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Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. 
However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological 
processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, 
anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles 
has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy 
(DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, 
a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the 
structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, 
and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent 
literature data on its possible protective role in DMD, we focused on the description of the ‘old’ and ‘new’ functions of H2S, 
especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic 
muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other 
muscle-related disorders.
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Abbreviations
AMPK	� Adenosine 5′-monophosphate-activated protein 

kinase
BMD	� Becker muscular dystrophy
CBS	� Cystathionine β-synthase
CK	� Creatine kinase
CSE	� Cystathionine γ-lyase
DAPC	� Dystrophin-associated protein complex
DGC	� Dystrophin–glycoprotein complex
DMD	� Duchenne muscular dystrophy
ECM	� Extracellular matrix
HO-1	� Heme oxygenase-1
LDH	� Lactate dehydrogenase
3-MST	� MPST: 3-mercaptopyruvate sulfurtransferase
NOS	� Nitric oxide synthase

NRF2	� Nuclear factor-erythroid 2-related factor 2
ROS	� Reactive oxygen species
SCs	� Satellite cells

Duchenne muscular dystrophy (DMD): 
an overview

Duchenne muscular dystrophy (DMD) represents one of the 
most common, severe, and lethal types of dystrophinopa-
thies, which are caused by mutations in the X-linked DMD 
gene that encodes dystrophin, a structural muscle protein. 
The clinical presentation of DMD was first described in the 
1850s–1860s; however, the first fragments of the DMD gene 
cDNA were identified more than one hundred years later (for 
references, see: [1]). DMD is characterized by progressive 
weakness of the skeletal and cardiac muscle due to muscular 
damage and degeneration. Patients suffer from motor delays, 
loss of ambulation, cardiomyopathy, and respiratory impair-
ment [2]. The first symptoms of the disease appear around 
2–3 years of age, including frequent falls, difficulty getting 
up from the floor, the need for help with the hands to stand 
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up (Gower’s sign), or problems with running and climbing 
stairs. Rapid progression of the disease is observed around 
the age of 7 with later motor disability, which requires 
wheelchair use around the age of 12. This is followed by pro-
gressive heart problems that require pharmacological treat-
ment, mechanical cardiac support and surgical solutions, and 
respiratory failure that leads to assisted ventilation.

Respiratory dysfunction and cardiological complica-
tions are among the most devastating effects of the disease 
in patients with DMD, contributing to their morbidity and 
mortality. Progressive sequelae of DMD, such as scoliosis 
and kyphosis, result in altered lung function, and respira-
tory muscle weakness can lead to decreased ventilation 
capacity and pulmonary infections. Improved survival 
of patients with respiratory failure was achieved thanks 

to the introduction of noninvasive nocturnal mechanical 
ventilation; however, enhanced survival and extension of 
life expectancy of dystrophic patients result in increased 
DMD-related cardiomyopathy [3, 4]. Notably, heart prob-
lems represent an alternative cause of death associated 
with DMD and do not correlate with the extent of skeletal 
muscle degeneration [5]. The first incidence of cardiomyo-
pathy occurs at the age of 6 years. Symptoms manifest 
themselves in dilated cardiomyopathy, which progresses to 
end-stage heart failure with accompanying supraventricu-
lar and ventricular arrhythmias [6]. Unfortunately, until 
now, DMD is an incurable disease, and even with optimal 
care, patients die between the second and fourth decade 
of life [7, 8] (Fig. 1).

Fig. 1   Progression of DMD and its complications. Duchenne mus-
cular dystrophy (DMD) is caused by an X-linked mutation in the 
DMD gene. Dystrophin deficiency leads to membrane instability and 
cytoplasm leakage, leading to progressive muscle degeneration. The 
main hallmarks of DMD are calcium imbalance, chronic inflamma-
tion, excessive fibrosis, impaired regeneration, altered autophagy, and 

dysregulated angiogenesis. The first symptoms of DMD occur around 
age 2–3 and manifest themselves as frequent falls, Gower's sign, and 
running problems. Progressive muscle weakness results in disability 
around the age of 12. This is followed by heart failure and respira-
tory dysfunction that leads to premature death in the second to fourth 
decades of life
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DMD gene, dystrophin, and dystrophin–
glycoprotein complex (DGC)

The gene encoding dystrophin represents one of the larg-
est human genes, spanning more than 2200 kb (0.1% of 
the whole genome) [9]. It contains 79 exons, and the most 
common mutation causing DMD is the deletion of one or 
more exons, which constitutes about 60–70% of all DMD 
cases, while point mutations account for 26% of cases 
and exonic duplication cause another 10–15%. Missense 
mutations, splice mutations, and subexonic insertions or 
deletions are also responsible for some cases. Importantly, 
mutations that cause DMD disrupt the protein reading 
frame, causing premature stop codons, resulting in no or 
insufficient protein production [10].

DMD affects around 1:5000 male newborns; however, 
it also rarely occurs in women (less than one per mil-
lion) with Turner syndrome, biallelic DMD mutations, 
or translocations involving DMD. In most cases, female 
carriers are usually asymptomatic, however, some mani-
fest symptoms resembling the milder type of dystrophi-
nopathy, Becker muscular dystrophy (BMD) [8]. BMD is 
also caused by mutations in the gene encoding dystrophin; 
however, these mutations (in-frame deletions) maintain 
the correct reading frame. In contrast to DMD, this leads 
to the production of a shorter, partially functional form 
of DMD products, which are internally truncated and 
expressed at lower levels compared to healthy individu-
als [10].

Due to the complex structure of the DMD gene (for 
example, two polyadenylation sites and seven independent 
tissue-specific promoters), alternative splicing gives the 
number of various DMD isoforms, different in size and tis-
sue distribution [11]. The full-length muscular isoform of 
dystrophin with a molecular weight of 427 kDa (Dp427m) 
is composed of four main functional domains, an N-termi-
nal actin-binding domain (ABD), a central coiled-coil seg-
ment of 24 spectrin-like repeats, and 4 hinge domains that 
form so so-called rod domain (ROD), cysteine-rich domain 
(CRD), and C-terminal domain (CTD) [12]. Almost 50% 
of the mutations that occur in patients with DMD are 
located within the ABD fragment, to a lesser extent in the 
CRD and ROD, and just over 10% of the mutations are 
associated with the CTD [13].

Dystrophin is located on the cytoplasmic side of the 
muscle and the cardiac sarcolemma. The important func-
tion of the protein is to maintain the integrity of the 
myofiber plasma membrane during force generation, pro-
viding mechanical stabilization. Dystrophin is one of the 
key proteins that forms the dystrophin-associated protein 
complex (DAPC), also known as the dystrophin–glyco-
protein complex (DGC), and provides linkage via the 

N-terminus and C-terminus (binding to the transmembrane 
dystroglycan complex) between the actin cytoskeleton and 
the extracellular matrix, respectively [10, 14]. Further-
more, DGC plays a signaling role by controlling mechani-
cal force transduction and cell adhesion and functions as a 
scaffold for signaling proteins [15]. DGC regulates muscle 
cell NO signaling and maintains optimal activity of neu-
ronal nitric oxide synthase (nNOS) and calcium (Ca2+) 
homeostasis [4].

Consequences of dystrophin deficiency 
and pathological hallmarks of DMD

Although dystrophin represents only approximately 0.002% 
of total muscle protein, its lack causes enormous changes in 
skeletal and cardiac muscle functions such as inflammation, 
fibrosis, and degeneration [16] (Fig. 1). Increased perme-
ability of the cell membrane allows larger proteins, includ-
ing muscle creatine kinase (CK) and lactate dehydrogenase 
(LDH), to enter the circulation. In fact, serum CK and LDH 
can be used as biomarkers of DMD [17]. Furthermore, under 
dystrophin-deficient conditions, an increased Ca2+ influx and 
Ca2+ overload were demonstrated in both human and animal 
models of the disease [18, 19]. Consequently, protein degra-
dation and activation of calcium-dependent proteases such 
as calpains and numerous chemokines and cytokines occur 
[20]. This induces inflammation by activating the activation 
of the nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB), which triggers transcription of inducible 
nitric oxide synthase (iNOS) [21]. Calcium imbalance is also 
closely related to mitochondrial function. Increased intra-
cellular Ca2+ leads to upregulation in mitochondrial Ca2+ 
uptake, which further results in accelerated mitochondrial 
production of reactive oxygen species (ROS). This causes 
depolarization of the mitochondrial membrane and the 
opening of the mitochondrial permeability transition pore 
(MPTP) and decreased ATP production. It should be noted 
that an imbalance in calcium homeostasis has a more detri-
mental effect on cardiac cells compared to skeletal muscle 
[21]; however, in both cell types these disturbances result in 
cell death through necrosis and apoptosis [20].

Necrosis is the first step in stimulating an inflamma-
tory response, and chronic inflammation and infiltration 
of immune cells are one of the main hallmarks of DMD. 
Several mechanisms contribute to these processes, but 
the innate immune system is first activated by membrane 
instability and cytoplasm leakage. Destroyed fibers release 
damage-associated molecular patterns (DAMPs), such as 
nucleic acids, ROS, and heat shock proteins (HSPs), and 
activate toll-like receptors (TLRs). Activation of TLRs and 
the interleukin-1 receptor (IL-1R) initiates a pro-inflamma-
tory signaling cascade, including activation of the myeloid 



	 K. Kaziród et al.

1 3

608  Page 4 of 29

differentiation primary response 88/IL-1R-associated kinase 
(MyD88/IRAK) pathway. This, in turn, leads to stimulation 
of mitogen-activated protein kinases (MAPKs) and NF-κB 
[22]. Dystrophin-deficient muscles are infiltrated by immune 
cells such as macrophages, neutrophils, and mast cells. Fur-
thermore, in DMD muscles, an elevated level of eosinophils 
is also present in the early stage of the disease. Among all 
leukocytes, myeloid cells are the most abundant immune 
cells that infiltrate dystrophin-deficient muscles; however, 
lymphoid cells, such as cytotoxic T-lymphocytes, are also 
present and contribute to the cytolytic and immunomodu-
latory effect [23]. Self-sustaining activation of the innate 
immune response leads to the constant release of pro-inflam-
matory cytokines including IL-1β, tumor necrosis factor-α 
(TNF-α), interferon-γ (IFN-γ), IL-6, induction of constitu-
tive expression of MHC class I and II in muscle cells, and 
recruitment of T and B cells, which generates an adaptive 
immune response [24].

