Skip to main content

Advertisement

Log in

Mfn2-mediated mitochondrial fusion promotes autophagy and suppresses ovarian cancer progression by reducing ROS through AMPK/mTOR/ERK signaling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mitochondrial dynamics are balanced fission and fusion events that regulate mitochondrial morphology, and alteration in these events results in mitochondrial dysfunction and contributes to many diseases, including tumorigenesis. Ovarian cancer (OC) cells exhibit fragmented mitochondria, but the mechanism by which mitochondrial dynamics regulators contribute to OC is considerably less clear. Here, we elucidated the potential role of Mfn2-mediated mitochondrial fusion in OC and present evidence that genetic or pharmacological activation of Mfn2 leads to mitochondrial fusion and reduces ROS generation, which correlates with reduced cell proliferation, invasion, migration, and EMT in OC cells. Also, increased mitochondrial fusion promotes the F-actin remodeling, reduces lamellipodia formation, and thus reduces EMT. Increased expression of Mfn2 triggers AMPK, promotes autophagy, reduces ROS, and suppresses OC progression by downregulating  the p-mTOR (2481 and 2448) and p-ERK axis. OC patients with higher Mfn2 expression have better survival than those with lower Mfn2 levels. Our findings demonstrate that restoration of Mfn2-mediated mitochondrial fusion suppressed OC progression and suggest that this process could be a potential strategy in OC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data supporting this study’s findings are available upon request from the corresponding author.

Abbreviations

ROS:

Reactive oxygen species

OC:

Ovarian cancer

Drp1:

Dynamin-related protein 1

EMT:

Epithelial-to-mesenchymal transition

AMPK:

AMP-activated protein kinase

mTOR:

Mammalian target of rapamycin

ERK:

Extracellular signal-regulated kinase

Opa1:

Optic atrophy1

Fis1:

Mitochondrial fission 1

ATP:

Adenosine triphosphate

mDivi-1:

Mitochondrial division inhibitor 1

CDK1:

Cyclin-dependent kinase 1

PCNA:

Proliferating cell nuclear antigen

H2O2 :

Hydrogen peroxide

PFS:

Progression-free survival

References

  1. Lheureux S, Braunstein M, Oza AM (2019) Epithelial ovarian cancer. Evolution of management in the era of precision medicine. CA Cancer J Clin 69:280–304. https://doi.org/10.3322/caac.21559

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  3. Howlader N, Noone AM, Krapcho M, Miller D, Brest A Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) SEER Cancer Statistics Review, National Cancer Institute, Bethesda, MD (1975–2017). https://seer.cancer.gov/csr/1975_2017/ based on November 2019 SEER data submission, posted to the SEER web site, April 2020

  4. Bookman MA, Brady MF, McGuire WP, Harper PG, Alberts DS, Friedlander M, Colombo N, Fowler JM, Argenta PA, DeGeest K, Mutch DG, Burger RA, Swart AM, Trimble EL, Accario-Winslow C, Roth LM (2009) Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a phase III Trial of the Gynecologic Cancer Intergroup. J Clin Oncol 27:1419–1425. https://doi.org/10.1200/JCO.2008.19.1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. du Bois A, Lück H-J, Meier W, Adams H-P, Möbus V, Costa S, Bauknecht T, Richter B, Warm M, Schröder W, Olbricht S, Nitz U, Jackisch C, Emons G, Wagner U, Kuhn W (2003) A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 95:1320–1329. https://doi.org/10.1093/jnci/djg036

    Article  CAS  PubMed  Google Scholar 

  6. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM, Baergen R (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21:3194–3200. https://doi.org/10.1200/JCO.2003.02.153

    Article  CAS  PubMed  Google Scholar 

  7. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY (2016) Ovarian cancer. Nat Rev Dis Primers 2:16061. https://doi.org/10.1038/nrdp.2016.62

    Article  PubMed  PubMed Central  Google Scholar 

  8. Drew Y, Kaufman B, Banerjee S, Lortholary A, Hong SH, Park YH, Zimmermann S, Roxburgh P, Ferguson M, Alvarez RH, Domchek S, Gresty C, Gresty C, Angell HK, Ros VR, Meyer K, Lanasa M, Herbolsheimer P, de Jonge (2019) M1190PD-Phase II study of olaparib + durvalumab (MEDIOLA): updated results in germline BRCA-mutated platinum-sensitive relapsed (PSR) ovarian cancer (OC). Ann Oncol 30(5):v485–v486. https://doi.org/10.1093/annonc/mdz253.016

  9. Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, Colombo N, Weberpals JI, Clamp A, Scambia G, Leary A, Holloway RW, Gancedo MA, Fong PC, Goh JC, O’Malley DM, Armstrong DK, Garcia-Donas Jesus ulfovich MV (2017) Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:1949–1961. https://doi.org/10.1016/S0140-6736(17)32440-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Youle RJ, Van Der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065. https://doi.org/10.1126/science.1219855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greico JP, Allen ME, Perry JB, Wang Y, Song Y, Rohani A, Compton SLE, Smyth JW, Swami NS, Brown DA, Schmelz EM (2021) Progression-mediated changes in mitochondrial morphology promotes adaptation to hypoxic peritoneal conditions in serous ovarian cancer. Front Oncol 10:600113. https://doi.org/10.3389/fonc.2020.600113

