Skip to main content
Log in

UBE2T resolves transcription-replication conflicts and protects common fragile sites in primordial germ cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The proper development of primordial germ cells (PGCs) is an essential prerequisite for gametogenesis and mammalian fertility. The Fanconi anemia (FA) pathway functions in maintaining the development of PGCs. FANCT/UBE2T serves as an E2 ubiquitin-conjugating enzyme that ubiquitylates the FANCD2-FANCI complex to activate the FA pathway, but its role in the development of PGCs is not clear. In this study, we found that Ube2t knockout mice showed defects in PGC proliferation, leading to severe loss of germ cells after birth. Deletion of UBE2T exacerbated DNA damage and triggered the activation of the p53 pathway. We further demonstrated that UBE2T counteracted transcription-replication conflicts by resolving R-loops and stabilizing replication forks, and also protected common fragile sites by resolving R-loops in large genes and promoting mitotic DNA synthesis to maintain the genome stability of PGCs. Overall, these results provide new insights into the function and regulatory mechanisms of the FA pathway ensuring normal development of PGCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The sequencing data are available in Gene Expression Omnibus (GEO) database with the accession number GSE223410 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223410). Enter token ujexukgqhtiltor into the box to review the data.

References

  1. Findlay JK, Hutt KJ, Hickey M, Anderson RA (2015) How Is the number of primordial follicles in the ovarian reserve established. Biol Reprod 93:111

    Article  PubMed  Google Scholar 

  2. Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC (2014) Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 343:533–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Musson R, Gąsior Ł, Bisogno S, Ptak GE (2022) DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update 28:376–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruth KS, Day FR, Hussain J et al (2021) Genetic insights into biological mechanisms governing human ovarian ageing. Nature 596:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsui V, Crismani W (2019) The fanconi anemia pathway and fertility. Trends Genet 35:199–214

    Article  CAS  PubMed  Google Scholar 

  6. Luo Y, Hartford SA, Zeng R, Southard TL, Shima N, Schimenti JC (2014) Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling. PLoS Genet 10:e1004471

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hill RJ, Crossan GP (2019) DNA cross-link repair safeguards genomic stability during premeiotic germ cell development. Nat Genet 51:1283–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ceccaldi R, Sarangi P, D’Andrea AD (2016) The fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 17:337–349

    Article  CAS  PubMed  Google Scholar 

  9. Mamrak NE, Shimamura A, Howlett NG (2017) Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome fanconi anemia. Blood Rev 31:93–99

    Article  CAS  PubMed  Google Scholar 

  10. Howlett NG, Taniguchi T, Durkin SG, D’Andrea AD, Glover TW (2005) The fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet 14:693–701

    Article  CAS  PubMed  Google Scholar 

  11. Luebben SW, Kawabata T, Johnson CS, O’Sullivan MG, Shima N (2014) A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression. Nucleic Acids Res 42:5605–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlacher K, Wu H, Jasin M (2012) A distinct replication fork protection pathway connects fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22:106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gómez-González B, Aguilera A (2019) Transcription-mediated replication hindrance: a major driver of genome instability. Genes Dev 33:1008–1026

    Article  PubMed  PubMed Central  Google Scholar 

  15. Roques C, Coulombe Y, Delannoy M et al (2009) MRE11-RAD50-NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair. EMBO J 28:2400–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yeo JE, Lee EH, Hendrickson EA, Sobeck A (2014) CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum Mol Genet 23:3695–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. García-Muse T, Aguilera A (2016) Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol 17:553–563

    Article  PubMed  Google Scholar 

  18. García-Rubio ML, Pérez-Calero C, Barroso SI et al (2015) The fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet 11:e1005674

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schwab RA, Nieminuszczy J, Shah F et al (2015) The fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol Cell 60:351–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li S, Wu X (2020) Common fragile sites: protection and repair. Cell Biosci 10:29

    Article  PubMed  PubMed Central  Google Scholar 

  21. Le TB, Millot GA, Blin ME, Brison O, Dutrillaux B, Debatisse M (2013) Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 4:420–428

    Article  Google Scholar 

  22. Debatisse M, Le TB, Letessier A, Dutrillaux B, Brison O (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet 28:22–32

    Article  CAS  PubMed  Google Scholar 

  23. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El AE, Gerbault-Seureau M, Muleris M, Dutrillaux B, Debatisse M (2005) Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites. Proc Natl Acad Sci U S A 102:18069–18074

