion cooperate to precisely mobilize the splicing functions 
of SR proteins.

SRPKs belong to the serine-arginine protein kinase 
family that specifically phosphorylate SR splicing factors 
(SRSFs) and regulate the crucial pre-mRNA splicing pro-
cess [11, 12]. To date, three members of SRPKs have been 
characterized, including the well-investigated SRPK1 (or its 
yeast analogue Sky1p) [13, 14], SRPK2 [15] and the less 
understood SRPK3 [16]. Apart from the prevailed canonical 
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SRSFs (named SRSF1–12 according to their chronological 
order of discovery), other cytoplasmic proteins containing 
the RS domain have been identified as substrates of SRPKs, 
including viral proteins. Phosphorylation is an important 
regulatory mechanism leveraged by viruses to modulate the 
subcellular location, stability and activity of viral proteins 
and their interactions with host cellular proteins, which in 
turn facilitates viral infection and pathogenesis. It is there-
fore reasonable that viruses explore SRPKs-mediated phos-
phorylation of viral proteins or cellular substrates, such as 
SRSFs, to manipulate the alternative splicing of viral and 
host cell mRNA transcripts and to establish an appropriate 
microenvironment for viral replication and assembly. In this 
review, we highlight the complex contributions of SRPKs 
in viral infection and discuss the potential of SRPKs, viral 
proteins targeted by SRPKs, and SRSFs as therapeutic anti-
viral candidates.

Regulation and function of SRPKs

SRPKs consist of two conserved catalytic domains and a 
large non-conserved insert domain that separates the bipar-
tite kinase domains [17]. The insert domain binds directly to 
the cochaperones Aha1 and Hsp40, mediating the dynamic 
interaction between SRPKs and the major heat-shock com-
plex Hsp70/Hsp90 and anchoring SRPKs in the cytoplasm 
(Fig. 1B) [18–20]. Accordingly, cytoplasmically localized 
SRPKs predominantly phosphorylate newly synthesized SR 
proteins and other cytoplasmic RS-like domain-containing 

proteins (e.g., ZO-2, RNF12) [21, 22], and facilitate their 
nuclear import via transportin-SR2 [23, 24]. On the other 
hand, nuclear SRPKs collaborate with CLKs to tightly con-
trol the phosphorylation levels of SR proteins and modulate 
the efficient splicing pattern of several genes [25]. Under 
various external signals, such as osmotic stress [19], growth 
factors [20], cell cycle signals [18] and genotoxic agents 
[26], SRPKs are released from the Hsp70/Hsp90 chaper-
one complex and translocate to the nucleus to stimulate the 
expression of splicing isoforms conducive to cell growth 
via phosphorylation of SR proteins [20, 27], or to regulate 
lamin B receptor (LBR)-mediated chromatin reorganization 
[28, 29]. However, the unbalanced and aberrant increase in 
nuclear SRPKs is generally believed to cause the hyper-
phosphorylation of SR proteins and LBR, leading to splic-
ing factor aggregation, splicing inhibition and chromatin 
segregation from the nuclear envelope [18, 29]. Notably, 
the transient interaction of nuclear matrix-localized SRPK1 
with scaffold attachment factors (SAFB1/2) [30, 31], or the 
RNA binding protein TAF15 [32], in the nucleus impairs 
its enzymatic activity. When exposed to hypoxia, SRPK1 
rapidly dissociates from SAFB1/2 and transfers to the cyto-
plasm, resulting in the dephosphorylation of SRSFs and the 
production of splicing variants.

In addition to these interacting proteins, post transla-
tional modifications, such as phosphorylation, acetylation 
and O-GlcNAcylation, have also been shown to regulate 
the kinase activity and nuclear translocation of SRPKs 
(Fig. 2). For example, casein kinase 2 (CK2) can phos-
phorylate SRPK1 at Ser51 to enhance its catalytic activity 

Fig. 1  SRPKs phosphorylate SR proteins. A Structures of SRPKs 
and SR proteins. SRPKs contain two well-conserved catalytic kinase 
domains, which is separated by a non-conserved insert domain. SR 
splicing factors (SRSFs) consist of one or two RNA recognition 
motifs (RRMs) and a C-terminal RS domain, which is sequentially 
phosphorylated by SRPKs and CLKs for nuclear transport and distri-
bution. B Cytoplasmic SRPKs interact with the cochaperones hsp40/
Aha1 and the hsp90/hsp70 chaperon complex through the insert 

domain (green curve) and phosphorylate SR proteins to promote their 
nuclear translocation and nuclear speckles formation with the help of 
transportin-SR2. In the nucleus, CLKs further phosphorylate SR pro-
teins to facilitate their participation in RNA splicing. Under different 
stresses, SRPKs dissociate from their chaperones and translocate to 
the nucleus to regulate the hyperphosphorylation of SR proteins and 
consequently alternative splicing. P phosphorylation
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approximately sixfold in vitro [33]. Akt phosphorylates 
SRPK2 at Thr492 to promote its nuclear import and regu-
late cell cycle and cell death [34], whereas SRPK1 is phos-
phorylated at Thr326 and Ser587 in response to epider-
mal growth factor signaling [20]. Ribosomal S6 kinase 1 
(S6K1) phosphorylates SRPK2 at Ser494 and cooperates 
with CK1-mediated phosphorylation at Ser497 to pro-
mote lipid biosynthesis [27]. In addition, the DNA dam-
age response kinases ATM/ATR phosphorylate SRPK1 
at Thr326 and Ser408 to adapt genotoxic stress [35]. Fur-
thermore, the acetyltransferase Tip60 acetylates SRPK1 at 
Lys215/258/265/301/318/585/588 to promote its nuclear 
translocation and regulate cisplatin resistance [36, 37]. 
Finally, the O-GlcNAc transferase O-GlcNAcylates 
SRPK2 at Ser490, Thr492 and Thr498, triggering its bind-
ing to importin α and promoting the splicing of lipogenic 
pre-mRNAs [38]. Taken together, the cytoplasmic-nuclear 
shuttling of SRPKs mediated by post-transcriptional modi-
fications represents a key approach for cells to respond to 
different stimuli.

