Skip to main content

Advertisement

Log in

lncRNA miR4458HG modulates hepatocellular carcinoma progression by activating m6A-dependent glycolysis and promoting the polarization of tumor-associated macrophages

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) play significant roles in different biological functions of cancers. However, their function in the metabolism of glucose in patients with human hepatocellular carcinoma (HCC) remains largely unknown. In this study, HCC and paired intact liver tissues were utilized to examine the miR4458HG expression using qRT-PCR and human HCC cell lines to examine cell proliferation, colony formation, and glycolysis after transfection of siRNAs targeting miR4458HG or miR4458HG vectors. The molecular mechanism of miR4458HG was clarified through in situ hybridization, Western blotting, qRT-PCR, RNA pull-down, and RNA immunoprecipitation analysis. The results showed that the miR4458HG affected HCC cell proliferation, activated the glycolysis pathway, and promoted the polarization of tumor-associated macrophage in vitro and in vivo models. Mechanistically, miR4458HG bound IGF2BP2 (a key RNA m6A reader) and facilitated IGF2BP2-mediated target mRNA stability, including HK2 and SLC2A1 (GLUT1), and consequently altered HCC glycolysis and tumor cell physiology. At the same time, HCC-derived miR4458HG could be wrapped in the exosomes and promoted the polarization of tumor-associated macrophage by increasing ARG1 expression. Hence, miR4458HG is oncogenic in nature among patients with HCC. To develop an effective treatment strategy of HCC patients presenting with high glucose metabolism, physicians should focus on miR4458HG and its pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The dataset generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gores GJ (2014) Decade in review-hepatocellular carcinoma: HCC-subtypes, stratification and sorafenib. Nat Rev Gastroenterol Hepatol 11(11):645–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang X, Zhang A, Sun H (2013) Power of metabolomics in diagnosis and biomarker discovery of hepatocellular carcinoma. Hepatology 57(5):2072–2077

    Article  CAS  PubMed  Google Scholar 

  3. Moawad AW, Szklaruk J, Lall C et al (2020) Angiogenesis in hepatocellular carcinoma; pathophysiology, targeted therapy, and role of imaging. J Hepatocell Carcinoma 7:77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337

    Article  CAS  PubMed  Google Scholar 

  5. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707

    Article  CAS  PubMed  Google Scholar 

  6. Wong TL, Ng KY, Tan KV et al (2020) CRAF methylation by PRMT6 regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. Hepatology 71(4):1279–1296

    Article  CAS  PubMed  Google Scholar 

  7. Zuo Q, He J, Zhang S et al (2021) PPARgamma coactivator-1alpha suppresses metastasis of hepatocellular carcinoma by inhibiting Warburg effect by PPARgamma-dependent WNT/beta-catenin/pyruvate dehydrogenase kinase isozyme 1 axis. Hepatology 73(2):644–660

    Article  CAS  PubMed  Google Scholar 

  8. Necsulea A, Soumillon M, Warnefors M et al (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505(7485):635–640

    Article  CAS  PubMed  Google Scholar 

  9. Marin-Bejar O, Mas AM, Gonzalez J et al (2017) The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol 18(1):202

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brauze D, Mikstacka R, Pelkonen O (1990) Monoclonal antibody characterization of NADH- and NADPH-dependent hydroxylation of benzo(a)pyrene in liver microsomes from 5,6-benzoflavone-induced C57Bl/6 mice. Acta Biochim Pol 37(2):219–225

    CAS  PubMed  Google Scholar 

  12. Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen C, Xuan B, Yan T et al (2020) m(6)A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer 19(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Yang A, Quan C et al (2022) A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun 13(1):4594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang J, Nuebel E, Wisidagama DR et al (2012) Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc 7(6):1068–1085

    Article  CAS  PubMed  Google Scholar 

  17. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  18. Wang T, Gu S, Ronni T, Du YC, Chen X (2005) In vivo dual-tagging proteomic approach in studying signaling pathways in immune response. J Proteome Res 4(3):941–949

    Article  CAS  PubMed  Google Scholar 

  19. Huang H, Weng H, Sun W et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Lu JH, Wu QN et al (2019) LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer 18(1):174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patra KC, Wang Q, Bhaskar PT et al (2013) Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24(2):213–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawai T, Yasuchika K, Seo S et al (2017) Identification of keratin 19-positive cancer stem cells associating human hepatocellular carcinoma using (18)F-fluorodeoxyglucose positron emission tomography. Clin Cancer Res 23(6):1450–1460

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Wang Z, Tong F, Dong X, Wu G, Zhang R (2020) lncRNA UCA1 promotes gefitinib resistance as a ceRNA to target FOSL2 by sponging miR-143 in non-small cell lung cancer. Mol Ther Nucleic Acids 19:643–653

    Article  CAS  PubMed  Google Scholar 

  24. Wu XS, Wang F, Li HF et al (2017) LncRNA-PAGBC acts as a microRNA sponge and promotes gallbladder tumorigenesis. EMBO Rep 18(10):1837–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Li C, Zhang L et al (2020) The significance of exosomes in the development and treatment of hepatocellular carcinoma. Mol Cancer 19(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41(9):761–772

    Article  CAS  PubMed  Google Scholar 

  27. DeWaal D, Nogueira V, Terry AR et al (2018) Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun 9(1):446

    Article  PubMed  PubMed Central  Google Scholar 

  28. Amann T, Maegdefrau U, Hartmann A et al (2009) GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol 174(4):1544–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iansante V, Choy PM, Fung SW et al (2015) PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun 6:7882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melo SA, Sugimoto H, O’Connell JT et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26(5):707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou W, Fong MY, Min Y et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (81873178, 81904036), The leading talent Training Program of Pudong Health Burea of Shanghai (PWRl2019-03), Excellent subject leader training project of the three-year action plan of Shanghai public health system (GWV-10.2-XD15), and Key discipline construction project of the three-year action plan of Shanghai public health system (GWV-10.1-XK9).

Author information

Authors and Affiliations

Authors

Contributions

YY: conceptualization (equal); writing—original draft (equal). MW: investigation (equal); methodology (equal). GW: data curation (equal); software (equal). ZM: methodology (equal); validation (equal). BZ: investigation (equal); visualization (equal). YH: methodology (equal); data curation (equal); visualization (equal). JZ: software (equal); validation (equal). WX: conceptualization (equal); writing—review and editing (lead). All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Xia.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Ethics approval

Animal experiments were carried out in accordance with the standards approved by the Ethics Committee of The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine.

Consent to participate

The use of samples from patients was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine. The need to obtain informed consent from the study patients was waived.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2611 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Wang, M., Wang, G. et al. lncRNA miR4458HG modulates hepatocellular carcinoma progression by activating m6A-dependent glycolysis and promoting the polarization of tumor-associated macrophages. Cell. Mol. Life Sci. 80, 99 (2023). https://doi.org/10.1007/s00018-023-04741-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04741-8

Keywords

Navigation