    Article  Google Scholar 

  12. Lengyel E (2010) Ovarian cancer development and metastasis. Am J Pathol 177(3):1053–1064. https://doi.org/10.2353/ajpath.2010.100105

    Article  PubMed  PubMed Central  Google Scholar 

  13. Archer SL (2013) Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251. https://doi.org/10.1056/NEJMra1215233

    Article  CAS  PubMed  Google Scholar 

  14. Anderson GR, Wardell SE, Cakir M, Yip C, Ahn Y-R, Ali M, Yllanes AP, Chao CA, McDonnell DP, Wood KC (2018) Dysregulation of mitochondrial dynamics proteins are a targetable feature of human tumors. Nat Commun 9:1677. https://doi.org/10.1038/s41467-018-04033-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kingnate C, Charoenkwan K, Kumfu S, Chattipakorn N, Chattipakorn SC (2018) Possible roles of mitochondrial dynamics and the effects of pharmacological interventions in chemoresistant ovarian cancer. EBioMedicine 34:256–266. https://doi.org/10.1016/j.ebiom.2018.07.026

    Article  PubMed  PubMed Central  Google Scholar 

  16. You MH, Jeon MJ, Kim SR, Lee WK, Cheng S-Y, Jang G, Kim TY, Kim WB, Shong YK, Kim WG (2021) Mitofusin-2 modulates the epithelial to mesenchymal transition in thyroid cancer progression. Sci Rep 11:2054. https://doi.org/10.1038/s41598-021-81469-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pang G, Xie Q, Yao J (2019) Mitofusin 2 inhibits bladder cancer cell proliferation and invasion via the Wnt/β-catenin pathway. Oncol Lett 18(3):2434–2442. https://doi.org/10.3892/ol.2019.10570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu K, Chen G, Li X, Wu X, Chang Z, Xu J, Zhu Y, Yin P, Liang X, Dong L (2017) MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci Rep 7:41718. https://doi.org/10.1038/srep41718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lou Y, Zhang Y, Xu J, Gu P, Zhang W, Zhang X, Zhong H, Jiang L, Han B (2017) MFN2 might be a risk factor for lung adenocarcinoma. J Clinic Oncol 35(15_suppl):e13007–e13007. https://doi.org/10.1200/JCO.2017.35.15_suppl.e13007

    Article  Google Scholar 

  20. Yu M, Nguyen ND, Huang Y, Lin D, Fujimoto TN, Molkentine JM, Deorukhkar A, Kang Y, Lucas FAS, Fernandes CJ, Koay EJ, Gupta S, Ying H, Koong AC, Herman JM, Fleming JB, Maitra A, Taniguchi CM (2019) Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight 5(16):e126915. https://doi.org/10.1172/jci.insight.126915

    Article  PubMed  Google Scholar 

  21. Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, Mathieu C, Agostinis P (2013) ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 9:1292–1307. https://doi.org/10.4161/auto.25399

    Article  CAS  PubMed  Google Scholar 

  22. Huang Q, Zhan L, Cao H, Li J, Lyu Y, Guo X, Zhang J, Ji L, Ren T, An J, Liu B, Nie Y, Xing J (2016) Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy 12(6):999–1014. https://doi.org/10.1080/15548627.2016.1166318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cordani M, Donadelli M, Strippoli R, Bazhin AV, Sánchez-Álvarez M (2019) Interplay between ROS and autophagy in cancer and aging: from molecular mechanisms to novel therapeutic approaches. Oxid Med Cell Longev 2019:8794612. https://doi.org/10.1155/2019/8794612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M (2015) Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 4:184–192. https://doi.org/10.1016/j.redox.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  25. Liou G-H, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):10. https://doi.org/10.3109/10715761003667554

    Article  PubMed Central  Google Scholar 

  26. Reddy KB, Glaros S (2007) Inhibition of the MAP kinase activity suppresses estrogen-induced breast tumor growth both in vitro and in vivo. Int J Oncol 30(4):971–975. https://doi.org/10.3892/ijo.30.4.971

    Article  CAS  PubMed  Google Scholar 

  27. Liu LZ, Hu X-W, Xia C, He J, Zhou Q, Shi X, Fang J, Jiang B-H (2006) Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 41(10):1521–1533. https://doi.org/10.1016/j.freeradbiomed.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  28. Yi B, Liu D, He M, Li Q, Liu T, Shao J (2013) Role of the ROS/AMPK signaling pathway in tetramethylpyrazine-induced apoptosis in gastric cancer cells. Oncol Lett 6(2):583–589. https://doi.org/10.3892/ol.2013.1403