Remarkably, SRPKs, initially considered to be phos-
phorylation factors of SR proteins during mitosis, are 
nowadays gradually being recognized as multifunctional 

proteins involved in a variety of cellular processes [12, 39]. 
Most SR proteins, including typical SRSFs and atypical 
SR splicing factors, have been confirmed to be substrates 
of SRPKs, allowing SRPKs to accomplish various mRNA 
splicing events. In addition, there are more than 100 RS 
or RS-like domain-containing proteins [40], suggesting 
that SRPKs may phosphorylate these potential targets to 
exert diverse cellular functions, such as mRNA matura-
tion, spermiogenesis, cell cycle progression, chromatin 
reorganization and innate immunity [12, 41]. For exam-
ple, SRPKs phosphorylate P1 protamine and LBR to regu-
late spermiogenesis [42]. SRPKs may modulate energy 
homeostasis and glucose/lipid metabolism through phos-
phorylating PPARgamma coactivator-1alpha (PGC-1α) 
[12]. Notably, there is growing amount of evidence that 
SRPKs are involved in various human diseases, includ-
ing neurodegeneration [43], arthritis [44], atherosclerosis 
[45, 46], and cancer [47, 48]. A prominent example is that 
SRPKs-mediated alternative splicing facilitates the tran-
sition of vascular endothelial growth factor (VEGF) from 
anti-angiogenic to pro-angiogenic isoforms, resulting in 
neovascularization and angiogenesis [45, 46]. Addition-
ally, SRPKs are highly expressed in numerous epithelial 

Fig. 2  Regulation of SRPKs. Stimuli-responsive kinases phosphoryl-
ate/acetylate/O-GlcNAcylate SRPKs at different amino acids, mainly 
within the insert domain, leading to the dissociation of SRPKs from 
the Hsp90/hsp70 complex and subsequent cytoplasm-nucleus translo-
cation, which in turn modulate alternative splicing to achieve differ-

ent outcomes. Transient interactions of SRPKs with nuclear SAFB1/2 
and TAF15 further suppress SRPKs activity. Under stress, SRPKs 
can be released from these inhibitory interactions into the cytoplasm. 
P phosphorylation, Ac acetylation
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cancers and regulate several signaling pathways, such as 
NF-κB, TGF-β and PI3K/AKT pathways, to affect tumor 
cell growth and chemoresistance, and are considered as 
prognostic biomarkers and potential therapeutic targets 
[35, 49–51].

Viral manipulation of SRPKs‑mediated 
phosphorylation

There is increasing evidence that, in addition to host cellular 
proteins, viral proteins containing RS or RS-like domains 
are also phosphorylated by SRPKs. Phosphorylation regu-
lates various properties of viral proteins, such as activity, 
stability, subcellular location and interaction with protein 
partners or nucleic acids, and is essential for several critical 
steps of viral life cycle [52–54]. Substantial evidence sug-
gests that different viruses interact with and hijack SRPKs to 
favor their replication, transcription and assembly (Table 1). 
Depending on the specific characteristics of the viral life 
cycle, SRPKs-mediated phosphorylation either induces the 

dissociation of viral proteins from the transcription com-
plex/nucleic acids and their subsequent nuclear-cytoplasmic 
transport for transcription, or provides a suitable environ-
ment for viral capsid assembly and replication (Fig. 3). 
SRPKs also phosphorylate several SRSFs involved in the 
alternative splicing of viral and host cellular mRNAs.

Roles of SRPKs in dsDNA virus infection

Herpesviridae

Herpes simplex virus 1 (HSV-1) is a widely-spread dou-
ble-stranded (ds) DNA virus and a member of the alpha-
herpesvirus sub-family that infects and establishes latency 
in sensory neurons. The viral ICP27 protein, an mRNA 
export factor, plays a central role in regulating HSV-1 
replication and triggering alternative splicing of host and 
viral transcripts [55], and its interaction with SRPK1 is 
one of the major mechanisms preventing host pre-mRNA 
maturation (Fig. 3A) [56]. ICP27 recruits SRPK1 to the 
nucleus, where it is directly phosphorylated by SRPK1. 

Table 1  Manipulation of SRPKs by virus

RT reverse transcribe, / not determined

Genome Virus family Virus SRPK Viral 
targets of 
SRPKs

Biological effect

dsDNA Herpesviridae HSV-1 SRPK1 ICP27 Relocalization of SRPK1 into the nucleus by ICP27 interaction to pro-
mote viral replication

VZV SRPK1 IE4 Phosphorylates IE4 to promote its cytoplasm-to-nucleus shuttling to 
regulate viral gene expression

HCMV SRPK1 / Relocalization of SRPK1 into the cytoplasm to promote egress of viral 
nucleocapsid and spliced RNA

EBV SRPK2 BLRF2 Phosphorylates BLRF2 to promote viral replication
Papillomaviridae HPV1 SRPK1 E1^E4 Inactivation of SRPK1 by E1^E4 to promote viral alternative splicing

E2 Facilitates nucleus-to-cytoplasm translocation of E2
HPV5 SRPK1 E2 Facilitates nucleus-to-cytoplasm translocation of E2
HPV8 SRPK1 E2 Binds to E2 with unclear effect
HPV16 SRPK1 E2 Upregulation of SRPK1 by E2 to promote viral replication

( +)ssRNA Coronaviridae SARS-CoV-1 SRPK1 N Phosphorylates N protein to regulate its translational suppressive activity, 
prevents its aggregation and promote viral assembly

SARS-CoV-2 SRPK1
SRPK2

N Phosphorylate N protein to promote viral replication

Flaviviridae HCV SRPK1 / Colocalizes with core and NS5A to facilitate viral replication
SRPK2 / Colocalizes with core and NS5A to facilitate viral replication; enhances 

de-novo lipogenesis
(-)ssRNA Filoviridae Ebola SRPK1

SRPK2
VP30 Phosphorylate VP30 to promote viral repetitive transcription

ssRNA-RT Retroviridae HIV SRPK1
SRPK2

/ Activate SRSF4 to ensure viral replication; regulate SRSF10 to modulate 
viral RNA splicing

dsDNA-RT Hepadnaviridae HBV SRPK1
SRPK2

HBc Phosphorylate HBc to promote viral DNA synthesis, and to regulate 
pgRNA encapsidation

DHBV SRPK1 DHBc Phosphorylates DHBc with unclear effect
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Concurrently, ICP27 inactivates SRPK1 and induces its 
nuclear accumulation, which in turn causes the hypophos-
phorylation of SRSFs (SRSF1 and SRSF5) and stalls host 
spliceosome assembly, favoring HSV-1 transcripts and 
viral replication [56]. Subsequently, ICP27 dissociates 
from the RNA and acts as a chaperone to promote the 
cytoplasmic export of viral RNA, a process that requir-
ies arginine methylation. The arginine residue within the 
RGG motif (RS-like domain) is methylated by protein 
arginine methyltransferase 1 (PRMT1), the inhibition of 

which causes the hypomethylation of ICP27 and its ear-
lier and more rapidly nuclear export, resulting in defective 
viral replication [57]. Notably, PRMT1-mediated meth-
ylation within the RGG motif also significantly reduces 
the SRPK1-ICP27 interaction and prevents the nuclear 
recruitment of SRPK1 [58, 59]. Mechanistically, the RGG 
motif exhibits a higher binding affinity to SRPK1 than to 
SR proteins, possibly explaining the function of ICP27 in 
preventing nuclear SRPK1 contact with hypophosphoryl-
ated SRSF1 and ensuring accurate splicing of viral genes 

