Skip to main content

Advertisement

Log in

Inhibiting a promiscuous GPCR: iterative discovery of bitter taste receptor ligands

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The human GPCR family comprises circa 800 members, activated by hundreds of thousands of compounds. Bitter taste receptors, TAS2Rs, constitute a large and distinct subfamily, expressed orally and extra-orally and involved in physiological and pathological conditions. TAS2R14 is the most promiscuous member, with over 150 agonists and 3 antagonists known prior to this study. Due to the scarcity of inhibitors and to the importance of chemical probes for exploring TAS2R14 functions, we aimed to discover new ligands for this receptor, with emphasis on antagonists. To cope with the lack of experimental structure of the receptor, we used a mixed experimental/computational methodology which iteratively improved the performance of the predicted structure. The increasing number of active compounds, obtained here through experimental screening of FDA-approved drug library, and through chemically synthesized flufenamic acid derivatives, enabled the refinement of the binding pocket, which in turn improved the structure-based virtual screening reliability. This mixed approach led to the identification of 10 new antagonists and 200 new agonists of TAS2R14, illustrating the untapped potential of rigorous medicinal chemistry for TAS2Rs. 9% of the ~ 1800 pharmaceutical drugs here tested activate TAS2R14, nine of them at sub-micromolar concentrations. The iterative framework suggested residues involved in the activation process, is suitable for expanding bitter and bitter-masking chemical space, and is applicable to other promiscuous GPCRs lacking experimental structures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The updated TAS2R14 ligands dataset and the TAS2R14 models generated within this study are included within the Supplementary Information and will be incorporated within the next release of BitterDB https://bitterdb.agri.huji.ac.il/dbbitter.php.

References

  1. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discovery 7(4):339–357. https://doi.org/10.1038/nrd2518

    Article  CAS  PubMed  Google Scholar 

  2. Kooistra AJ, Mordalski S, Pándy-Szekeres G, Esguerra M et al (2021) GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Res 49(D1):D335–D343

    Article  CAS  PubMed  Google Scholar 

  3. Chan WK, Zhang H, Yang J, Brender JR et al (2015) GLASS: a comprehensive database for experimentally validated GPCR-ligand associations. Bioinformatics 31(18):3035–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sriram K, Insel PA (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 93(4):251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dagan-Wiener A, Di Pizio A, Nissim I, Bahia MS et al (2019) BitterDB: taste ligands and receptors database in 2019. Nucleic Acids Res 47(D1):D1179–D1185

    Article  PubMed  Google Scholar 

  6. Levit A, Nowak S, Peters M, Wiener A et al (2014) The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14. FASEB J 28(3):1181–1197

    Article  CAS  PubMed  Google Scholar 

  7. Bahia MS, Nissim I, Niv MY (2017) Bitterness prediction in-silico: a step towards better drugs. Int J Pharm 536(2):526–529. https://doi.org/10.1016/j.ijpharm.2017.03.076

    Article  CAS  PubMed  Google Scholar 

  8. Margulis E, Dagan-Wiener A, Ives RS, Jaffari S et al (2021) Intense bitterness of molecules: machine learning for expediting drug discovery. Comput Struct Biotechnol J 19:568–576

    Article  CAS  PubMed  Google Scholar 

  9. Okubo K, Iijima M, Kobayashi Y, Yoshikoshi M et al (1992) Components responsible for the undesirable taste of soybean seeds. Biosci Biotechnol Biochem 56(1):99–103

    Article  CAS  Google Scholar 

  10. Wagh VD, Ghadlinge SV (2009) Taste masking methods and techniques in oral pharmaceuticals: current perspectives. J Pharm Res 2(6):1049–1054

    CAS  Google Scholar 

  11. Hald C, Dawid C, Tressel R, Hofmann T (2018) Kaempferol 3-O-(2‴-O-Sinapoyl-β-sophoroside) causes the undesired bitter taste of canola/rapeseed protein isolates. J Agric Food Chem 67(1):372–378