The diverse nature of macrophages contributes to the pro-
gression of DMD. In the early stage of the disease, Ly6Cpos 
pro-inflammatory macrophages promote muscle lesions 
due to their NO-mediated cytolytic capacity. Later, during 
the progression of the disease, IL-10-producing cells, such 
as regulatory T cells (Tregs), induce alternative activation 
of Ly6Cneg anti-inflammatory macrophages. It leads to the 
deactivation of the inflammatory response and tissue repair 
[24]. This shows the complexity of the immune response 
in the course of DMD with repeated cycles of inflamma-
tion, damage, and activation of compensation mechanisms 
to counteract disease progression. In addition, macrophages 
also release pro-fibrotic molecules such as transforming 
growth factor-β (TGF-β), that is crucial in the initiation of 
the fibrotic process [24, 25]. Fibroblasts activated by TGF-β 
produce extracellular matrix (ECM) components and ECM-
remodeling factors (collagens, fibronectin, metalloprotein-
ases) [26]. As a result of chronic injury, persistent inflam-
mation, and the presence of macrophages, an excessive 
amount of ECM components accumulate in muscle tissue. 
This inhibits myogenic repair and contributes to muscle 
replacement by the fibrotic scar [27]. Notably, a different, 
more rigid structure of the fibrotic tissue compared to the 
muscles affects the efficiency of muscle contraction. During 
this time, fibrotic tissue can also be replaced by adipocytes 
(fatty degeneration) [27, 28].

Myonecrosis, increased inflammation, oxidative stress, 
and progressive fibrosis alter the myogenesis and regen-
eration process in dystrophic muscles, which leads to a 
subsequent loss of muscle tissues [29]. Impaired regen-
eration in DMD muscles is associated with an inefficient 
generation of myogenic progenitors. Notably, dystrophin is 
expressed in muscle stem cells, satellite cells (SCs), defined 
as CD45−CD31−α7-integrin+Sca-1− cells expressing Pax7, 
the canonical marker that drives their survival and proper 

functioning [30]. In SCs, dystrophin regulates their polarity 
and asymmetric division [31], and, interestingly, both an 
increase in their number [32], and their exhaustion due to 
telomere shortening [33] under dystrophic conditions have 
been shown. Despite an increased quantity of SCs in DMD 
muscles, the absence of dystrophin alters their self-renewal 
and maintenance, due to the decreased expression of asym-
metric divisions-regulating microtubule affinity-regulating 
kinase 2 (MARK2) [31]. Our results, obtained in the mdx 
mouse model, also indicate a higher number of Pax7+ SCs 
in dystrophin-deficient mice, suggesting a lack of associa-
tion between defects in the regenerative potential of SCs and 
their number [34–36]. It should be noted that the functioning 
of SCs is also regulated by infiltrating macrophages. Pro-
inflammatory macrophages promote SCs proliferation, while 
anti-inflammatory macrophages favor their differentiation 
and fusion. Under dystrophic conditions, the increased and 
persistent presence of different macrophage phenotypes may 
contribute to alterations in SC function [26].

Recent studies have also shown that impaired autophagy 
is another hallmark of DMD and can be considered a new 
therapeutic target [37]. Lack of dystrophin leads to increased 
activation of Akt and mTOR, negative autophagy regula-
tors [37, 38]. Furthermore, in dystrophin-deficient SCs 
enhanced phosphorylation and decreased nuclear translo-
cation of coactivator-associated arginine methyltransferase 
1 (CARM1) are observed. This not only leads to reduced 
transcription of Myf5 and other Pax7 target genes, resulting 
in impaired function of satellite cells, but may also affect 
the autophagy process [39]. CARM1 regulates autophagy 
in the adenosine 5′-monophosphate-activated protein kinase 
(AMPK)-dependent way [40]; therefore, its increased phos-
phorylation in DMD may be responsible for the inability to 
properly activate autophagy. Insufficient autophagy causes 
the accumulation of damaged organelles and protein aggre-
gates that affects proper muscle repair [41]. Under dys-
trophic conditions, the gene expression of many proteins 
that participate in the autophagy process is dysregulated. 
We have found a decrease in the mRNA level of beclin-1 
(Becn1), autophagy-related genes 5 and 7 (Atg5, Atg7), 
and lysosomal-associated membrane protein 1 (Lamp1) in 
muscles from mdx mice [42]. The conversion of the soluble 
form of the microtubule-associated protein 1 light chain 3 
(LC3-I) to lipid-bound LC3-II contributes to the formation 
of an autophagosome and is necessary, but not sufficient, to 
trigger cell autophagy [43]. A decrease in the level of the 
autophagy marker LC3-II was also observed in the DMD 
muscles [37]. There are also some studies suggesting activa-
tion of autophagy under dystrophic conditions, but this can 
be affected by age and progression of the disease [44, 45].

Furthermore, defective mitochondria-specific autophagy, 
mitophagy was found in dystrophic muscles. The mechanism 
may involve dysregulation of the PINK1 (PTEN-induced 
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kinase-1)/PARKIN (Parkinson juvenile disease protein-2) 
pathway [42, 46]. The decrease in critical mitophagy-related 
factors, such as PINK1, PARK2, and BNIP3, has been dem-
onstrated in dystrophic patients and various animal models 
of DMD (mice and worms) [42, 47]. On the other hand, the 
use of the mitophagy activator urolithin A alleviated the 
symptoms of DMD [47]. Kuno et al. demonstrated the ben-
eficial cardioprotective effects of resveratrol in mdx mice, 
which was the consequence of the reactivation of defective 
mitophagy [48]. Similarly, activation of AMPK, the regula-
tor of the autophagy-mitophagy pathway, improved the con-
tractile functions of the dystrophic diaphragm by improving 
mitochondrial integrity [49]. Taken together, many stud-
ies have shown dysregulated autophagy and mitophagy in 
DMD; however, due to the complex nature of this process, 
more studies are warranted.

Angiogenesis, a process of the formation of new blood 
vessels, has also been suggested to be affected under dys-
trophic conditions (reviewed in: [50]). Importantly, dys-
trophin is expressed in vascular smooth muscle cells [51, 
52] and, as mentioned above, in SCs that are close to the 
capillaries and secrete the key angiogenic factor, vascu-
lar endothelial growth factor (VEGF). Furthermore, the 

presence of dystrophin was suggested in endothelial cells 
[53, 54]; however, these results need further confirmation, 
as endothelial cell fractions instead of pure endothelial 
cells have been used in the above studies. Nevertheless, the 
absence of dystrophin can cause aberrations in the structure 
and functions of blood vessels and impaired angiogenesis 
in an age-dependent manner [50, 55, 56]. In DMD-affected 
muscles, a decrease in VEGF expression was observed in 
our studies [34–36, 56] and an increase in its level was pro-
posed as a strategy that could exert a beneficial effect on the 
pathology of DMD (reviewed in: [50]).

Treatment of Duchenne muscular dystrophy—
possibilities and limitations

Despite extensive research on the molecular mechanisms of 
DMD, it remains an incurable and fatal disease. However, 
pharmacological, gene, and cell therapies, aimed at counter-
acting the processes that contribute to disease progression 
(described above) or the restoration of functional dystrophin, 
are currently being investigated (reviewed in [4]) (Fig. 2). 
Although some approaches are extremely promising, their 
widespread clinical application may be a matter of the 

Fig. 2   Examples of different therapeutic approaches for DMD treat-
ment. Among the main therapeutic approaches for DMD are genetic 
and pharmacological therapies. Genetic therapies focus on restor-
ing the expression and synthesis of functional dystrophin through 
the mini/micro-dystrophin approach, the exon skipping strategy, 

readthrough therapy, and the CRISPR/Cas9 technology. On the other 
hand, pharmacological therapies use factors such as glucocorticoids, 
modulators of utrophin level, histone deacetylase inhibitors, and com-
pounds targeting angiotensin activity that mitigate the downstream 
effects of dystrophin deficiency
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distant future, also because of the drug-specific limitations. 
Combinatory therapies that simultaneously use strategies to 
target the cause of the disease and mitigate the secondary 
effects of the absence of dystrophin can have additive thera-
peutic benefits [57].

Gene therapies

There are several possibilities to restore the expression and 
synthesis of functional dystrophin through gene delivery; 
unfortunately, most viral vectors, apart from adeno-associ-
ated virus (AAV) vectors, do not infect myocytes with sat-
isfactory efficiency. Although mature muscle cells can be 
targeted by AAV, discrepant data has been published on the 
ability of these vectors to transduce myogenic stem cells. 
Arnett et al. demonstrated that quiescent SCs are resistant 
to transduction in vivo in adult mice [58]. In contrast, Tabe-
bordbar et al. were able to show that dystrophic SCs are 
transduced after systemic delivery of AAV9-Dmd CRISPR 
(AAV serotype 9) that leads to the restoration of the dystro-
phin reading frame [59]. Furthermore, further studies con-
firmed the ability of transduction and gene editing in SCs 
after AAV9 delivery of CRISPR-Cas9 components, albeit 
with rather a low efficiency [60].

More studies are needed to analyze in-depth, for example, 
the role of the satellite cell niche on SCs transduction and to 
increase efficiency by testing other muscle-specific promot-
ers instead of the commonly used muscle creatine kinase 8 
(CK8e) promoter, which is not highly active in resident SCs 
[60]. It should be noted that the AAV capacity is not suffi-
cient to accommodate a complete dystrophin construct, and 
these vectors also cause an inflammatory response. However, 
much effort has been made to improve genetic methods for 
DMD treatment. Current approaches can be classified into 
four main groups, including (1) mini/micro-dystrophin (trun-
cated forms of dystrophin that contain only the domains nec-
essary for their function) through AAVs; (2) exon skipping 
strategy using antisense oligonucleotides (AONs) sequences 
to restore the open reading frame of dystrophin mRNA; (3) 
readthrough therapy related to the presence of nonsense 
mutations, and (4) the CRISPR/Cas9 gene-editing system 
to repair mutations in the DMD gene (summarized in: [4]).