Fig. 3  Viral manipulation of SRPKs-mediated phosphorylation. A 
SRPKs-mediated phosphorylation regulates cytoplasmic-nuclear 
translocation of viral proteins, including HPV E2, VZV IE4, EBV 
BLRF2 and SARS-CoV N proteins. SRPKs also co-operate with viral 
proteins (HSV ICP27 and HPV1 E1^E4) to shut-off host splicing and 
promote viral transcription and replication. B SRPKs regulate VP30-
mediated Ebola virus transcription. The transcription factor VP30 is 
dephosphorylated by PP2A and sequentially forms a complex with 
VP35 and polymerase L to initiate the primary transcription. VP30 
is then phosphorylated by SRPK and dissociates from the RNA and 

polymerase complex to re-initiate the secondary transcription at the 
next transcription start site. C SRPKs regulate HBV capsid assembly. 
SRPKs bind to the CTD of the HBV core protein (HBc) to prevent its 
spontaneous assembly into RNA-filled capsids. The transient binding 
and appropriate phosphorylation by SRPKs allows the HBc-mediated 
adequate and organized HBV core formation, whereas hyperphospho-
rylation of HBc leads to the assembly of empty virions. Other viruses 
that interact with and modulate SRPKs function to favor their infec-
tion are not shown, including HCMV, HIV and HCV. CTD, C-termi-
nal domain; P, phosphorylation; Me, methylation
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with functional coding sequences [60, 61]. Therefore, the 
intricate interactions between ICP27, SRPK1 and PRMT1 
occur sequentially in a specific order to ensure adequate 
viral replication and shut-off of host cellular splicing.

In addition to HSV-1 ICP27, SRPK1 has also been shown 
to interact with viral IE4 protein, an ICP27 homologue 
encoded by another alpha-herpesvirus, varicella-zoster virus 
(VZV) [62]. VZV IE4 protein is a chaperone that exports 
viral mRNA transcripts and interacts with SRSFs (SRSF1, 
SRSF3 and SRSF7) to act as a transcriptional activator. In 
the cytoplasm, SRPK1 binds to and phosphorylates IE4, 
triggering its dissociation from the exported mRNA and its 
cytoplasm-to-nucleus reshuttling (Fig. 3A). Furthermore, 
SRPK1 is involved in the infection of beta-herpesvirus 
human cytomegalovirus (HCMV) [63]. HCMV infection 
progressively triggers the accumulation of cytoplasmic 
SRPK1, which may allow efficient egress of viral nucle-
ocapsids and continued RNA splicing during late HCMV 
infection. Interestingly, SRPK2 has been shown to interact 
with BLRF2, a tegument protein of the gamma-herpesvirus 
Epstein-Barr virus (EBV) [64]. BLRF2 either serves as a 
platform for tegument organization and capsid formation, 
or is essential for EBV replication by an undefined mecha-
nism. SRPK2 phosphorylates BLRF2 within the RS motif 
(Ser148 and Ser150) to promote its nuclear localization, and 
depletion of this phosphorylation abrogates the critical and 
supportive function of BLRF2 in EBV replication. Finally, 
EBV EB2 protein, an ICP27 homologue belonging to the 
mRNA export factor, also interacts with SRSF1, SRSF3, and 
SRSF7 to stimulate cytoplasmic viral RNA accumulation 
and alternative splicing [65, 66]. Whether EB2 cooperates 
with SRPKs to modulate SRSF activity and viral transcrip-
tion is unclear.

Papillomaviridae

Human papillomaviruses (HPVs) are non-enveloped dsDNA 
viruses that infect the oropharynx and anogenital tract to 
cause hyperproliferative warts and neoplasia. Although the 
pathogenesis of different HPV genotypes (Alpha, Beta, and 
Mu) is heterogeneous, the molecular mechanism of the viral 
life cycle is conservative, which is dependent on keratino-
cyte differentiation and requires the intervention of SRSFs-
mediated HPV RNA splicing to balance the production of 
viral early (in undifferentiated cells) and late (in differenti-
ated keratinocytes) proteins [67, 68]. Notably, phosphoryla-
tion of SRSFs by SRPK1 is usurped by some HPVs, and the 
interaction between SRPKs and HPV viral proteins is more 
complicated (Fig. 3A) [69]. During the virion-producing 
(late) phase of HPV, viral protein E4 is highly expressed to 
perform multiple roles, such as inducing cell cycle arrest 
and reorganizing the keratin network. E4 is derived from an 
E1^E4 fusion protein by proteolysis and sequesters various 

kinases, including SRPK1, to regulate late phase viral infec-
tion. It has been showed that HPV1 E1^E4 protein directly 
binds to and inhibits SRPK1 activity, reducing the phospho-
rylation of SRSFs (e.g., SRSF1, SRSF3, SRSF4 and SRSF7) 
and promoting the production of alternative viral RNA iso-
forms [70, 71]. Besides, SRPK1 facilitates the nuclear-to-
cytoplasmic translocation of the HPV1 E2 protein, a viral 
DNA binding factor regulating viral replication and tran-
scription partially through upregulating SRSFs. SRPK1 
phosphorylates the RS domain within the hinge region of 
HPV1 E2, whereas E1^E4 inhibits such phosphorylation and 
retains E2 in the nucleolus to modulate post transcriptional 
expression of viral gene [70]. Likewise, SRPK1-mediated 
phosphorylation also transfers HPV5 E2 protein from the 
nucleus to the cytoplasm [23, 72], or binds to HPV8 E2 
with unclear consequences [69]. In contrast, HPV16 E2 is 
able to enhance the expression of SRPK1 [73], which in turn 
phosphorylates and stabilizes the splicing factor SRSF1 to 
promote the production of viral late proteins and the comple-
tion of the HPV infection cycle in differentiated keratino-
cytes. Further works are required to prove whether E2 binds 
directly to the SRPK1 promoter or interacts indirectly with 
other transcription factors, such as WT1, to activate SRPK1 
expression [74].