    Article  Google Scholar 

  25. Minocherhomji S, Ying S, Bjerregaard VA et al (2015) Replication stress activates DNA repair synthesis in mitosis. Nature 528:286–290

    Article  CAS  PubMed  Google Scholar 

  26. Bhowmick R, Minocherhomji S, Hickson ID (2016) RAD52 facilitates mitotic DNA synthesis following replication stress. Mol Cell 64:1117–1126

    Article  CAS  PubMed  Google Scholar 

  27. Naim V, Wilhelm T, Debatisse M, Rosselli F (2013) ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat Cell Biol 15:1008–1015

    Article  CAS  PubMed  Google Scholar 

  28. Chan KL, Palmai-Pallag T, Ying S, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11:753–760

    Article  CAS  PubMed  Google Scholar 

  29. Harrigan JA, Belotserkovskaya R, Coates J et al (2011) Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 193:97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lukas C, Savic V, Bekker-Jensen S et al (2011) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13:243–253

    Article  CAS  PubMed  Google Scholar 

  31. Graber-Feesl CL, Pederson KD, Aney KJ, Shima N (2019) Mitotic DNA synthesis is differentially regulated between cancer and noncancerous cells. Mol Cancer Res 17:1687–1698

    Article  CAS  PubMed  Google Scholar 

  32. Alpi A, Langevin F, Mosedale G, Machida YJ, Dutta A, Patel KJ (2007) UBE2T, the fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination. Mol Cell Biol 27:8421–8430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lewis TW, Barthelemy JR, Virts EL et al (2019) Deficiency of the Fanconi anemia E2 ubiqitin conjugase UBE2T only partially abrogates Alu-mediated recombination in a new model of homology dependent recombination. Nucleic Acids Res 47:3503–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spiller CM, Bowles J, Koopman P (2012) Regulation of germ cell meiosis in the fetal ovary. Int J Dev Biol 56:779–787

    Article  CAS  PubMed  Google Scholar 

  35. Vanni VS, Campo G, Cioffi R et al (2022) The neglected members of the family: non-BRCA mutations in the fanconi anemia/BRCA pathway and reproduction. Hum Reprod Update 28:296–311

    Article  CAS  PubMed  Google Scholar 

  36. Bremer S, Vogel R (1999) Pluripotent stem cells of the mouse as a potential in vitro model for mammalian germ cells. Sister chromatid exchanges induced by MMC and ENU in undifferentiated cell lines compared to differentiated cell lines. Mutat Res 444:97–102

    Article  CAS  PubMed  Google Scholar 

  37. Fischer M (2017) Census and evaluation of p53 target genes. Oncogene 36:3943–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ceccaldi R, Parmar K, Mouly E et al (2012) Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 11:36–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M (2013) Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 32:340–353

    Article  CAS  PubMed  Google Scholar 

  40. Seki Y, Yamaji M, Yabuta Y et al (2007) Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134:2627–2638

    Article  CAS  PubMed  Google Scholar 

  41. García-Rubio M, Aguilera P, Lafuente-Barquero J et al (2018) Yra1-bound RNA-DNA hybrids cause orientation-independent transcription-replication collisions and telomere instability. Genes Dev 32:965–977

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aguilera A, García-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124

    Article  CAS  PubMed  Google Scholar 

  43. Gan W, Guan Z, Liu J et al (2011) R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25:2041–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Naim V, Rosselli F (2009) The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11:761–768

    Article  CAS  PubMed  Google Scholar 

  45. Minocherhomji S, Hickson ID (2014) Structure-specific endonucleases: guardians of fragile site stability. Trends Cell Biol 24:321–327

    Article  CAS  PubMed  Google Scholar 

  46. Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44:966–977

    Article  CAS  PubMed  Google Scholar 

  47. Helmrich A, Stout-Weider K, Hermann K, Schrock E, Heiden T (2006) Common fragile sites are conserved features of human and mouse chromosomes and relate to large active genes. Genome Res 16:1222–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krummel KA, Denison SR, Calhoun E, Phillips LA, Smith DI (2002) The common fragile site FRA16D and its associated gene WWOX are highly conserved in the mouse at Fra8E1. Genes Chromosomes Cancer 34:154–167

    Article  CAS  PubMed  Google Scholar 

  49. Helmrich A, Stout-Weider K, Matthaei A, Hermann K, Heiden T, Schrock E (2007) Identification of the human/mouse syntenic common fragile site FRA7K/Fra12C1–relation of FRA7K and other human common fragile sites on chromosome 7 to evolutionary breakpoints. Int J Cancer 120:48–54