It should be emphasized that all strategies aimed at restor-
ing the expression and synthesis of functional dystrophin are 
challenging both from a technical point of view (e.g., the 
optimal route of administration must be selected to ensure 
the production of dystrophin not only in skeletal muscles 
but also in the heart) and from a biological point of view 
(e.g., to limit the risk of an immune response to dystrophin 
and/or AAV vectors). Another important issue is the estima-
tion of the minimal level of dystrophin required to achieve a 
therapeutic effect [61].

Gene transfer of the full-length dystrophin coding 
sequence is technically difficult, as AAV vectors have a 
small packaging capacity (around 5 kb). Due to this limi-
tation, truncated forms of dystrophin, the so-called mini/
micro-dystrophin, have been generated, containing only the 
domains necessary for their function (ABD, CRD, and CTD, 
with the versatile length of the ROD structure) [62–64]. 
Despite positive effects in animal studies, the clinical effi-
cacy of this strategy was not sufficient and problems with 
a very low level of micro-dystrophin in the muscles and an 
unsatisfactory transduction efficiency of the diaphragm and 
particularly the heart were evident [65]. Positive effects, 
observed in some clinical studies [66], can also be related 
to concomitant treatment with a high dose of corticoster-
oids, necessary to halt the immune response against the viral 
vector.

To overcome immune reactions generated by the newly 
produced dystrophin protein, therapy with utrophin, struc-
tural, and functional dystrophin paralog has been proposed. 
Like dystrophin, utrophin interacts with the dystrophin-
associated protein complex to link the actin cytoskeleton to 
the extracellular matrix [67]. However, its expression in the 
extrajunctional sarcolemma declines after birth and, despite 
high expression during fetal development, it is replaced by 
dystrophin in adults [68, 69]. Therefore, stimulation of 
utrophin expression appeared to be an attractive strategy for 
treating dystrophic patients. However, although utrophin and 
dystrophin share many similarities, they also differ in some 
properties and functions, mostly related to the lack of nNOS 
binding sites and some parts of the central coiled-coil seg-
ment of the ROD structure in the utrophin gene [70, 71]. 
Therefore, utrophin is not fully capable of complementing 
the function of dystrophin [72], and combinatorial therapies, 
such as upregulation of utrophin and restoration of dystro-
phin, can be proposed as an approach with better efficacy. 
Nevertheless, utrophin alone therapy may be plausible in 
patients with BMD who still express a low level of dystro-
phin [73].

The exon skipping strategy with predesigned AONs 
leads to the conversion of frameshift to in-frame deletions, 
resulting in the expression of a shortened but functional 
protein [74]. Typically, AONs are 20–30 nucleotide-long 
fragments of DNA or RNA, which, by binding to the exon/
intron boundary or targeting intraexonic regions, can skip 
the particular exon(s), ‘hide’ it from the splicing machin-
ery, and restore the reading frame [75]. As this method is a 
mutation-specific approach (e.g., eteplirsen skips exon 51 
of the DMD gene, golodirsen and viltolarsen may be used 
in patients having confirmed exon 53 amenable mutations, 
while casimersen allows skipping exon 45), different AONs 
must be used in a form of personalized medicine. Although 
all four AONs are approved by the FDA [76], several 
issues regarding their efficacy, applicability, delivery, and 
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cytotoxicity remain questionable [77]. The main drawbacks 
of AONs include low uptake into heart tissue, with only a 
temporal effect, and the need for repeated administration, 
which also affects the cost of the treatment. Nevertheless, 
multiple exon skipping (multi-exon skipping) or the cock-
tail of various AONs could theoretically be used to restore 
the open reading frame of dystrophin mRNA in 80–90% of 
patients with DMD in total, regardless of the type of muta-
tion [78, 79].

Readthrough therapy can also be applied to only a limited 
number of patients, who have nonsense mutations in the 
DMD gene (approximately 13% of boys). The mechanism 
of action of the compounds used in this strategy is based on 
the ribosomal readthrough of the stop codon on dystrophin 
mRNA and the expression of functional protein. The exem-
plary drug, ataluren [80], is conditionally approved in the 
European Union [2, 81]. Although the main objectives of 
some clinical trials have not been met, many data indicate 
that this drug delays the progression of DMD (reviewed in: 
[82]).

Finally, the application of the CRISPR/Cas9 system, a 
highly effective genetic editing technology, has great poten-
tial to be used for the treatment of DMD. Functional restora-
tion of the dystrophin gene was obtained not only in vitro, 
in dystrophic myoblasts derived from induced pluripotent 
stem cells (iPSCs) [83, 84] but also in various animal mod-
els of DMD—mice [59, 85, 86], dogs [87], and finally pigs 
[88]. Although CRISPR/Cas9-mediated dystrophin correc-
tion may represent a one-time therapy with long-term results 
[89], its clinical application is still under debate due to the 
possibility of off-target gene editing [90, 91], including the 
risk of unspecific mutations. More details on the latest find-
ings and modifications of this approach could be found in 
recent reviews [92, 93].

Cell therapies

The most controversial and least studied and effective in 
clinical trials are strategies aimed at the transplantation 
of cells expressing functional dystrophin. Recently, much 
attention has been paid to the possible use of meso-angio-
blasts. These vessel-associated progenitors have been shown 
to cross the blood-vessel wall after intra-arterial delivery 
[94] and differentiate into muscle fibers [95]. Despite these 
valuable abilities, a phase 1/2a clinical study did not elicit 
a significant benefit [96]. Although other cell populations 
have also been suggested to be used, including bone marrow-
derived mesenchymal stem cells (BM-MSCs) and CD133+ 
progenitors [97–99], only muscle SCs are proven bona fide 
muscle-derived stem cells able to form new muscle fibers. 
Unfortunately, the success of their clinical application in 
humans is so far very limited [100, 101].

Pharmacological therapies

Pharmacological compounds, acting through inhibition of 
NF-κB (corticosteroids–glucocorticoids), downregulation of 
histone deacetylase activity (HDAC inhibitors), modulation 
of the utrophin level, or angiotensin activity (angiotensin-
converting enzyme inhibitors; ACEIs and angiotensin II 
receptor blockers; ARB), mostly used as factors mitigating 
the downstream effects of dystrophin deficiency, have been 
tested in animal models, as well as clinical trials (reviewed 
in [4]).

Glucocorticoids: prednisone, prednisolone, and defla-
zacort have been used as the gold standard for the treat-
ment of DMD for more than 30 years [102, 103]. Their 
protective effects are mediated mostly through inhibition of 
NF-κB signaling and reducing the inflammatory response 
[104, 105]. However, new mechanisms responsible for their 
beneficial impact have also been identified. St-Pierre et al. 
[106] observed that in a mouse model, the use of deflaza-
cort leads to increased expression of nuclear factor of acti-
vated T cells 1 (NFATc1)-dependent genes, including utro-
phin. However, upregulation of utrophin was not evident in 
prednisolone-treated myotubes derived from fibroblasts of 
patients with DMD [107]. Prednisone and deflazacort can 
activate the expression of genes, such as Anxa1 and Anxa6, 
which encode proteins involved in the repair of the sarco-
lemma after injury (annexin A1 and annexin A6, respec-
tively) [108], while Kameyama et al. also found that pred-
nisolone can inhibit matrix metalloproteinase-2 (MMP-2) 
mRNA and consequently increase the level of laminin, the 
main component of the basement membrane of muscle fibers 
[107]. All these mechanisms may be responsible not only 
for the glucocorticoid-triggered reduction of muscle dam-
age, but also for their cardioprotective outcomes [109–111]. 
Although glucocorticoids delay loss of ambulation in DMD 
patients, they are accompanied by prominent adverse effects, 
including excessive weight gain, growth inhibition, adrenal 
insufficiency, bone weakness, cataract development, and 
behavioral changes [103]. To reduce some of these negative 
consequences, the use of new and safer steroid analogs such 
as vamorolone (also known as VBP15) [112–115] or opti-
mized, less frequent, administration of conventional drugs 
[108] was suggested. However, a recent comparison of the 
effectiveness of daily prednisone or deflazacort with inter-
mittent prednisone (10 days on and then 10 days off) found 
the superiority of the daily corticosteroid regimen over the 
intermittent treatment [116].

Although the field of pharmacological, gene, and cell 
therapies for the treatment of DMD continues to advance, 
new promising therapeutic strategies are being evaluated. 
An example of such an approach also includes the use of 
hydrogen sulfide (H2S).
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Why H2S? How can we increase the level 
of H2S in vitro and in vivo?

Gasotransmitters, small gaseous messenger molecules that 
are freely permeable to cell membranes, produced endog-
enously in an enzymatically controlled manner, have pro-
found physiological functions and implications in thera-
peutics. Their discovery has provided new insights into 
the mechanisms of signaling and cellular interactions. It 
turned out that signal transduction can occur without the 
involvement of membrane receptors: the ligand–receptor 
mechanism is not the only way to modulate cellular activ-
ity, and these roles can also be played by endogenously 
synthesized gas messengers [117]. The first gasotrans-
mitter identified was nitric oxide (NO), followed by car-
bon monoxide (CO), and, as the third, H2S was classi-
fied among gaseous messengers. H2S, like CO, has until 
recently evoked negative associations. This colorless and 
flammable gas with the characteristic odor of rotten eggs 
in higher concentrations has adverse effects on the body, 
including irritation of the eyes and respiratory system, and 
can even lead to death through inhibition of mitochon-
drial respiration [118]. However, all three gases have been 
shown to act as regulators of many biological functions 
in animals as a consequence of their anti-inflammatory, 
cytoprotective, antioxidant, and anti-apoptotic properties 
[119].