Roles of SRPKs in (+)ssRNA virus infection

Coronaviridae

The outbreak of the emerged severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has caused global 
pandemic with huge economic losses and human casual-
ties. The nucleocapsid (N) protein of coronavirus (CoV) is 
a highly conserved, multiple functional and abundant RNA-
binding protein responsible for genomic RNA encapsidation 
[75]. Besides, the N protein undergoes liquid–liquid phase 
separation to facilitate capsid assembly and to cluster the 
RNA polymerase complex for viral transcription [76, 77]. In 
addition, the N protein suppresses the cell-intrinsic antivi-
ral immune defense mechanism RNAi and RIG-I-mediated 
innate immune response [78, 79]. Importantly, the above 
functions of N protein are affected by phosphorylation, par-
ticularly of its RS domain, which is located at the N-terminal 
domain (NTD) and determines its binding affinity to RNA 
and DNA [80]. During infection with the beta-coronavirus 
SARS-CoV-1, several kinases, such as CDK, GSK, CK2 
and SRPK1, have been demonstrated to phosphorylate the 
N protein, at least in vitro [81]. SRPK1-mediated phospho-
rylation within the RS motif mobilizes N protein translo-
cation to the cytoplasm, prevents its aggregation in stress 
granules and regulates its translational suppressive activity 
against host cells in the cytoplasm (Fig. 3A), whereas phos-
phorylation of the N protein by other kinases stimulates its 
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cytoplasmic transport with unclear functional significance 
[82]. Besides, SRPK1-mediated extensive phosphorylation 
of newly synthesized N proteins prevents their aggregation 
and oligomerization in stress granules, leading to the soluble 
dimers favored for viral assembly [83]. In addition, SRPK1 
and SRPK2 also phosphorylate the SARS-CoV-2 N pro-
tein at Ser188 and Ser206 to promote viral replication [84]. 
Through high-throughput screening, Alectinib, an FDA-
approved inhibitor of anaplastic lymphoma kinase (ALK), 
is confirmed to inhibit SRPKs, resulting in decreased viral 
propagation and N protein phosphorylation [84]. Alectinib 
also dramatically inhibits the infection of alpha-coronavi-
rus HCoV-229E, implying the extensively requirement of 
SRPK1/2 activity in both alpha- and beta-coronavirus life 
cycle. How insufficient phosphorylation of N protein com-
promises viral replication remains unclear, and one possi-
bility is that N protein suppresses the host antiviral immune 
response [85]. Interestingly, non-COVID-19 patients show 
lower expression of SRPK2 when compared to COVID-
19 patients, further suggesting the necessity of SRPKs for 
SARS-CoV-2 infection [86].

Flaviviridae

Hepatitis C virus (HCV) is an enveloped single-stranded 
RNA virus of the Flaviviridae family and is known for its 
pathogenic role in chronic liver diseases. In the case of 
HCV infection, alternative splicing has been demonstrated 
to shape the host antiviral immune response [87, 88]. Splic-
ing factors generate different isoforms of interferon stimu-
lated genes and human leukocyte antigen to significantly 
influence HCV infection and HCV-related carcinogenesis. 
On the other hand, HCV core protein, which is critical for 
nucleocapsid formation, viral genome encapsidation and 
interference with host cellular machinery, interacts with 
splicing factor DDX3 [89, 90], a DEAD-box RNA helicase 
involved in mRNA splicing and translation, to cooperatively 
activate viral polyprotein translation and RNA replication 
[91]. In addition to DDX3, SRPK1 and SRPK2 have also 
been shown to colocalize with HCV core protein and NS5A 
(an essential component of viral replication) in the perinu-
clear area, and inhibition of SRPKs by the chemical inhibitor 
SRPIN340 or by siRNA significantly reduces HCV repli-
cation [92]. Since phosphorylation of the core protein and 
NS5A regulates their subcellular localization and transla-
tional or replicative activity [93–95], it is unclear whether 
SRPKs directly phosphorylate core and NS5A protein to 
facilitate HCV infection. SRPKs may also phosphorylate 
other splicing factors (e.g., DDX3, DDX17) that contribute 
to HCV replication and pathogenesis of [96]. Furthermore, a 
recent work reported that HCV infection upregulates SRPK2 
expression by downregulating the expression of a long 
non-coding RNA, Linc-Pint, which interacts with SRPK2 

and suppresses its protein level. SRPK2 further promotes 
the phosphorylation of SRSFs (SRSF1, SRS4, SRSF5, 
and SRSF6) for the efficient splicing of several key genes 
involved in lipogenesis, such as ATP citrate lyase (ACLY) 
and fatty acid synthase (FASN), which in turn enhances de-
novo lipogenesis to favor virus replication and liver disease 
[97]. Linc-Pint is regulated by p53 [98], and it is certainly 
conceivable that HCV core protein or NS5A may interfere 
with p53 signaling to inhibit Linc-Pint expression [99, 100].

Roles of SRPKs in (−)ssRNA virus infection

Filoviridae

Ebola virus is a filovirus that causes severe haemorrhagic 
fever, with a fatality rate of 34–81%. Once Ebola virus enters 
the cytoplasm via micropinocytosis, the release of the viral 
ribonucleoprotein (RNP) complex (consisting of the viral 
genome, transcription factor VP30, polymerase L, cofactor 
VP35, and nucleoprotein NP) promotes the production of 
all viral mRNAs (primary transcription) [101]. The newly 
produced viral mRNAs are then translated into various viral 
proteins, further facilitating the secondary transcription of 
viral mRNAs, genome replication, RNP complex formation 
as well as genomic RNA encapsidation in inclusion bod-
ies. In particular, VP30 is indispensable for viral repetitive 
transcription, and reversible phosphorylation/dephospho-
rylation circuit of VP30 [102], mainly controlled by the cel-
lular kinase phosphatase PP2A and SRPKs, modulates its 
subcellular location and binding affinity to the RNP complex 
[103–105]. VP30 is initially recruited and dephosphoryl-
ated by the cellular phosphatase PP2A interacting with NP, 
which in turn facilitates the replicative complex formation 
of VP30 with polymerase L and cofactor VP35 to initiate 
the primary transcription [106] (Fig. 3B). Upon completion, 
SRPK1 and SRPK2 phosphorylate VP30 at Ser29 within the 
‘RXXS’ motif, and sequentially disperse it from the poly-
merase complex and RNA, allowing PP2A-mediated rapidly 
dephosphorylation of VP30 and ultimately redirection of 
VP30 to the secondary transcription start site to reinitiate 
the secondary transcription within inclusion bodies [105]. 
Therefore, SRPKs dynamically maintain the appropriate 
phosphorylation status of VP30 and ensure VP30-mediated 
effective transcription. Furthermore, VP30 is associated with 
the nucleocapsid [107], and it is uncertain whether SRPKs 
phosphorylate the nucleocapsid to promote capsid assembly.
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Roles of SRPKs in reverse transcribing virus 
infection

Retroviridae (+ ssRNA‑RT)