    Article  PubMed  Google Scholar 

  12. Tuzim K, Korolczuk A (2021) An update on extra-oral bitter taste receptors. J Transl Med 19(1):1–33. https://doi.org/10.1186/s12967-021-03067-y

    Article  CAS  Google Scholar 

  13. Kim D, Woo JA, Geffken E, An SS et al (2017) Coupling of airway smooth muscle bitter taste receptors to intracellular signaling and relaxation is via Gαi 1, 2, 3. Am J Respir Cell Mol Biol 56(6):762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS et al (2010) Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med 16(11):1299–1304. https://doi.org/10.1038/nm.2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark AA, Liggett SB, Munger SD (2012) Extraoral bitter taste receptors as mediators of off-target drug effects. FASEB J 26(12):4827–4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Pizio A, Niv MY (2015) Promiscuity and selectivity of bitter molecules and their receptors. Bioorg Med Chem 23(14):4082–4091. https://doi.org/10.1016/j.bmc.2015.04.025

    Article  CAS  PubMed  Google Scholar 

  17. Nowak S, Di Pizio A, Levit A, Niv MY et al (2018) Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochimica et Biophysica Acta (BBA)-General Subjects 1862(10):2162–2173

    Article  CAS  PubMed  Google Scholar 

  18. Singh N, Shaik FA, Myal Y, Chelikani P (2020) Chemosensory bitter taste receptors T2R4 and T2R14 activation attenuates proliferation and migration of breast cancer cells. Mol Cell Biochem 465(1):199–214

    Article  CAS  PubMed  Google Scholar 

  19. Bloxham CJ, Foster SR, Thomas WG (2020) A bitter taste in your heart. Front Physiol 11:431

    Article  PubMed  PubMed Central  Google Scholar 

  20. Freund JR, Lee RJ (2018) Taste receptors in the upper airway. World J Otorhinolaryngol Head Neck Surg 4(1):67–76

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martin LT, Nachtigal MW, Selman T, Nguyen E et al (2019) Bitter taste receptors are expressed in human epithelial ovarian and prostate cancers cells and noscapine stimulation impacts cell survival. Mol Cell Biochem 454(1):203–214

    Article  CAS  PubMed  Google Scholar 

  22. Taher S, Borja Y, Cabanela L, Costers VJ et al (2019) Cholecystokinin, gastrin, cholecystokinin/gastrin receptors, and bitter taste receptor TAS2R14: trophoblast expression and signaling. Am J Physiol Regulat Integr Comp Physiol 316(5):R628–R639

    Article  CAS  Google Scholar 

  23. Carey RM, Kim T, Cohen NA, Lee RJ et al (2022) Impact of sweet, umami, and bitter taste receptor (TAS1R and TAS2R) genomic and expression alterations in solid tumors on survival. Sci Rep 12(1):1–14

    Article  Google Scholar 

  24. Stern L, Boehme LF, Goetz MR, Nitschke C et al (2023) Potential role of the bitter taste receptor T2R14 in the prolonged survival and enhanced chemoresponsiveness induced by apigenin. Int J Oncol 62(1):1–14

    Google Scholar 

  25. Medapati MR, Singh N, Bhagirath AY, Duan K et al (2021) Bitter taste receptor T2R14 detects quorum sensing molecules from cariogenic Streptococcus mutans and mediates innate immune responses in gingival epithelial cells. FASEB J 35(3):e21375

    Article  CAS  PubMed  Google Scholar 

  26. Roland WS, Gouka RJ, Gruppen H, Driesse M et al (2014) 6-Methoxyflavanones as bitter taste receptor blockers for hTAS2R39. PLoS ONE 9(4):e94451

    Article  PubMed  PubMed Central  Google Scholar 

  27. Di Pizio A, Levit A, Slutzki M, Behrens M et al (2016) Comparing class A GPCRs to bitter taste receptors: structural motifs, ligand interactions and agonist-to-antagonist ratios. Methods Cell Biol 132:401–427