In mammals, H2S biosynthesis can occur through both 
enzymatic and non-enzymatic pathways [120] (Fig. 3). 
Most endogenous H2S production is mediated by pyri-
doxal 5′-phosphate-dependent enzymes: cystathionine 
β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mer-
captopyruvate sulfurtransferase (3-MST, MPST) using 
l-cysteine, l-homocysteine or l-methionine as substrates 
[121]. Although these enzymes can demonstrate organ and 
tissue-specific distributions, they are all expressed in skel-
etal muscles, heart, vasculature, and endothelium [122, 
123]. An additional biosynthetic pathway was described 
for the production of H2S from d-cysteine, involving 
3-MST and d-amino acid oxidase (DAO). However, this 
mechanism is not universal and is primarily limited to the 
brain, kidney, and gastrointestinal system [124–126]. Fur-
thermore, Akaike et al. [127] reported that H2S can also be 
produced from l-cysteine by cysteinyl-tRNA synthetases 
(CARSs) while Pol et al. [128] found selenium-binding 
protein 1 (SELENBP1), a methanethiol oxidase (MTO), 
responsible for the production of H2S (together with H2O2 
and formaldehyde) from methanethiol. Regardless of the 
biosynthesis pathway, subsequently, H2S acts as a gaseous 
mediator and can finally be metabolized by oxidation in 
mitochondria, methylation in the cytosol, or can be scav-
enged by methemoglobin to form sulfhemoglobin [117, 

129] (Fig. 3). Oxidation in mitochondria, which occurs 
in a two-step reaction, is the major catabolic pathway. 
First, H2S is oxidized by sulfide quinone oxidoreductase 
(SQR) to a persulfide, which is further oxidized to sulfite 
by persulfide dioxygenase (ETHE1). Finally, sulfite is con-
verted to sulfate or thiosulfate by sulfite oxidase (SUOX) 
and thiosulfate transferase, TST (also called rhodanese), 
respectively. Cytosolic methylation also involves the activ-
ity of several enzymes. Thiol S-methyltransferase (TMT) 
triggers the conversion of H2S to methanethiol and dime-
thyl sulfide, and then, the latter is oxidized to thiocyanate 
and sulfate due to the activity of TST. The gasotransmit-
ter can also be removed in an unchanged form through 
exhalation from the lungs. In the kidney, it is metabolized 
into final products such as thiosulfate and sulfate, while 
the liver turns H2S mainly into sulfate (Fig. 3), (for refer-
ences, see: [130]).

H2S has been shown to affect different organs and regu-
late a variety of processes in the organism (Fig. 4). Among 
others, it acts as a neuromodulator and antioxidant [131], an 
anti-inflammatory compound [132], a mediator of vasore-
laxation [133], a stimulator of angiogenesis [134], a regu-
lator of muscle contractility [135], and a protective factor 
against heart failure [136]. Furthermore, H2S can modify a 
wide variety of proteins, including those involved in signal 
transduction pathways, through post-translational modifi-
cation of protein cysteine residues in a process known as 
S-sulfhydration (that is, conversion of cysteine -SH groups 
to -SSH) [137]. Due to this modification, H2S activity can 
be found in virtually all physiological processes, and its pos-
sible application to treat neurodegenerative, cardiovascular, 
renal, and other diseases has been widely investigated [130].

Taking into account the versatile applications of H2S, 
there are attempts to use this mediator as a therapeutic 
agent. However, it is important to use a physiologically rel-
evant dose of H2S to avoid its toxic effect. In rat, human, 
and bovine brain tissues, H2S is present at levels of up to 
50–160 μM [138], but there are studies that show its benefi-
cial effects in a wider range of concentrations (10–300 μM) 
[139]. Several different possibilities of H2S delivery are 
described. The gaseous nature of the compound does not 
facilitate its direct administration, as its inhalation raises 
some concerns about the possible toxicity and the problems 
in estimating the precise dose administered [140]. However, 
in a mouse model of Parkinson’s disease (induced by the 
administration of dopaminergic neurotoxin, MPTP), H2S 
inhalation for 8 h/day for 7 days, prevented neuronal apop-
tosis and protected against disease-induced movement dys-
function [141]. A different research group has shown that 
H2S administered in gaseous form promotes glucose uptake 
by increasing insulin receptor sensitivity and improves kid-
ney lesions in type II diabetes [142]. For exogenous deliv-
ery of H2S, donors in the form of sulfide salts or synthetic 
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Fig. 3   Endogenous and exogenous sources of H2S and its further 
fate. Endogenous synthesis of H2S occurs primarily through an enzy-
matic pathway, and the main precursor is l-cysteine derived from 
the metabolism of homocysteine and cystathionine. l-cysteine can 
be converted to H2S by cystathionine β-synthase (CBS) or cystathio-
nine γ-lyase (CSE). Other enzymes involved in H2S synthesis may be 
D-amino acid oxidase (DAO) and cysteine aminotransferase (CAT), 
which convert d-cysteine and l-cysteine, respectively, to 3-mercapto-
pyruvate, for further metabolization by 3-mercaptopyruvate sulfur-
transferase (3-MST). Exogenously, H2S can be delivered with food 
and in the form of chemical donors, including inorganic sulfide salts 
or new-generation synthetic donors. Another approach to increase 
the level of gasotransmitter through external sources is gene therapy 
based on the overexpression of H2S-generating enzymes. Subse-

quently, H2S acts as a gasotransmitter, exerting numerous biological 
effects or is catabolized through several pathways. It can be scav-
enged by methemoglobin to form sulfhemoglobin, metabolized into 
thiosulfate and sulfate in the kidney and liver, or exhaled directly by 
the lungs. The main catabolic pathway is based on oxidation in the 
mitochondria. In subsequent reactions catalyzed by sulfide quinone 
oxidoreductase (SQR) and persulfide dioxygenase (ETHE1), H2S 
is converted to a persulfide and sulfite, respectively. Sulfite may be 
turned into sulfate or thiosulfate by sulfite oxidase (SUOX) and thio-
sulfate transferase, TST (also called rhodanese). In the cytosol, H2S is 
methylated by thiol S-methyltransferase (TMT) to methanethiol and 
dimethyl sulfide, which can be further processed by TST to thiocy-
anate and sulfate. GSH, glutathione; SAM, S-adenosyl-methionine
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molecules are often used (Fig. 3, Table 1). The most com-
mon inorganic sulfide salts are sodium hydrosulfide (NaSH) 
and sodium sulfide (Na2S). They are water-soluble solid ana-
logs of H2S, providing rapid access to biologically relevant 
forms of sulfide such as H2S and HS− [143]. These com-
pounds have been used in many in vitro studies and have 
broad applications in vivo. Importantly, short- and long-term 
treatment was shown to have a favorable outcome. Chen 
et al. [144] showed that only a single dose of 50 μmol/kg 
body-weight NaHS improved cardiac function in the mouse 
model of sepsis-induced myocardial dysfunction. Also long-
term (4 weeks) administration of NaHS to C57BL/6J mice 
by intraperitoneal injection played a protective role in vascu-
lar remodeling and inhibited the inflammatory response by 
activating PPARδ/SOCS3 signaling pathway [145].

Although NaHS has been used as the main tool for 
increasing H2S concentration in virtually all disease mod-
els for years, its main limitation is related to the very rapid 
release of the gasotransmitter. Upon reaction with water, 
NaHS and other sulfide salts hydrolyze immediately, lead-
ing to a local and transient supra-physiological H2S level 

followed by a rapid decline [146]. Such poor pharmacoki-
netic properties limit their use in potential therapies and 
have led to the discovery of innovative H2S donors, such 
as GYY4137 and FW1256 [147]. GYY4137 releases H2S 
significantly slower (10 min) compared to NaHS (10 s) [148] 
and is the most studied water-soluble compound that releases 
H2S through hydrolysis. It was used to study the cardiopro-
tective effect of H2S in vitro [149] and in vivo [150]. The use 
of this donor allowed the demonstration that H2S can have 
anti-tumor effects [151], stimulate autophagy, and attenuate 
ferroptosis [152], among other effects.

AP39 is the example of a mitochondria-targeted H2S 
donor, as it contains a mitochondria-targeting motif, tri-
phenyl phosphonium coupled with an H2S-donating moi-
ety (dithiolethione). This compound was shown to protect 
against oxidative stress-mediated renal epithelial cell injury 
in vitro and renal ischemia–reperfusion injury in vivo [153], 
and oxidative mitochondrial DNA damage in endothelial 
cells [154]. Furthermore, in a model of cardiac arrest and 
cardiopulmonary resuscitation-induced neurological injury, 
treatment with AP39 preserved mitochondrial integrity, 

Fig. 4   Physiological roles and therapeutic targets of H2S. The cyto-
protective effects of H2S are exerted by the numerous activities that 
can be demonstrated in the regulation of various organ functions 
under physiological and pathological conditions. Among others, H2S 
has been proposed as a therapeutic in neurodegenerative disorders, 
acute lung injury, and myocardial infarction. The protective role of 

H2S has been demonstrated in ischemia–reperfusion injury in the kid-
ney, inflammatory bowel disease and colitis, as well as in reproduc-
tive system dysfunctions. Finally, H2S may be a preventive factor in 
skeletal muscle-related disorders, such as muscle atrophy, sarcopenia, 
and Duchenne muscular dystrophy
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Table 1   Overview of selected H2S donors and their mechanism of action

H2S donor Full name Structural formula Type Mechanism of 
release/action Features References

NaHS Sodium hydrosulfide
Sulfide salt,
mainly used 

in hydrated form

Hydrolysis 
triggered

Fast-releasing 
H2S donor [144–146, 258]

Na2S Sodium sulfide Sulfide salt Hydrolysis 
triggered

Fast-releasing 
H2S donor [189, 262]

GYY4137

Morpholin-4-ium (4-
methoxyphenyl)-

morpholin-4-
ylsulfanylidenesulfido-λ5-

phosphane

Derivative of 
Lawesson's 

reagent
Hydrolysis 
triggered

Slow-releasing 
H2S donor

[147, 149–152,
236, 263]

FW1256

2,3-dihydro2-phenyl-2-
sulfanylene

benzo[d][1,3,2]oxazaphos
phole

Phenyl analogue Hydrolysis 
triggered

Slow-releasing 
H2S donor [147, 264]

ATTM Ammonium 
tetrathiomolybdate

pH dependent 

H2S donor

Hydrolysis 
triggered in a pH-
sensitive manner

Slow-releasing 
H2S donor [265, 266]