Human immunodeficiency virus (HIV) is a member of the 
Retroviridae family and its dynamic propagation and infec-
tivity are dramatically affected by SR protein-mediated alter-
native splicing of viral RNAs [108]. Different forms of viral 
transcripts are produced to generate the nine HIV proteins: 
unspliced gRNA encodes Gag and Pol; fully spliced viral 
mRNA encodes Tat, Rev, and Nef; and the singly spliced 
mRNA (containing functional intron) generates Vif, Vpr, 
Vpu, and Env. In addition, more than 70 viral transcripts 
generated by suboptimal splicing have been identified to 
produce the viral proteins described above, in particularly 
Tat and Rev, two proteins critical for HIV replication. SR 
proteins regulate HIV gene expression at multiple steps, 
including transcription capping, splicing, 3′end formation, 
nuclear export and translation [109]. Consequently, modu-
lation of SR protein expression and activity dramatically 
alters the extent of HIV RNA splicing and affects viral rep-
lication. For example, overexpression of the SR proteins 
SRSF1 (ASF/SF2), SRSF2 (SC35) or SRFS7 (9G8) sup-
presses HIV production, whereas overexpression of SRSF4 
(SRp75), SRSF5 (SRp40) or SRSF6 (SRp55) exerts con-
versely functions that enhance HIV production and infec-
tivity [110, 111]. Accordingly, HIV infection causes the 
dephosphorylation/abundance of most SR proteins, with the 
exception of SRSF4. HIV mobilizes SRPK2, and possibly 
SRPK1, to stabilize and phosphorylate SRSF4 to guarantee 
HIV-1 efficient replication [112]. In addition, depletion of 
SRPK1 has been shown to suppress HIV gene expression 
and the production of the viral structural proteins Gag and 
Env [113]. SRPK1 maintains HIV RNA levels and affects 
the transcriptional initiation of viral RNAs possibly by regu-
lating the phosphorylation status of SRSF10 to modulate 
RNA splicing. Furthermore, a quantitative phosphorylation 
proteomics analysis indicates that the HIV accessory pro-
tein Vpr can phosphorylate and inhibit SRPK activity [114]. 
Future experiments are required to confirm the Vpr-SRPK 
interaction and to examine whether SRPK is involved in 
Vpr-mediated cell cycle regulation.

Hepadnaviridae (dsDNA‑RT)

Hepatitis B virus (HBV), a small DNA virus of the Hepad-
naviridae family, causes hepatitis and is causally associ-
ated with hepatocellular carcinoma. Unlike HIV, HBV 
does not require alternative splicing to produce viral pro-
teins, although spliced viral transcripts exist [115]. HBV 
pregenomic RNA (pgRNA) is reverse transcribed into a 
circular and partially double-stranded DNA molecule after 

being packaged into the newly assembled capsid, a process 
predominantly regulated by the HBV core protein (HBc). 
Similar to the capsid proteins (N or core protein) of other 
viruses, HBc controls viral capsid assembly and persistent 
and effective HBV infection [116]. HBc activity is also 
regulated by phosphorylation, particularly phosphoryla-
tion within the RS domain located in the C terminal domain 
(CTD) of HBc [117, 118]. Notably, several host cellular 
kinases have been implicated in the phosphorylation of HBc, 
such as Cdc2, Cdk2, PKC and SRPKs, of which SRPKs are 
mainly responsible for the regulation of HBc phosphoryla-
tion and its function in vitro [118–120]. It is postulated that 
the encapsidation of HBV pgRNA requires an appropriate 
level of HBc phosphorylation, and SRPK1 and SRPK2 inter-
act with and phosphorylate several serine residues within 
the CTD of HBc [120], acting as chaperones or neutraliz-
ers to ensure successful HBV genome packaging (Fig. 3C) 
[121–123]. Non-phosphorylated HBc has a higher binding 
affinity to RNA and readily self-assembles into RNA-filled 
capsids, which is inhibited by SRPKs-mediated phospho-
rylation [121]. In contrast, high phosphorylation of HBc 
by SRPKs leads to low RNA binding capacity and empty 
capsids/virions [122]. It is, therefore, speculated that after 
transient binding and phosphorylation of HBc, SRPKs dis-
sociate from HBc to allow for slow HBc-mediated capsid 
formation and pgRNA incorporation [122, 123].

In addition to capsid assembly, the nucleic acid binding 
affinity of the CTD accredits HBc to participate in HBV 
DNA replication, and phosphorylation of different serine 
residues within the RS domain exhibits inconsistent but 
essential effects [124]. Interestingly, overexpression of both 
SRPK1 and SRPK2 has also been shown to suppress HBV 
replication by reducing pgRNA packaging without impact 
on core particle formation, and such suppressive effects of 
SRPKs do not depend on their phosphorylation activities on 
HBc [125]. Possible explanations are that SRPKs interfere 
with the interaction between HBc/pgRNA and HBc/viral 
DNA polymerase, or SRPKs are not the major kinases for 
HBc phosphorylation during HBV replication [126]. In addi-
tion, it remains to be determined whether SRPKs regulate 
the phosphorylation of splicing factor SRSFs to affect the 
binding of HBc to viral DNA/RNA and viral replication, as 
one recent work has shown that nuclear HBc interacts with 
several SR proteins and that inhibition of SRSF10, one of the 
substrates of SRPKs, regulates the amount of nascent HBV 
RNA [127]. Therefore, these results indicate the multiple 
and complex roles of SRPKs in the HBV life cycle. Finally, 
preliminary data from a recombinant co-expression system 
indicate that the core protein of the related duck hepatitis 
B virus (DHBV) is also highly phosphorylated by human 
SRPK1 [128]. Whether SRPK1 plays a key role in the virus-
specific differential rates of nucleocapsid uncoating and 
pgRNA encapsidation remains to be determined.
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SRPKs and SRPKs‑associated viral or cellular 
proteins as emerging antiviral targets

It is clear that viruses hijack SRPKs-mediated phospho-
rylation of viral proteins and/or cellular substrates, mainly 
SRSFs, to manipulate multiple steps of the viral life cycle, 
such as alternative splicing, transcription, capsid assem-
bly, viral pathogenesis, and even the host antiviral immune 
response. Therefore, SRPKs and SRPKs-targeted viral or 
cellular proteins are potent antiviral targets.

SRPKs as antiviral targets

Based on the essential role of SRPKs in pre-mRNA process-
ing, inhibition of SRPKs has been suggested as a potential 
therapeutic opportunity against cancer and other diseases 
[11, 47, 48]. For example, EXN-107, a small molecule inhib-
itor of SRPK1 synthesized by the company Exonate (struc-
ture undisclosed), is currently in clinical trials (phase I/II, 
NCT04565756) to investigate its therapeutic efficacy against 

diabetic retinopathy. SCO-101, a potent inhibitor of SRPK1 
and the drug efflux pump ABCG2 [129, 130], is currently in 
phase I/II clinical trials for the treatment of colorectal can-
cer (NCT04247256) and pancreatic ductal adenocarcinoma 
(NCT04652206).