    Article  PubMed  Google Scholar 

  28. Fierro F, Suku E, Alfonso-Prieto M, Giorgetti A et al (2017) Agonist binding to chemosensory receptors: a systematic bioinformatics analysis. Front Mol Biosci 4:63

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shivanyuk A, Ryabukhin S, Tolmachev A, Bogolyubsky A et al (2007) Enamine real database: making chemical diversity real. Chemistry today 25(6):58–59

    CAS  Google Scholar 

  30. Jumper J, Evans R, Pritzel A, Green T et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu W, Wu L, Liu S, Liu X et al (2022) Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science 377(6612):1298–1304

    Article  CAS  PubMed  Google Scholar 

  32. Di Pizio A, Waterloo LAW, Brox R, Lober S et al (2020) Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. Cell Mol Life Sci 77(3):531–542. https://doi.org/10.1007/s00018-019-03194-2

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Yan R, Roy A, Xu D et al (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Waterloo L, Hübner H, Fierro F, Pfeiffer T et al (2023) Discovery of 2-aminopyrimidines as potent agonists for the bitter taste receptor TAS2R14. J Med Chem. https://doi.org/10.1021/acs.jmedchem.2c01997

    Article  PubMed  Google Scholar 

  35. Zhang J-H, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    Article  CAS  PubMed  Google Scholar 

  36. Laschet C, Dupuis N, Hanson J (2019) A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR–G protein interactions. J Biol Chem 294(11):4079–4090

    Article  CAS  PubMed  Google Scholar 

  37. Meyerhof W, Batram C, Kuhn C, Brockhoff A et al (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35(2):157–170. https://doi.org/10.1093/chemse/bjp092

    Article  CAS  PubMed  Google Scholar 

  38. Ballesteros JA, Weinstein H (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  39. Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR dynamics: structures in motion. Chem Rev 117(1):139–155. https://doi.org/10.1021/acs.chemrev.6b00177

    Article  CAS  PubMed  Google Scholar 

  40. Deupi X, Standfuss J (2011) Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr Opin Struct Biol 21(4):541–551

    Article  CAS  PubMed  Google Scholar 

  41. Maeda S, Shiimura Y, Asada H, Hirata K et al (2021) Endogenous agonist–bound S1PR3 structure reveals determinants of G protein–subtype bias. Sci Adv 7(24):eabf5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar KK, Shalev-Benami M, Robertson MJ, Hu H et al (2019) Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176(3):448-458.e12

    Article  PubMed Central  Google Scholar 

  43. Hua T, Vemuri K, Nikas SP, Laprairie RB et al (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547(7664):468–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Asada H, Horita S, Hirata K, Shiroishi M et al (2018) Crystal structure of the human angiotensin II type 2 receptor bound to an angiotensin II analog. Nat Struct Mol Biol 25(7):570–576

    Article  CAS  PubMed  Google Scholar 

  45. Suomivuori C-M, Latorraca NR, Wingler LM, Eismann S et al (2020) Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor. Science 367(6480):881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wingler LM, Skiba MA, McMahon C, Staus DP et al (2020) Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR. Science 367(6480):888–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Israeli H, Degtjarik O, Fierro F, Chunilal V et al (2021) Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science 372(6544):808–814

    Article  CAS  PubMed  Google Scholar 

  48. AlQuraishi M (2019) AlphaFold at CASP13. Bioinformatics 35(22):4862–4865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Waterhouse A, Bertoni M, Bienert S, Studer G et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miura S-i, Kiya Y, Hanzawa H, Nakao N et al (2012) Small molecules with similar structures exhibit agonist, neutral antagonist or inverse agonist activity toward angiotensin II type 1 receptor. PLoS ONE 7(6):e37974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schneider EH, Strasser A, Thurmond RL, Seifert R (2010) Structural requirements for inverse agonism and neutral antagonism of indole-, benzimidazole-, and thienopyrrole-derived histamine H4 receptor ligands. J Pharmacol Exp Ther 334(2):513–521

    Article  CAS  PubMed  Google Scholar 

  52. Soudijn W, Iv W, Ijzerman AP (2005) Structure–activity relationships of inverse agonists for G-protein-coupled receptors. Med Res Rev 25(4):398–426