DTTs 1,2-Dithiole-3-thiones

Class of H2S
donors 

commonly used 
to make drug-

DTT conjugates

Hydrolysis 
triggered

Slow-releasing 
H2S donor [267, 268]

AP39

10-oxo-10-(4-(3-thioxo-
3H-1,2-dithiol-
5yl)phenoxy)

decyl) triphenyl
phosphonium bromide

1,2-Dithiole-3-
thione (DTT) 

derivative

Hydrolysis 
triggered

Slow-
releasing, 

mitochondria-
targeted H2S

donor

[153–156, 243]

ATB-346

6-methoxy-α-methyl-2-
naphthaleneacetic acid, 4-

(aminothioxomethyl)
phenyl ester

H2S- releasing 
derivative of 

naproxen

Hydrolysis of the 
thiol moiety results 

in H2S release, 
leaving naproxen 4-
hydroxybenzamide

Fast-releasing 
H2S donor [157, 158]

S-diclofenac

2-[(2,6
dichlorophenyl) amino] 
benzene acetic acid 4-

(3H-1,2,dithiol-3-thione-
5-yl) phenyl ester

H2S-releasing 
non-steroidal 

anti-
inflammatory 

drug 
(S-NSAIDs); 
DTT-NSAID 

derivative

Esterase-catalyzed 
hydrolysis

Slow-releasing 
H2S donor [269, 270]

DATS diallyl trisulfide
Garlic-derived 

organic 
polysulfide

Thiol-triggered Slow-releasing 
H2S donor [271]

NSHD1 N-(benzoylthio)
benzamide

N-SH-based 
donor Thiol-triggered Slow-releasing 

H2S donor [147, 272]
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reduced oxidative stress, and improved neurological func-
tion and long-term survival rates [155]. The cardioprotective 
effect was also demonstrated [156].

Among different H2S donors, an interesting class of new 
compounds has been developed that combine traditional 
nonsteroidal anti‐inflammatory drugs (NSAID) with a 
chemical moiety that donates H2S. Exemplary compounds, 
ATB-346, a derivative of naproxen [157, 158] and ATB-
352, known as HS-ketoprofen [159], were shown to exert 
reduced toxic effects in the gastrointestinal track, compared 
to the parent NSAID. Importantly, their anti-inflammatory 
and analgesic potential was comparable or even better than 
traditional NSAIDs. It is noteworthy that the Phase 2 clinical 
trial (http://​Clini​calTr​ials.​gov, NCT03291418) conducted on 
healthy male and female subjects has demonstrated a supe-
riority of ATB-346 over the naproxen, since less gastroduo-
denal ulceration was evident in the ATB-346 group [157].

To improve the chemical properties of H2S donors and 
use those molecules in a more controllable way, new deriva-
tives were recently synthesized. Among them, the pH-con-
trolled factor (ammonium tetrathiomolybdate, ATTM) and 
the thiol-triggered H2S releaser (SG1002), after the success-
ful results of phase I clinical trials (http://​Clini​calTr​ials.​gov, 
NCT01989208) [160], are suggested for the treatment of car-
diovascular diseases and breast cancer. The field of discov-
ery of new small molecules and materials-based approaches 
for controlled delivery of H2S and related reactive sulfur 
species (RSS) increases rapidly. Examples of such com-
pounds are N-thiocarboxyanhydrides (NTAs) that release 
carbonyl sulfide (COS), which is effectively converted to 
H2S by the action of the enzyme carbonic anhydrase (CA) 
[161]. A summary of basic information on various H2S 
donors is provided in Table 1. However, we encourage the 
readers to seek more details in other articles that focus on 

Table 1   (continued)

SATOs S-Aroylthiooximes

Group of 
S-

aroylthiooxime
H2S donors

Thiol-triggered Slow-releasing 
H2S donor [273]

Arylthioamides Group of aryl 
thioamides Thiol-triggered Slow-releasing 

H2S donor [274]

Geminal-dithiols
Gem-dithiol-

based-H2S
prodrugs

Photo-induced Slow-releasing 
H2S donor [275]

Ketoprofenate Photocages
Ketoprofenate-

caged H2S
prodrugs

Photo-induced

H2S release 
time 

proportional to 
irradiation 
time and 
intensity

[276]

TML Trimethyl lock
Esterase-
sensitive 
prodrugs

Enzyme-triggered Slow-releasing 
H2S donor [277, 278]

NTAs N-thiocarboxyanhydrides
Carbonyl sulfide 

(COS)/H2S-
releasing donors

Enzyme-triggered Slow-releasing 
H2S donor [143, 161]

SG1002 Sodium polysulthionate

Prodrug, 
polysulfur 

mixture
containing S8,

Na2SO4,
Na2S2O3,
Na2S3O6,

Na2S4O6, and 
Na2S5O6

-

Slow-
releasing, 

water-
insoluble H2S

donor,
orally active

[160, 257, 279]

http://ClinicalTrials.gov
http://ClinicalTrials.gov
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donor chemistry, their pros and cons, and possible applica-
tions [140, 162, 163].

There are also known natural H2S donors, such as garlic 
extracts (Allium sativum) and derivatives [164]. The most 
characterized active component of garlic, allicin (diallyl thi-
osulfinate), unstable in aqueous media, is quickly converted 
into several H2S-releasing compounds [e.g., diallyl sulfide 
(DAS), diallyl disulfide (DADS), diallyl trisulfide (DATS) 
and allyl methyl sulfide (AMS), allyl methyl disulfide 
(AMDS), allyl methyl trisulfide (AMTS)] (Fig. 5). Simi-
larly, isothiocyanates such as sulforaphane and allyl isothio-
cyanate present in cruciferous vegetables have significant 
H2S-releasing activity. However, the main problem with sup-
plementation with these natural means may be standardiza-
tion of dosage, as well as bioavailability and absorption of 
active ingredients.

Finally, another strategy may be based on the gene ther-
apy approach. Overexpression of H2S-generating enzymes, 
leading to increased H2S production, may have superior 
properties over chemical compounds, since the latter may 
exert functions related not only to H2S signaling. Sen et al. 
[165] have shown that ex vivo gene therapy with plas-
mids having CBS, CSE, and 3-MST genes improved the 
relaxation of hyperhomocysteinemic arterial explants. In 
D. melanogaster, constitutive ubiquitous overexpression of 
CBS extended a lifespan, improved locomotor activity, and 
increased resistance to hyperthermia (35 °C) [166]. On the 

other hand, genetic overexpression of CBS in the brain 
caused dysregulation of serotonin and dopamine pathways 
[167] and contributed to Down syndrome-associated neu-
ronal disturbances [168].

Possible mechanisms of beneficial effects 
of H2S

H2S exerts anti-inflammatory, anti-apoptotic, and antioxi-
dant activities (Fig. 6). Other known effects are related to 
neuroprotection (e.g., by mediating the N-methyl-d-aspar-
tate, NMDA) receptor responses) and relaxation of blood 
vessels (e.g., by enhancing the effects of NO), lowering 
blood pressure, and regulation of angiogenesis by affect-
ing multiple pathways and interactions with ion chan-
nels, enzymes, transcription factors, and receptors [169, 
170]. H2S may, similarly to NO, upregulate the activity 
of soluble guanyl cyclase (sGC) and increase the level of 
cGMP. This could be at least in part due to direct inhibi-
tion of cGMP phosphodiesterase (PDE5) activity, leading 
to an increase in the half-life of cGMP [170]. As oxida-
tive stress, inflammation, and angiogenesis, disturbances 
greatly contribute to the progression of DMD and the lead-
ing cause of death is related to dilated cardiomyopathy 
and other cardiac dysfunctions, below we focus on these 
aspects of H2S-mediated cytoprotection.

Fig. 5   Garlic-derived natural 
H2S donors. Allicin (diallyl 
thiosulfinate) is an organosulfur, 
active garlic component. Its 
decomposition results in the for-
mation of several H2S-releasing 
compounds such as diallyl 
sulfide (DAS), diallyl disulfide 
(DADS), diallyl trisulfide 
(DATS), and methylated forms 
including allyl methyl sulfide 
(AMS), allyl methyl disulfide 
(AMDS), and allyl methyl 
trisulfide (AMTS). The newly 
formed compounds are consid-
ered natural H2S donors with 
a broad spectrum of biological 
activity
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H2S as an antioxidant

Oxidative stress is caused by the overproduction of ROS 
relative to cellular antioxidant defense. H2S exerts antioxi-
dant properties through several mechanisms, including direct 
quenching of ROS [171] and reactive nitrogen species (RNS) 
[172], increasing antioxidant levels, and regulating the state 
of certain proteins through S-sulfhydration [137].