To date, several small molecule inhibitors of SRPK 
(SRPKi), mainly derived from three scaffolds, have been 
developed, which bind irreversibly or reversibly to the ATP 
pocket. As presented in Fig. 4, the backbone of SRPKi, 
mainly the imine-nitrogen of benzimidazole [131] or the 
carbonyl group [132, 133], forms a crucial hydrogen (H)-
bond with the backbone amide of Leu168 (SRPK1) in the 
hinge region, which contributes significantly to the activity 
of SRPKi and requires the flipping of the backbone carbonyl 
of Leu168. The presence of the hinge residue Gly169 further 
increases the flexibility and facilitates the flipping of the 
hinge region [134]. In addition, the interaction of residues 
Lys109 and Glu124 within the active site with the conserved 
Asp-Leu-Gly (DLG) motif at the adjacent ′allosteric′ site 
is critical for SRPK catalytic activity [132]. Accordingly, 
H-bond formation between Glu124 and the S1 substituent 

Fig. 4  Illustration of SRPK inhibitor binding in the ATP pocket. The 
crystal structure of SRPK1 in complex with inhibitor (PDB: 7ZKS) 
and key domains and relative residues around the substrate binding 
site are shown (SRPK1). Top and side views of the SRPK inhibitor 

in the ATP binding site are also presented. The grey parallelogram 
represents the backbone of the inhibitor, and the S1–S4 represent dif-
ferent substituents. Their interactive residues or domains of SRPK1 
are shown
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at one end of the backbone of SRPKi, as well as water mol-
ecule-mediated interaction between the S1 and Asp497/
Leu498 of the DLG motif, significantly affects the inhibi-
tory activity against SRPK1 [133]. At the opposite terminal 
end of SRPKi, key residues Tyr227, Ile228 and Leu231 of 
SRPK1 (Tyr239, Val240 and Met243 of SRPK2) within the 
insert helices adjacent to the ATP binding pocket influence 
both the activity and selectivity of SRPKi [132, 133]. The 
side chain of Tyr227 provides a steric constraint on the size 
of the S2 substitution. Alternatively, a covalent bond forma-
tion between Tyr227 and the S2 substituent (e.g., sulfonyl 
fluoride group) converts SRPKi into an irreversible inhibitor 
(e.g., SRPKIN-1) [133]. In addition, the larger side chains 
of Val240 and Met243 in SRPK2 create a smaller hydro-
phobic pocket and slightly change the binding orientation of 

SRPKi, resulting in reduced SRPK2 activity [132]. Interest-
ingly, the S3 and S4 substituents may have opposite spatial 
positioning, with S3 interacting with the P-loop spatially in 
an upward direction and S4 partially interfacing with the 
DLG motif in a downward direction. Residues Ser92, Val94 
and the P-loop backbone form a hydrophobic cavity oriented 
towards S3, and the improved contact between S3 and the 
P-loop, especially through aromatic stacking, significantly 
enhances inhibitor potency against SRPK1 [132]. Finally, a 
possible link between the S4 substituent and the DLG motif 
(Asp497/Leu498) or the lipophilic back pocket shaped by 
the side chains of Val145, Phe165, and Ala496 (SRPK1) 
is thought to increase the inhibitory activity of SRPKi on 
SRPK2 (to be determined).

Fig. 5  Structure–function relationships of SRPK inhibitors. The 
chemical structures and corresponding SRPK-targeting activities of 
small molecule inhibitors and their derivatives, mainly derived from 

three scaffolds (A–C), are shown. The grey cycle represents the struc-
tural backbone and the orange dashed line represents the H-bond. 
 IC50 half maximal inhibitory concentration. n.d. not determined
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The structure–function relationships of SRPKi are sum-
marized in Fig. 5, and their potent and efficient antiviral 
activities are shown in Table 2. The isonicotinamide com-
pound SRPIN340 was firstly identified as an ATP-com-
petitive inhibitor that covalently binds to the ATP bind-
ing pocket to inhibit SRPKs activities [112] (Fig. 5A). 
SRPIN340 exhibits high specificity for SRPK1/2 and does 
not significantly inhibit other SR protein-related kinases 
(e.g., CLK1 and CLK4) and Ser/Thr kinases. The half maxi-
mal inhibitory concentrations  (IC50) of SRPIN340 against 
SRPK1 and SRPK2 are 0.89 μM and 7.4 μM, respectively 
[132]. SRPIN340 has also been very early shown to effi-
ciently inhibit viral replication and production of HCV, 
Sindbis virus, CoVs, and Ebola virus (Table 2) [84, 92, 105, 
112]. SPHINX and its derivatives SPHINX-1, SPHINX-2 
and SPHINX-31, are other ATP-competitive inhibitors that 
share the same scaffold with SRPIN340 [132, 135]. Due to 
the interactions of different S3 substituent moieties with the 
P-loop of SRPK1, the SPHINX compounds exhibit higher 
activity and selectivity for SRPK1 over SRPK2 with a much 
lower  IC50 value than that of SRPIN340 [135]. As a result, 
SPHINX-31 has a higher antiviral activity against SARS-
CoV-2 than SRPIN340 (Table 2) [84]. SPHINX derivatives 
are also currently in preclinical studies for the treatment of 
leukemia, solid tumors and eye diseases [136–138]. How-
ever, the SPHINXs also exhibit possible effects on kinases 
of the CMGC family (CDK, MAPK, GSK, and CLK) [135].

In addition, Alectinib, an FDA-approved primary ana-
plastic lymphoma kinase (ALK) inhibitor for the treatment 
of non-small-cell lung cancer, also displays potent inhibitory 
capacity to target SRPK1  (IC50 = 11 nM) [133] (Fig. 5B). 
Recently, Alectinib has been shown to inhibit the infec-
tion of coronavirus HCoV-229E and SARS-CoV-2 and 
reduce the SRPK1/2-mediated N protein phosphorylation 
[84], which may partly contribute to the favorable outcome 
of COVID-19 patients [139, 140]. Notably, replacing the 
4-morpholinopiperidine moiety in Alectinib with a smaller 