    Article  CAS  PubMed  Google Scholar 

  53. Rossier O, Abuin L, Fanelli F, Leonardi A et al (1999) Inverse agonism and neutral antagonism at α1a-and α1b-adrenergic receptor subtypes. Mol Pharmacol 56(5):858–866

    Article  CAS  PubMed  Google Scholar 

  54. Daina A, Michielin O, Zoete V (2019) SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 47(W1):W357–W364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Margulis E, Slavutsky Y, Lang T, Behrens M et al (2022) BitterMatch: recommendation systems for matching molecules with bitter taste receptors. J Cheminform 14(1):1–17

    Article  Google Scholar 

  56. Miller ZA, Jolivert JF, Ma RZ, Muthuswami S, et al (2022) Lidocaine Induces Apoptosis in Head and Neck Squamous Cell Carcinoma Cells Through Activation of Bitter Taste Receptor T2R14. bioRxiv: p. 2022.11. 22.517413.

  57. Dosa PI, Amin EA (2016) Tactical approaches to interconverting GPCR agonists and antagonists. J Med Chem 59(3):810–840

    Article  CAS  PubMed  Google Scholar 

  58. Israeli H, Degtjarik O, Fierro F, Chunilal V, et al (2021) Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science

  59. García-Nafría J, Tate CG (2021) Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochem Soc Trans 49(5):2345–2355

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang X, Stevens RC, Xu F (2015) The importance of ligands for G protein-coupled receptor stability. Trends Biochem Sci 40(2):79–87

    Article  PubMed  Google Scholar 

  61. Cheng J, Choe MH, Elofsson A, Han KS et al (2019) Estimation of model accuracy in CASP13. Proteins Struct Funct Bioinform 87(12):1361–1377

    Article  CAS  Google Scholar 

  62. Roos K, Wu C, Damm W, Reboul M et al (2019) OPLS3e: extending force field coverage for drug-like small molecules. J Chem Theory Comput 15(3):1863–1874

    Article  CAS  PubMed  Google Scholar 

  63. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Empereur-Mot C, Guillemain H, Latouche A, Zagury J-F et al (2015) Predictiveness curves in virtual screening. J Cheminform 7(1):1–17

    Article  Google Scholar 

  65. Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29(2):157–170

    Article  CAS  PubMed  Google Scholar 

  66. Behrens M, Brockhoff A, Kuhn C, Bufe B et al (2004) The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem Biophys Res Commun 319(2):479–485

    Article  CAS  PubMed  Google Scholar 

  67. Conklin BR, Farfel Z, Lustig KD, Julius D et al (1993) Substitution of three amino acids switches receptor specificity of Gqα to that of Giα. Nature 363(6426):274–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MYN, LP, EM, and FF are members of COST action ERNEST (CA18133).

Funding

This research was partially supported by the German Research Foundation Grants Gm 13/12 (to PG and MYN), and ISF 494/16 (to MYN). Lady Davis to FF and Excellence Fellowship from the Hebrew University Center for Nanoscience and Nanotechnology to FF, EM, and LP are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MYN and PG. Computational methodologies: FF, TD, EM. Experimental test for compounds suggested by the computational methodology: LP. Chemical synthesis of flufenamic acid derivatives: LW. Activation essays of the flufenamic acid derivatives: HH, DW. Screening of the FDA approved drugs library: ATS, DW. Analysis and interpretation of results: FF, LP, MYN, HH. Draft manuscript preparation: FF. Draft manuscript review and editing: FF, LP, TP, SL, MYN, PG.

Corresponding authors

Correspondence to Peter Gmeiner or Masha Y Niv.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fierro, F., Peri, L., Hübner, H. et al. Inhibiting a promiscuous GPCR: iterative discovery of bitter taste receptor ligands. Cell. Mol. Life Sci. 80, 114 (2023). https://doi.org/10.1007/s00018-023-04765-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04765-0

Keywords

Navigation