An essential pathway associated with maintaining redox 
balance by H2S is the activation of the nuclear factor-
erythroid 2-related factor 2 (NRF2; encoded by the Nfe2l2 
gene), which regulates the expression of numerous antioxi-
dant genes [173, 174]. Under normal conditions, NRF2 is 
located in the cytoplasm and is bound to its negative regu-
lator, the Kelch-like ECH-associated protein 1 (KEAP1) 
dimer, which targets NRF2 for proteasomal degradation in a 

ubiquitin-dependent manner. H2S interacts with and modifies 
KEAP1 through S-sulfhydration, resulting in its conforma-
tional change and preventing ubiquitylation of bound NRF2. 
Newly synthesized NRF2 is not sequestered by KEAP1, but 
can accumulate in the nucleus, where it binds to the antioxi-
dant response element (ARE) and leads to induction of the 
expression of NRF2-regulated downstream genes [175–177]. 
One of them is heme oxygenase-1 (HO-1; HMOX1/Hmox1), 
which exerts anti-inflammatory and antioxidant properties. 
HO-1 plays a protective role in many pathological condi-
tions, including the cardiovascular, renal, and central nerv-
ous systems [178–180]. Recently, its role in skeletal muscle 
differentiation and repair [181–183] and the progression of 
DMD [184] has also been revealed. Other NRF2-regulated 
genes encode proteins that are strongly involved in the mit-
igation of oxidative stress with ROS scavenging, such as 

Fig. 6   Biochemical functions of H2S. Hydrogen sulfide exerts its 
cytoprotective properties through several mechanisms. Direct quench-
ing of ROS, enhanced cysteine transport that increases GSH, or 
post-translational S-sulfhydration of, e.g., p66Shc adaptor protein or 
SIRT1 contributes to an antioxidant effect. The S-sulfhydration of 
KEAP1 alters its ability to direct NRF2 to ubiquitylation and proteas-
omal degradation, thus allowing the accumulation of newly translated 
NRF2, its nuclear translocation, and increased expression of NRF2-
regulated downstream genes such as HMOX1 and NQO1. Activation 
of cardiac KATP channels mediates the cardioprotective effect of H2S. 
The anti-inflammatory mechanism of H2S is related to decreased acti-

vation and nuclear translocation of NF-κB, resulting in reduced tran-
scription of pro-inflammatory genes, such as TNF-α or IL-6. Further-
more, H2S-mediated cytoprotection can involve activation of AMPK. 
AMPK also mediates antioxidant and anti-inflammatory effects and 
contributes to the regulation of autophagy and metabolism. Another 
mechanism of H2S action is related to its pro-angiogenic activities 
and may involve VEGFR/PI3K/AKT/eNOS signaling. Neuromodu-
latory functions are achieved by activating N-methyl-D-aspartate 
(NMDA) receptors, among other mechanisms. The interaction with 
NO and CO also contributes to the cytoprotective effect
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thioredoxin (TRX), glutathione S-transferase (GST), glu-
tathione peroxidase (GPx), thioredoxin reductase (TRXR), 
and catalase [185]. The involvement of NRF2 and its down-
stream effectors in the antioxidative response of H2S has 
been demonstrated in many studies. For example, the NRF2/
HO-1 signaling pathway was activated by NaHS treatment 
in a rat model of cyclophosphamide-induced toxicity [186]. 
It should be noted that simultaneously with NRF2 induc-
tion, the level of NRF2 targets, such as NAD(P) H quinone 
oxidoreductase 1 (NQO1), reduced glutathione (GSH), and 
superoxide dismutase (SOD), also increased. HO-1 was 
induced by H2S and has cardioprotective effects in rats with 
volume overload-induced heart failure [187], and in mice 
with coxsackievirus B3-induced myocarditis [188]. Calvert 
et al. [189] demonstrated induction of NRF2, HO-1, and 
Trx-1 in ischemic cardiac tissue after Na2S treatment, lead-
ing to a reduction in infarct size, the level of cardiac injury 
marker, troponin I, and oxidative stress. The protective out-
come of H2S-induced HO-1 expression was also shown in 
pulmonary hypertension [190] and wound healing [191].

Modulation of GSH concentration is another key mecha-
nism in the antioxidant effect of H2S. GSH, a tripeptide, 
γ-l-glutamyl-l-cysteinylglycine, is synthesized in consecu-
tive reactions catalyzed by two enzymes, glutamate-cysteine 
ligase (GCL) and glutathione synthetase (GS). Kimura et al. 
[171] demonstrated that H2S enhances the transport of the 
sulfur amino acid precursor, cysteine, to increase GSH pro-
duction. Furthermore, upregulation of the expression of 
GCL subunits: a catalytic subunit (GCLC) and a modifier 
subunit (GCLM) by H2S leads to increased intracellular 
GSH levels [192].

The antioxidant functions of H2S may also involve the 
regulation of AMPK. The reduction of oxidative stress and 
apoptosis by NaHS in an experimental model of aging was 
mediated by activation of the calmodulin-activated protein 
kinase kinase-β (CaMKKβ)/AMPK pathway [193]. A simi-
lar cytoprotective effect of NaHS through activating AMPK 
was found in a model of dexamethasone-induced osteoblast 
cell damage [194]. Furthermore, ajoene, a garlic by-prod-
uct, demonstrated antioxidant properties in hepatic steato-
sis induced by a high-fat diet (HFD) through stimulation of 
AMPK signaling [195].

As mentioned above, S-sulfhydration is an important 
mechanism of H2S-mediated signaling. This post-transla-
tional modification of the p66Shc adaptor protein greatly 
contributes to the antioxidant effect exerted by H2S. p66Shc 
is involved in mitochondrial redox signaling and its phos-
phorylation at Ser36 leads to increased ROS production 
by three different mechanisms in a manner bound to the 
mitochondria, the plasma membrane, and the nucleus [196, 
197]. Oxidative stress associated with p66Shc activity is 
an important factor in the pathology of many diseases and 
pathological conditions, including DMD [198], diabetes 

mellitus, hypercholesterolemia, endothelial dysfunction, 
and aging (reviewed in [197]). Xie et al. [199] revealed 
that H2S persulfidates p66Shc at Cys59, which is located 
near Ser36, preventing the phosphorylation of p66Shc, its 
translocation to mitochondria, and therefore inhibiting ROS 
production. These effects were achieved by NaHS treatment 
and CBS overexpression, which means that exogenous and 
endogenous H2S reduces oxidative stress. Interestingly, 
p66Shc is negatively regulated by sirtuin1 (SIRT1) [200]. 
SIRT1 belongs to the family of nicotine adenine dinucleotide 
(NAD+)-dependent histone deacetylase proteins, enzymes 
that catalyze post-translational modifications of many pro-
teins [201]. SIRT1 acts on multiple targets, such as p53, 
FOXO3, and eNOS, and exhibits diverse biological activi-
ties, including negative regulation of oxidative stress (anti-
oxidant properties) [197]. Notably, SIRT1 was suggested 
to provide beneficial effects in mouse models of DMD 
through the attenuation of oxidative stress, inflammation, 
and fibrosis [202]. Increased SIRT1 activity can be induced 
by direct S-sulfhydration by H2S [203], implying that some 
of the antioxidant properties of the gasotransmitter can be 
mediated by regulation of histone deacetylase activity. It is 
supported by studies in which in vitro application of H2S 
decreased endoplasmic reticulum stress [204], oxidative 
stress and senescence [205], while application of SIRT1 
inhibitors reversed these effects.

Cardioprotective roles of H2S

The synthesis of endogenous H2S in the heart occurs pre-
dominantly through the activity of CSE and substantially 
less by CBS [206, 207] and the CSE/H2S pathway was 
shown to be particularly important for the proper function-
ing of the cardiovascular system. Cardioprotective effects 
of H2S can result from multiple mechanisms of action, 
including reduction of oxidative stress, anti-apoptotic and 
anti-inflammatory effects. Among various possible molecu-
lar pathways, H2S-mediated cardioprotection may involve 
AMPK activation, which was demonstrated in cardiac arrest 
in mice [208], myocardial ischemia/reperfusion injury [209], 
cigarette smoking-induced left ventricular dysfunction in 
rats [210], and high-fat diet-induced diabetic cardiomyopa-
thy [211]. Nevertheless, the influence on ion channels that 
affect cardiac contractility appears to be the main cardiopro-
tective mechanism of H2S.

ATP-sensitive potassium (KATP) channels are widely dis-
tributed and can be found in the heart, muscles, pancreas, 
and brain [212, 213]. Being highly sensitive to ATP and 
ADP concentrations, the channels are high-fidelity sensors 
that match membrane excitability with a given metabolic 
state of the cell [214]. KATP activation prevents uncontrolled 
calcium influx, stabilizes membrane potential, and regulates 
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cardiac contractility [215]. Disruption of KATP channel func-
tions has been associated with the progression of many dis-
eases and conditions, including hypertension [216], ischemic 
heart disease [217], dilated cardiomyopathy [218], or cardio-
myopathy in DMD [219]. In myopathic hearts, these chan-
nels exhibit abnormal responses to the metabolic state of 
the cell, particularly to ATP and CK concentrations, result-
ing in impaired regulation of membrane excitability, which 
exposes cardiomyocytes to calcium loading and necrosis 
[220]. Some of these alterations can be mitigated by com-
pounds known to open KATP channels, and interestingly, one 
of them is H2S [221]. The channels are built from pore-form-
ing subunits, Kir6.x (Kir6.1 or Kir6.2) and a sulfonylurea 
receptor (SUR1, SUR2, SUR2A, SUR2B), having regulatory 
activity. H2S was shown to trigger the opening of SUR1 in 
vascular smooth muscle cells [221] and SUR2B in colonic 
smooth muscle cells by S-sulfhydration [222]. Mys et al. 
[223] reported a simultaneous increase in SUR2 and Kir6.1 
mRNA levels along with CSE and 3-MST in rat hearts 
treated with pyridoxal-5-phosphate (PLP) as a cofactor of 
enzymes that synthesize H2S. This implies that the S-sulfhy-
dration process is also involved in the activation of cardiac 
channels. The cardioprotective effect of H2S may result from 
acting through sarcolemmal KATP channels and/or mitochon-
drial KATP channels. Bian et al. [207] demonstrated the car-
dioprotective effect of H2S by opening sarcolemmal KATP 
channels. Increased cell viability and decreased severity and 
duration of arrhythmias after ischemia/reperfusion in cardiac 
myocytes treated with NaHS were reported. Blocking sar-
colemmal KATP channels reversed the beneficial effects of 
the H2S donor, whereas inhibiting mitochondrial KATP did 
not cause any change. On the other hand, Liang et al. [224] 
showed that the cardioprotective effect of H2S, manifested 
by increased cell viability, decreased number of apoptotic 
cells, and reduced oxidative stress, is abolished after inhi-
bition of mitochondrial KATP. Similarly, Testai et al. [225] 
reported that beneficial effects of the H2S donor in the post-
ischemic recovery of the myocardium were antagonized by 
a mitochondrial KATP channel blocker. Despite such diverse 
data on the involvement of sarcolemmal and/or mitochon-
drial KATP channels, H2S-mediated cardioprotective effects 
are well-documented.