pyrazole ring (compound JH-VII-139-1) results in a ten-
fold increase in SRPK1-targeting activity  (IC50 = 1.1 nM). 
However, the inhibitory activity is reduced by ~ 1000-fold 
when substituted with a dimethyl amino-piperidine ring 
(compound JH-VII-206-2). Apart from SRPKs, Alectinib 
and JH-VII-139-1 also show broad interactions with numer-
ous additional targets and inhibit the catalytic activity of 
other kinases, such as ALK and CHK2, to a similar extent 
[133]. To improve selectivity, the pyrazole ring at the S2 
substitution in JH-VII-139–1 is further replaced by a 3-ben-
zene-sulfonyl fluoride to generate a more specific SRPK-
targeting analogue, SRPKIN-1. The sulfonyl fluoride group 
covalently interacts with Tyr227 of SRPK1 (or Tyr239 of 
SRPK2), making SRPKIN-1 an irreversible SRPK inhibitor 
with an  IC50 of 35.6 nM for SRPK1 and an  IC50 of 98 nM 
for SRPK2 [133]. Notably, SRPKIN-1 substantially reduces 
ALK activity  (IC50 = 195 nM) and has little effect on CLK1 
 (IC50 > 10 μM) in a cell-based KiNativ profiling assay. In 
Ba/F3 cells transduced with EML4-ALK, a widely used 
model for testing ALK inhibitors, SRPKIN-1 shows 50-fold 
lower activity while JH-VII-206-2 and Alectinib show potent 
inhibitory effects, suggesting that the applicable concen-
trations of SRPKIN-1 at the cellular level have no influ-
ence on ALK. In addition, SRPKIN-1 is more than 50-fold 
more potent than SRPIN340 at phosphorylating SRSFs in 
a cellular context (200 nM vs. 10 μM) [133]. Future work 
is encouraged to investigate whether SRPKIN-1 has more 
potent and higher antiviral activity.

Recently, a series of compounds sharing a common 
benzimidazole-pyrimidine scaffold have been shown to be 
potent and reversible SRPKi (Fig. 5C), of which MSC-1186 
(compound 5 m) is the most efficient and highly selective 
inhibitor with an  IC50 of 3 nM for SRPK1 and  IC50 of 80 nM 
for SRPK2 [131]. The benzimidazole-pyrimidine backbone 
acts as a hinge-binding moiety that interacts with the hinge 
region and flips it to form the essential H-bond with the 
Leu168 backbone amide (SRPK1). There is also a specific 

Table 2  Antiviral effects of 
SRPKi

EC50 50% effective concentration,  CC50 50% cytotoxic concentration

SRPK inhibitor Virus Concentration used 
(μM)

Host cell Cytotoxicity 
 (CC50) (μM)

SRPIN340 HCV 1b EC50: 4.7 Huh7/Rep-Feo-1b  > 30
HCV 2a EC50: 15.8 Huh7/Rep-Feo-2a  > 30

SRPIN340 Sindbis Virus EC50: 60 BHK  > 100
SRPIN340 SARS-CoV-2 53.3 ACE2-A549  > 53.3

53.3 Calu-3  > 53.3
SPHINX31 SARS-CoV-2 12 ACE2-A549  > 12
Alectinib SARS-CoV-2 10 ACE2-A549  > 10

10 Calu-3  > 10
HCoV-229E 0.12 Huh7  > 0.12

SRPIN340 Ebola virus 30 HEK293  > 100
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intramolecular H-bond exists between the protonated ben-
zimidazole 3N-atom and one sulfonamide O-atom, which 
allows the S4 substitution to adopt a conformation capable 
of interacting with the lipophilic back pocket and the DLG 
motif. Disruption of such an intramolecular H-bond results 
in a twofold loss of SRPK1 inhibitory activity, while SRPK2 
activity is enhanced (compound 5h vs 6). Notably, MSC-
1186 shows good selectivity (rarely off-target) than other 
SRPK inhibitors SRPIN340, SPHINX-31, and SRPKIN-1 
in in vitro kinase screening assay [131]. Surprisingly, MSC-
1186 has very low to negligible activity as a single agent, 
but shows a robust additive effect in combination with CLK 
inhibitor in phosphorylating SRSFs in a cellular context. 
Future work is encouraged to investigate its antiviral activity 
and potential clinical application.

SRPKs‑targeted viral proteins as antiviral targets

In addition to SRPKs, SRPKs-targeted viral proteins also 
represent attractive therapeutic targets for the control of viral 
infections and virus-related diseases. SRPKs-mediated phos-
phorylation of the RS motif within viral capsid proteins (the 
NTD of CoV N protein and EBV BLRF2, or the CTD of 
HBV core protein), significantly affects their binding affin-
ity to RNA/DNA, which is pivotal for viral RNP formation, 
genome encapsidation and replication. Accordingly, block-
ing the nucleic acid binding ability of viral capsid proteins 
may be a potent antiviral strategy [141]. Indeed, several 
compounds, such as N-(6-oxo-5,6-dihydrophenanthridin-
2-yl)(N,N-dimethylamino) acetamide hydrochloride (PJ34) 
and 6-chloro-7-(2-morpholin-4-ylethylamino) quinoxaline-
5,8-dione (H3), have been shown to target the RNA binding 
site within the NTD of the N protein to inhibit CoV replica-
tion [142, 143]. Alternatively, the compound 5-benzyloxy-
gramine induces abnormal dimerization and aggregation 
of N protein to suppress RNP formation and MERS-CoV 
infection [144]. In addition, inhibition of the oligomeriza-
tion of N protein by competing peptides is also presumed 
to be an effective approach in the fight against HIV infec-
tion [145]. Similarly, core proteins of HBV and HCV are 
involved in multiple steps of the viral cycle through their 
dimerization and interaction with other viral or cellular pro-
teins, and their specific inhibitors have been developed as 
novel antiviral agents. For example, an NTD-derived peptide 
inhibitor dramatically inhibits the dimerization of HCV core 
protein and blocks HCV infectious production [146]. In the 
context of HBV, different chemotypes of core protein allos-
teric modulators (CpAMs) have been discovered to inhibit 
HBV replication and to treat chronic hepatitis B in clinical 
trials (reviewed in ref. [147]). All the CpAMs bind to the 
hydrophobic pocket between the interface of core protein 
dimers, and type I CpAMs accelerate core protein assembly 

into degradative polymers or aberrant capsids, whereas type 
II CpAMs promote the formation of empty capsids without 
pgRNA. CpAMs also disrupt the de novo cccDNA synthesis 
and DNA replication with unclear mode of action. Notably, 
several CpAMs, such as RO9389 (type I) [148] and JNJ-
6379 (type II) [149], are under clinical investigation for 
chronic HBV infection and have shown beneficial effects in 
patients. It will be interesting to investigate whether these 
above described inhibitors regulate SRPKs to exert their 
antiviral effects.

In addition, SRPKs-mediated phosphorylation of the 
Ebola virus transcription factor VP30 from is essential for 
repetitive viral transcription [150], and compounds targeting 
VP30 phosphorylation status, such as okadaic acid [151], 
have been shown to impair Ebola virus infection. In addi-
tion, VP30 interacts with NP protein to modulate viral RNA 
synthesis and disruption of the VP30-NP interaction is also 
a potential antiviral treatment, as illustrated by the antiviral 
activity of an NP-competitive peptide mimic [152].