    Article  CAS  PubMed  Google Scholar 

  50. Saitou M, Miyauchi H (2016) Gametogenesis from pluripotent stem cells. Cell Stem Cell 18:721–735

    Article  CAS  PubMed  Google Scholar 

  51. Tan H, Tee WW (2019) Committing the primordial germ cell: an updated molecular perspective. Wiley Interdiscip Rev Syst Biol Med 11:e1436

    Article  PubMed  Google Scholar 

  52. Holloway JK, Mohan S, Balmus G et al (2011) Mammalian BTBD12 (SLX4) protects against genomic instability during mammalian spermatogenesis. PLoS Genet 7:e1002094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nadler JJ, Braun RE (2000) Fanconi anemia complementation group C is required for proliferation of murine primordial germ cells. Genesis 27:117–123

    Article  CAS  PubMed  Google Scholar 

  54. Wong JC, Alon N, Mckerlie C, Huang JR, Meyn MS, Buchwald M (2003) Targeted disruption of exons 1 to 6 of the fanconi anemia group a gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia. Hum Mol Genet 12:2063–2076

    Article  CAS  PubMed  Google Scholar 

  55. Hayashi Y, Otsuka K, Ebina M et al (2017) Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells. Proc Natl Acad Sci U S A 114:8289–8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leitch HG, Tang WW, Surani MA (2013) Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol 104:149–187

    Article  CAS  PubMed  Google Scholar 

  57. Nie Y, Wilson AF, DeFalco T, Meetei AR, Namekawa SH, Pang Q (2020) FANCD2 is required for the repression of germline transposable elements. Reproduction 159:659–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ying S, Minocherhomji S, Chan KL et al (2013) MUS81 promotes common fragile site expression. Nat Cell Biol 15:1001–1007

    Article  CAS  PubMed  Google Scholar 

  59. Wang K, Wang H, Li C et al (2021) Genomic profiling of native R loops with a DNA-RNA hybrid recognition sensor. Sci Adv. 7:eabe3516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Swain U, Subba RK (2011) Study of DNA damage via the comet assay and base excision repair activities in rat brain neurons and astrocytes during aging. Mech Ageing Dev 132:374–381

    Article  CAS  PubMed  Google Scholar 

  61. Bayona-Feliu A, Barroso S, Muñoz S, Aguilera A (2021) The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts. Nat Genet 53:1050–1063

    Article  CAS  PubMed  Google Scholar 

  62. Schwab RA, Niedzwiedz W (2011) Visualization of DNA replication in the vertebrate model system DT40 using the DNA fiber technique. J Vis Exp. https://doi.org/10.3791/3255

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42:W187-191

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Ping Zheng from Kunming Institute of Zoology, Chinese Academy of Sciences for providing technical support about DNA fiber assay and comet assay.

Funding

This work was supported by the National Key Research and Development Program of China [2022YFC2703800 and 2021YFC2700100]; Basic Science Center Program of NSFC [31988101]; National Natural Science Foundation for Distinguished Young Scholars [82125014]; National Natural Science Foundation of China [32170867 and 82071609]; Natural Science Foundation of Shandong Province for Grand Basic Projects [ZR2021ZD33]; Shandong Provincial Key Research and Development Program [2020ZLYS02]; Research Unit of Gametogenesis and Health of ART-Offspring; Chinese Academy of Medical Sciences [2020RU001]; Taishan Scholars Program for Young Experts of Shandong Province; and Qilu Young Scholars Program of Shandong University.

Author information

Authors and Affiliations

Authors

Contributions

Shidou Zhao, YQ, and JM designed the study. Y Yu performed most experiments; Y Yang completed the DNA fiber assay; WX completed the neutral comet assay; CW and Simin Zhao helped with the generation of MEFs; GL and RL participated in the genotyping; The manuscript was written by Y Yu and revised by Shidou Zhao, YQ and Z-JC.

Corresponding authors

Correspondence to Jinlong Ma, Yajuan Yang or Shidou Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All animal experiments were conducted in accordance with the ethical guidelines approved by the Animal Care and Research Committee of Shandong University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5842 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Xu, W., Wen, C. et al. UBE2T resolves transcription-replication conflicts and protects common fragile sites in primordial germ cells. Cell. Mol. Life Sci. 80, 92 (2023). https://doi.org/10.1007/s00018-023-04733-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04733-8

Keywords

Navigation