Anti‑inflammatory and anti‑fibrotic effects of H2S

The cardioprotective properties of H2S may also be related 
to its anti-inflammatory effect. The inflammatory response 
induced by tissue damage results in the recruitment of 
immune cells, followed by a remodeling phase with fibrosis 
events. Long-term inflammation and defects in the regu-
latory feedback of inflammatory mediators can facilitate 
increased deposition of collagen and other matrix proteins, 
leading to fibrosis and induction of cardiac ventricular 

dilatation [226]. An important anti-inflammatory mecha-
nism of H2S is related to inhibition of activation and nuclear 
translocation of NF-κB [227, 228], resulting in reduced 
transcription of pro-inflammatory genes, such as TNF-α 
or IL-6. NF-κB is a central mediator of inflammation and 
immune processes, which was found to be chronically active 
in many diseases with prolonged inflammation, including 
DMD [229]. Interestingly, Zhang et al. [230] reported that 
the reduced recruitment of CD11b+Gr-1+ myeloid cells into 
the myocardium may be behind one of the mechanisms of 
the anti-inflammatory effects of H2S with particular cardio-
protective importance. Another mechanism involves IL-10/
JAK/STAT-3-dependent signaling [231]. Finally, inhibition 
of inflammation may also be dependent on activation of 
AMPK [232].

H2S plays a physiological role in the prevention of fibro-
sis development. This aspect was broadly evaluated in differ-
ent organs, for example, the kidney. CSE deficiency result-
ing in decreased H2S and GSH levels caused renal fibrosis 
with tubular damage, infiltration of inflammatory cells, and 
deposition of ECM components [233]. On the other hand, 
exogenous H2S was shown to inhibit the expression of 
fibrotic cytokines and other mediators and the activation of 
myofibroblasts that leads to the suppression of renal fibrosis 
[234]. Other studies evaluated the impact of H2S on cardiac 
fibrosis. Exogenous delivery of H2S in a form of S-propar-
gyl-cysteine in a special liposomal formulation, which leads 
to the slow release of the active gasotransmitter, had cardio-
protective and anti-fibrotic effects by inhibiting the TGF-β1/
SMAD signaling pathway [235]. The same signaling path-
way was attenuated by treating spontaneously hypertensive 
rats with another H2S donor, GYY4137, leading to inhibition 
of myocardial infarction [236].

Modulation of angiogenesis by H2S

Another protective effect of H2S is related to its pro-angio-
genic activities. NaHS treatment increased endothelial cell 
migration, proliferation, and tube formation in Matrigel in 
an Akt-dependent way, as well as promoted neovasculariza-
tion in vivo in the Matrigel plug assay in mice [237]. Simi-
larly, Papapetropoulos et al. demonstrated delayed wound 
healing and neovascularization in CSE−/− mice, while 
direct administration of H2S donor to injured skin stimu-
lated wound closure in a rat model. Concomitantly, in vitro 
studies (using endothelial cells) and ex vivo experiments 
(done on aortic rings isolated from CSE-deficient mice) 
underscored the cross talk between H2S synthesis and the 
pro-angiogenic action of vascular endothelial growth fac-
tor (VEGF) [238]. Recent data reveal more details on the 
molecular mechanisms responsible for the H2S-dependent 
promotion of angiogenesis. Among them, the involvement of 
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specific microRNAs, for example, upregulation of miR-192 
[239] or miR-126-3p [240] has been suggested.

H2S in healthy and diseased skeletal muscles

Initially, mouse skeletal muscles express were shown to 
express very low levels of H2S-generating enzymes or com-
pletely lack these proteins [241]; however, Lu et al. [242] 
and Ellwood et al. [243] were able to detect the CSE protein 
by Western blotting in mouse gastrocnemius muscle. Dis-
crepant data were also shown when the level of the third 
enzyme, 3-MST, was analyzed. Its protein level was very 
low or even undetectable in mouse skeletal muscles [244], 
while strong expression has been shown in gastrocnemius 
muscle of C57BL/10ScSn mice [243]. Zhang et al. [245] 
found that although CSE, CBS, and 3-MST mRNA were 
expressed in mouse skeletal muscle, the level of CBS protein 
was negligible. Although in the work by Zhang et al. [245], 
both CSE and 3-MST were easily detected at the protein 
level, additional analysis (for example, with the use of DL-
propargylglycine (PPG), a CSE-specific inhibitor) revealed 
that CSE is the main enzyme in mouse skeletal muscles. In 
rats, detectable amounts of all three enzymes were evident 
[246], while in human skeletal muscles, high expression of 
CBS and CSE has been demonstrated [241]. These varia-
tions might be related to several divergences in the applied 
methodology, e.g., concentration and type of antibodies, 
but they may also indicate species-dependent regulation. 
However, an increase in H2S content (by pharmacological 
treatment or gene delivery of H2S-generating enzymes) may 
have plausible effects on skeletal muscle biology in various 
models.

The level of H2S and H2S-generating enzymes declines 
with age and during various pathological conditions. In 
the tibialis muscles of 51-week-old mice, CSE expression 
and H2S production decreased compared to 10-week-old 
animals. The level of cysteine, the main substrate for H2S 
production, was also reduced in the muscles of elderly mice 
[245]. A lower endogenous H2S concentration was detected 
with a concomitant reduction in NRF2 cytoprotective factor 
and a significantly increased oxidative stress in the skel-
etal muscles of patients with critical limb ischemia [247]. 
H2S levels in serum and muscles and the expression of 
H2S-generating enzymes were decreased in diabetic mice 
[242] and rats [248] compared to control animals.

Skeletal muscle‑protective effects of H2S

Taking into account the diversity of protective effects 
exerted by H2S, it is surprising that its role in skeletal mus-
cles and various muscle diseases has not been extensively 
evaluated. However, recent experiments indicated that H2S 

can play a role in the regulation of muscle health [123]. 
Some assumptions on the possible role of H2S in skeletal 
muscles could be analyzed based on the results of stud-
ies in patients with homocystinuria. The decrease in CBS 
expression/activity in these patients resulted in morpho-
logical abnormalities in many organs, including muscles, 
and represented by fragmented Z disks and disorganized 
myofilaments with collagen deposits in the basal lamina 
[249]. Some indications of the importance of H2S in mus-
cles also come from animal models lacking the activity 
of H2S-generating enzymes. CTH-deficient (Cth−/−) mice 
on a low cysteine diet were characterized by reduced glu-
tathione levels in skeletal muscles and higher levels of 
autophagy regulators, LC3 and p62, in skeletal myofibers. 
Enhanced autophagy was related to acute skeletal muscle 
atrophy (myopathy) and resulted in severe paralysis of the 
extremities [250].

Only a few studies describe the molecular mechanism of 
H2S activity in healthy and diseased skeletal muscles. Bitar 
et al. [248] concentrated on the evaluation of NaHS treat-
ment on the development of sarcopenia. Such loss of skeletal 
muscle mass and impaired functions has been described as 
a complication in diabetic patients; therefore, in this study, 
Goto Kakizaki (GK) rats (model for type-2 diabetes) with 
decreased systemic and muscle H2S bioavailability were 
used. Increased muscle mass and strength and decreased 
myostatin levels were evident in NaHS-treated diabetic 
animals compared to controls. In GK rats, an increase in 
ROS generation was evident, but NaHS delivery resulted in 
a lower level of superoxide and hydrogen peroxide (H2O2) in 
the muscle membrane and mitochondrial fractions, as well 
as better antioxidant capacity measured by the GSH/GSSG 
ratio [248]. Similar findings were found in vitro in the mouse 
C2C12 myoblast cell line. After stimulation with NaHS, an 
increase in GSH level and a reduction in ROS generation 
were observed [251]. On the other hand, the knockdown 
of CSE with siRNA resulted in the opposite effects, with 
increased H2O2 generation and decreased expression of 
enzymes in the GSH biosynthesis pathway. This indicated 
that H2S is an important modulator of oxidative balance in 
myoblasts and skeletal muscles.

Another work, performed in diabetic mice, showed that 
H2S exerts muscle-protective effects through S-sulfhydra-
tion of the muscle RING finger 1 (MuRF1) [242]. MuRF1 
(also known as TRIM63) is an E3 ubiquitin ligase, and its 
increased expression is responsible for muscle mass loss in 
diabetic conditions. NaHS treatment of db/db mice attenu-
ated skeletal muscle mass atrophy, decreased ROS produc-
tion, and reduced the degradation of myomesin-1 (MYOM1) 
and myosin heavy chain 4 (MYH4). Analysis performed 
in vitro in the C2C12 myoblast cell line revealed that H2S 
modified MuRF1 by S-sulfhydration at Cys44. This mecha-
nism was suggested to be responsible for the reduction in 
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MYOM1 and MYH4 ubiquitination leading to the attenua-
tion of skeletal muscle atrophy [242].

Zhang et al. [245] performed an interesting study on the 
evaluation of H2S effect on myogenesis and concluded that 
this gaseous molecule is capable of inducing regeneration 
of skeletal muscle. Cardiotoxin-induced injury, as well as 
age-dependent sarcopenia, were accelerated under condi-
tions of CSE deficiency, while NaHS treatment promoted 
myogenesis. The mechanism behind this effect was related 
to the facilitation of heterodimer formation between myo-
genic factors: myocyte enhancer factor 2 (MEF2c) and myo-
genic regulatory factor-4 (MRF4) and the promotion of their 
binding to the myogenin promoter. Therefore, an increase 
in H2S level might be suggested as a possible treatment of 
muscle injuries or/and as a preventive factor for age-related 
sarcopenia.

H2S may also act as an anti-fibrotic agent. Attenuated 
skeletal muscle fibrosis (decreased mRNA levels of Col1a1, 
Col1a3, and TGFb, as well as collagen content measured 
by trichrome staining, and regulation of MMPs) was evi-
dent in the mouse contusion model. Furthermore, reduced 
inflammation (lower levels of pro-inflammatory cytokines 
and chemokines) and oxidative stress (decreased expression 
level of a key subunit of NADPH oxidases, gp91phox) were 
also present in the gastrocnemius muscles [252]. Although 
this study shows the pleiotropic effect of H2S in reducing 
skeletal muscle injury, the conclusions are mainly based on 
the assessment of the level of mRNA and should therefore 
be interpreted with caution. Nevertheless, the protective 
effect of H2S against fibrosis was also found in diabetic dia-
phragms [253]. In the rat model of streptozotocin-induced 
diabetes, NaHS supplementation reduced collagen deposi-
tion, slightly decreased pro-fibrotic Col1a1, Col1a3, and 
TGFb levels, as well as pro-inflammatory cytokines (IL-1β, 
IL-6, IL-18, and TNF-α), and finally, suppressed activation 
of the NLRP3 inflammasome. These effects contributed to 
the better biomechanical properties of the diaphragm [253].