Furthermore, SRPKs-mediated phosphorylation of her-
pesviral mRNA export proteins (HSV ICP27 and VSV IE4) 
or HPV E2 protein regulates their nucleus-to-cytoplasm 
reshuttling and viral gene expression, which may also be 
considered as novel therapeutic candidates [153, 154]. One 
example is that a peptide-conjugated phosphorodiamidate 
morpholino oligomer (PPMO) has been shown to inhibit 
HSV-1 replication by targeting ICP27 [155]. Further struc-
ture-based high-throughput screening and experimental 
validation may identify more potential inhibitors of these 
viral proteins.

Substrates of SRPKs as antiviral targets

As discussed above, SRSFs are mainly substrates of SRPKs 
and their appropriate phosphorylation levels are critical for 
viral infection, suggesting them as alternative candidates for 
antiviral therapy. For example, SRSF10 interacts with HBV 
core protein and the small molecule compound 1C8, which 
specifically inhibits SRSF10 phosphorylation, significantly 
reduces HBV nascent RNA production [127]. SRSF10 also 
affects HIV pre-mRNA splicing and 1C8 treatment reduces 
HIV replication [156, 157]. Cardiotonic steroids, such as 
digoxin and digitoxin, deplete the expression of SRSF3 and 
SRSF10 to alter viral alternative splicing and suppress HIV 
replication [158, 159]. In addition, SRSF5 directly enhances 
the pre-mRNA splicing of the M protein to promote influ-
enza virus replication, which is further suppressed by anidu-
lafungin, an FDA-approved antifungal drug that has been 
identified as an inhibitor of SRSF5 [160]. Anidulafungin 
also exhibits a broad-spectrum antiviral activity that effec-
tively blocks the infection of Zika virus, HSV-1, SARS-
CoV-2 and other viruses [161, 162], suggesting the func-
tional involvement of SRSF5 in different viruses. Recently, 
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several new inhibitors of SRSFs have gradually emerged, 
making it possible to target specific SRSFs in viral infec-
tions. For example, through high-throughput screening and 
modification, SFI003 is confirmed to be a specific inhibitor 
of SRSF3 that binds to SRSF3 and induces its neddylation-
dependent degradation [163]. Indacaterol, an approved 
β2-adrenergic receptor agonist, is identified as an inhibi-
tor of SRSF6 [164], and has been implicated in disrupting 
the interaction between ACE2 and the S protein of SARS-
CoV-2 by virtual screening [165]. Future investigations into 
the understanding of the biological functions of SRSFs and 
SRPKs in the viral life cycle, and the development of novel 
specific inhibitors of SRSFs (e.g., SRSF2, SRSF4, SRSF7-9) 
may pave the way for clinical application of SRSFs inhibi-
tors. Alternatively, antisense oligonucleotide-mediated 
downregulation of SRSFs is another exciting therapeutic 
avenue to be further explored.

Perspectives

Nowadays, the emergence of a variety of highly infectious 
and pathogenic viruses poses a serious threat to human 
health. How to find the effective antiviral drugs quickly and 
accurately is a major challenge, making drug repurposing 
an optimal alternative strategy. SRPKs are one of the key 
regulators of mRNA maturation and splicing, and their role 
in viral infection is receiving increasing attention. In this 
review, we briefly summarize the regulation and biological 
function of SRPKs, highlight their involvement in the infec-
tion process of several viruses and discuss the putative use of 
inhibitors targeting SRPKs and SRPKs-associated viral pro-
teins or cellular substrates as potential antiviral strategies.

Although the cellular biological functions of SRPKs in 
RNA splicing have been recognized for many years, several 
questions remain unanswered. For example, whether other 
post-transcriptional modifications or interacting proteins 
regulate the activity and cellular location of SRPKs. Besides, 
SRPKs-mediated phosphorylation represents as a prevalent 
regulatory mechanism to influence the cellular location and 
transcriptional activity of RS domain-containing viral pro-
teins. Different functional types of viral proteins, including 
capsid protein (e.g., CoV N protein, EBV BLRF2, HBV core 
protein), mRNA export factor (e.g., HSV ICP27, VSV IE4, 
HPV E2), and transcription factor (e.g., Ebola virus VP30), 
are phosphorylated and regulated by SRPKs. More interactive 
connections between viral proteins (e.g., capsids and transcrip-
tional activators of other undisclosed viruses) and SRPKs may 
be found by analyzing phosphorylation proteomics. It is also 
unclear whether SRPKs influence viral infection by modu-
lating the antiviral immune response [41, 166]. In addition 
to the above-mentioned viruses that have been clearly shown 
to interact with SRPKs, other viruses that usurp the cellular 

machinery mediated by SRSFs for their replication are emerg-
ing as being able to control SRPKs-mediated phosphoryla-
tion. For example, several SRSFs (e.g., SRSF2, SRSF3, and 
SRSF5) are essential for viral replication of influenza virus, 
a small RNA virus hijacking cellular splicing components to 
produce its M and NS proteins [160, 167–169]. It is, therefore, 
of interest to investigate whether influenza virus modulates the 
activity of SRPKs to maintain appropriate phosphorylation 
levels of SRSFs and to explore the possible antiviral activities 
of SRPK inhibitors. In addition, considering that CLKs and 
SRPKs jointly regulate the phosphorylation of SR proteins in 
the nucleus and a growing body of evidence shows the inter-
play between different viruses and CLKs [113, 169–172], inhi-
bition of CLKs by inhibitors, or synergistically in combination 
with SRPKs inhibition, is novel robust therapeutic option for 
viral infections.

Furthermore, SRPKs and SRPKs-targeted viral proteins or 
cellular proteins (e.g., SRSFs) are potential antiviral targets. 
The feasibility of developing SRPKs inhibitors that specifi-
cally target unique virus–host interactions, as SRPKs interact 
directly with different viral proteins, needs to be validated. 
Targeting SRSFs with inhibitors, competing peptides, or 
antisense-oligonucleotides may also be an alternative and 
interesting strategy to counteract viral infection. Given the 
abnormally high expression of SRPKs and SRSFs in some 
cancers [49, 173], inhibitors of SRPKs and SRSFs may have 
both anticancer and antiviral effects in the case of oncogenic 
viruses (e.g., HPV, HBV). Future work is also warranted to 
verify the potential of SRPKs and SRSFs inhibitors in rel-
evant anti-infective clinical applications. However, the existing 
SRPKs inhibitors developed in cancer therapy are both insuf-
ficiently potent and selective, with unclear selectivity towards 
other kinases. Although the inhibitor MSC-1186 exhibits high 
selectivity and activity towards SRPKs, its cellular potency 
and efficacy are limited [131]. Therefore, the development of 
more efficient and specific SRPKs inhibitors will enable more 
reliable investigation of the undiscovered biological functions 
of SRPKs and provide more options for antiviral treatment.
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