Another important aspect of the protective effect of 
H2S on the diaphragm was demonstrated in the ventilator-
induced diaphragm dysfunction (VIDD) model [254]. VIDD 
is a common problem in patients who undergo mechanical 
ventilation (MV) for the treatment of hypoventilation. The 
main complications: the decrease in contractile properties 
of the diaphragm and oxidative stress, which contribute to 
diaphragm failure, were eliminated by H2S. The H2S donor 
protected against VIDD by abrogating mitochondrial dys-
function and activation of calpain and caspase-3 protease in 
diaphragm fibers [254].

Finally, the requirement of H2S for proper muscle vascu-
larization has been underlined [255]. Intramuscular injec-
tions with adenoviral vectors-expressing mouse CSE led to 
higher muscle H2S production and improved muscle func-
tions. The number of CD31-positive blood vessels increased 

in the gastrocnemius muscle after CSE overexpression, 
indicating improved vascular density. This study validated 
CSE as a necessary factor for VEGF-mediated neovasculari-
zation in vivo. Also in CBS± mice subjected to hind-limb 
femoral artery ligation (FAL), treatment with a long-acting 
H2S donor, GYY4137, resulted in a pro-angiogenic effect 
and improved muscle-tissue vascularization and blood-ves-
sel function, The H2S donor was also able to counteract the 
post-FAL-triggered reduction in blood flow and collateral 
vessel density [256]. Additionally, the downregulation of 
pro-angiogenic HIF1-α, VEGF, PPAR-γ, and phosphoryl-
ated-eNOS was reversed in animals treated with H2S donor. 
Together, this indicates that H2S can mitigate neoangiogenic 
defects in skeletal muscles.

The possible roles of H2S in DMD

Hypothetically, many DMD-related complications could 
potentially be alleviated by H2S due to known mechanisms 
of gasotransmitter activity. However, until recently, the sci-
entific literature has not broadly addressed the role of H2S 
in DMD.

The initial study focused on evaluating the cardioprotec-
tive potential of H2S. A brief scientific report (published 
in the form of the conference abstract) by Cain et al. [257] 
shows that supplementation of ‘humanized’ dystrophic mice 
(mdx4cv/mTRG2 mouse model with ‘humanized’ telomere 
lengths) with an orally active slow-release H2S prodrug 
(SG1002) results in maintenance of the ejection fraction 
(ET) at a level similar to wild-type mice, indicating pre-
served cardiac function. Furthermore, a decreasing trend in 
cardiac fibrosis was observed in the treated animals versus 
the untreated group. Although these findings need to be con-
firmed and expanded, we can hypothesize that H2S may sup-
port the functionality of dystrophic cardiomyocytes and may 
be a possible therapeutic option to improve DMD-related 
cardiomyopathy.

In addition to cardioprotective effects, Cain et al. found 
attenuated fibrosis in the gastrocnemius and diaphragm 
after SG1002 treatment [257]. More studies demonstrating 
the beneficial muscle-related effects of H2S in mitigating 
the progression of DMD were published in 2021. When the 
expression of enzymes related to H2S production (CBS, 
CSE, 3-MST) was analyzed, a significantly decreased level 
was detected in mdx mice, as well as in human primary 
myoblasts isolated from DMD donors [258]. Although 
Ellwood et al. did not observe such a prominent effect in 
mdx mice, they demonstrated a potent decrease in total 
sulfide and 3-MST and CSE levels in dystrophin/utrophin 
double knockout mice (representing a more severe model 
of DMD than mdx mice) [243]. Additionally, in mdx ani-
mals, a reduction in the levels of metabolites associated 
with the transsulfuration pathway (TSP) such as glycine, 
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glutathione, methionine, glutamate, and taurine was evi-
dent [258]. Interestingly, changes were observed in young 
animals and became more severe with disease progression. 
Furthermore, it follows that mdx mice exhibit physiologi-
cal similarities to animal models of cystathioninemia/cys-
tathioninuria (CSE−/− mice), including reduced expression 
of a major cellular antioxidant, GSH, in skeletal muscles. 
NaHS treatment, both short-term (2 weeks) and long-term 
(12 weeks), had a prominent effect in reducing fibrosis, 
necrosis, and inflammatory-cell infiltration. Furthermore, 
reactivation of the autophagy process was also evident 
after H2S delivery. In the quadriceps muscle of mdx mice, 
normalization of decreased levels of autophagy regulators 
(Atg3, Atg7, Atg12, and Ulk1), elevated expression of pro-
inflammatory cytokines (Il1β, Il6, Tnfα), and pro-fibrotic 
Tgfb was demonstrated after NaHS. Finally, the effect of 
H2S on preventing loss of locomotor activity was shown 
in mdx mice subjected to the rotarod and weight test [258].

Saclier et  al. [259] investigated the role of H2S in 
chronic inflammation in DMD. Using a mouse model 
(DMDmdx4Cv), they demonstrated that dystrophin-deficient 
myofibers stimulate a transition of macrophages to a pro-
inflammatory phenotype, which is equivalent to induction 
of muscle fibrosis. NaHS inhibited the development of 
inflammation, as reflected by a decrease in the number of 
macrophages expressing pro-inflammatory markers (TNF-
α, iNOS), and an increasing percentage of macrophages 
positive for the anti-inflammatory marker CD206. The 
mechanism of suppression of inflammation may involve 
the phosphorylation of the AMPK catalytic α1 subunit, 
AMPKα1 what leads to the acquisition of the macrophage 
anti-inflammatory phenotype. Unlike the potent regula-
tion of inflammation, treatment of dystrophic mice with 
NaHS for 3 weeks caused only a very moderate (approx-
imately 10%) decrease in collagen accumulation in the 
tibialis anterior, while it did not attenuate fibrosis in the 
diaphragm [259].

Not only were mouse models applied to check whether 
H2S donors may have therapeutic potential in DMD. In the 
C. elegans DMD model with a nonsense mutation at position 
3,287 of the DYS-1 dystrophin ortholog, supplementation 
with H2S donors improved motor skills, contractile force, 
and muscle mitochondrial structure [243]. Although the 
overall lifespan of mutated worms was not affected by H2S 
supplementation, the delay in muscle cell death was evident, 
suggesting an improvement in healthspan. An interesting 
observation was found when two different H2S donors were 
compared: a slow-release sodium GYY4137 (NaGYY) was 
effective at a considerably higher dose (100 μM) than the 
mitochondria-targeted donor—AP39 (100 pM). It should be 
noted that the positive effect with AP39 indicates that the 
direct action of H2S in the mitochondria is sufficient to exert 
DMD protective effects. In addition, similar results were 

obtained when C. elegans was treated with prednisone, a 
corticosteroid drug approved for use in patients with DMD.

Although data on the influence of H2S donors on the 
progression of DMD are limited, initial published results 
strongly support the hypothesis that this gasotransmitter 
can delay disease progression, by attenuating inflammation 
and fibrosis and improving muscle strength. Future studies 
should carefully consider the dose and route of adminis-
tration of various H2S donors, as well as analyze different 
DMD models. Despite the fact that already published studies 
utilized discrepant protocols in terms of dose and duration of 
treatment with H2S donors, as well as their route of adminis-
tration and animal age, they suggest that H2S is a beneficial 
factor in mitigating the dystrophic phenotype (Fig. 7).

Limitations and future directions

Despite enormous work in the field of the discovery of new 
therapeutic strategies as well as optimization of the currently 
available possibilities to treat DMD, the disease is incurable. 
Although muscle wasting is one of the main hallmarks of 
DMD, it is not only a skeletal muscle disorder. Therefore, 
the ideal drug/approach should regulate many symptoms and 
be able to deal with all the harmful consequences of dystro-
phin deficiency in other organs, including the diaphragm 
and heart.

H2S, due to its anti-inflammatory, antioxidant, anti-
fibrotic, pro-angiogenic, and cardioprotective properties, 
seems to be an attractive candidate. As mentioned above, 
this gasotransmitter affects many signaling pathways, includ-
ing AMPK activity. AMPK serves as a metabolic sensor 
and regulates lipid and glucose metabolism, and metabolic 
alterations contribute to the progression of DMD [260] and 
were also recapitulated in mdx mice [261]. Therefore, H2S, 
in addition to alleviating muscle-related symptoms of DMD, 
can hypothetically affect dysregulated metabolism. Future 
studies may help to better understand this possible role of 
H2S in DMD.

Until now, knowledge of the effects of H2S on skeletal 
muscles is limited even in animal models of DMD. Although 
various factors that liberate H2S after in vivo delivery have 
been described, their effectiveness in patients with DMD has 
not yet been evaluated. Unfortunately, systematic treatment 
with such compounds can be accompanied by the generation 
of reactive by-products, which can counteract the effect of 
H2S itself [163]. The cooperation of chemists and biologists 
is required to design and deeply characterize the new donors 
that will release this cytoprotective gas in a controlled way at 
a concentration comparable to endogenous H2S production.
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Fig. 7   Potential roles of H2S in counteracting DMD. Several mech-
anisms of the cytoprotective effect of H2S on the dystrophic pheno-
type are suggested. The anti-fibrotic effect is the result of reduced 
fibrosis-related cytokine production, decreased collagen accumula-
tion, the main component of the ECM, and inhibition of the TGF-β1/
SMAD signaling pathway. H2S prevents loss of locomotor activity 
by enhancing muscle strength. The improvement in the DMD phe-
notype is also caused by the anti-inflammatory properties of H2S, as 

indicated not only by an increase in the number of cells expressing 
anti-inflammatory markers such as CD206, but also by a decrease 
in the production of pro-inflammatory cytokines and infiltration of 
inflammatory cells. H2S increases the expression of autophagy regu-
lators and antioxidant enzymes while simultaneously preventing ROS 
production. Furthermore, it exerts a cardioprotective effect by open-
ing KATP channels, thus reducing calcium loading and preserving cell 
viability
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