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tanwar DK, Parker DJ, Gupta P (2016) Crosstalk between the mitochondrial fission protein, Drp1, and the cell cycle is identified across various cancer types and can impact the survival of epithelial ovarian cancer patients. Oncotarget 7(37):60021–60037. https://doi.org/10.18632/oncotarget.11047

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kumar S, Pan CC, Shah N, Wheeler SE, Hoyt KR, Hempel N, Mythreye K, Lee NY (2016) Activation of mitofusin2 by Smad2-RIN1 complex during mitochondrial fusion. Mol Cell 62(4):520–531. https://doi.org/10.1016/j.molcel.2016.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grada A, Otero-Vinas A, Prieto-Castrillo F, Obagi Z, Falanga V (2017) Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Investig Dermatol 137(2):e11–e16. https://doi.org/10.1016/j.jid.2016.11.020

    Article  CAS  PubMed  Google Scholar 

  32. Miret-Casals L, Sebastián D, Brea J, Rico-Leo EM, Palacín M, Fernández-Salguero PM, Loza MI, Albericio F, Zorzano A (2018) Identification of new activators of mitochondrial fusion reveals a link between mitochondrial morphology and pyrimidine metabolism. Cell Chem Biol 25(3):268-278.e4. https://doi.org/10.1016/j.chembiol.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  33. Grohm J, Kim S-W, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N, Culmsee C (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19:1446–1458. https://doi.org/10.1038/cdd.2012.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dai W, Wang G, Chwa J, Oh ME, Abeywardana T, Yang Y, Wang QA, Jiang L (2020) Mitochondrial division inhibitor (mdivi-1) decreases oxidative metabolism in cancer. Br J Cancer 122:1288–1297. https://doi.org/10.1038/s41416-020-0778-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Löffler M, Jöckel J, Schuster G (1997) Dihydroorotat-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol Cell Biochem 174:125–129. https://doi.org/10.1023/A:1006859115450

    Article  PubMed  Google Scholar 

  36. Slade D (2018) Maneuvers on PCNA rings during DNA replication and repair. Genes (Basel) 9(8):416. https://doi.org/10.3390/genes9080416

    Article  CAS  PubMed  Google Scholar 

  37. Sherr CJ (1995) D-Type cyclins. Trends Biochem Sci 20:187–190. https://doi.org/10.1016/s09680004(00)89005-2

    Article  CAS  PubMed  Google Scholar 

  38. Shankar J, Messenberg A, Chan J, Underhill TM, Foster LJ, Nabi IR (2010) Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells. Cancer Res 70(9):3780–3790. https://doi.org/10.1158/0008-5472.CAN-09-4439

    Article  CAS  PubMed  Google Scholar 

  39. Condeelis JS, Wyckoff JB, Bailly M, Pestell R, Lawrence D, Backer J, Segall JE (2001) Lamellipodia in the invasion. Semin Cancer Biol 11:119–128. https://doi.org/10.1006/scbi.2000.0363

    Article  CAS  PubMed  Google Scholar 

  40. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu X, Sun J, Yuan P, Shou K, Zhou Y, Gao W, She J, Hu J, Yang J, Yang J (2019) Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-κB signal pathway. Cancer Cell Int 19:197. https://doi.org/10.1186/s12935-019-0916-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Liu W, Zhuang D, Hong S, Chen J (2017) Sestrin2 and sestrin3 suppress NK-92 cell-mediated cytotoxic activity on ovarian cancer cells through AMPK and mTORC1 signaling. Oncotarget 8(52):90132–90143. https://doi.org/10.18632/oncotarget.21487

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wei J-L, Fu Z-X, Fang M, Guo J-B, Zhao Q-N, Lu W-D, Zhou Q-Y (2015) Decreased expression of sestrin 2 predicts unfavorable outcome in colorectal cancer. Oncol Rep 33(3):1349–1357. https://doi.org/10.3892/or.2014.3701

    Article  CAS  PubMed  Google Scholar 

  44. Wei J-L, Fang M, Fu ZX, Zhang S-R, Guo J-B, Wang R, Lv Z-B, Xiong Y-F (2017) Sestrin 2 suppresses cells proliferation through AMPK/mTORC1 pathway activation in colorectal cancer. Oncotarget 8(30):49318–49328. https://doi.org/10.18632/oncotarget.17595

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ebnoether E, Ramseier A, Cortada M, Bodmer D, Levano-Huaman S (2017) Sesn2 gene ablation enhances susceptibility to gentamicin-induced hair cell death via modulation of AMPK/mTOR signaling. Cell Death Discov 3:17024. https://doi.org/10.1038/cddiscovery.2017.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cordani M, Butera G, Dando I, Torrens-Mas M, Butturini E, Pacchiana R et al (2018) Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O2ˉ· production in cancer cells. Br J Cancer 119(8):994–1008. https://doi.org/10.1038/s41416-018-0288-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muñoz JP, Ivanova S, Sánchez-Wandelmer J, Martínez-Cristóbal P, Noguera E, Sancho A, Díaz-Ramos A, Hernández-Alvarez MI, Sebastián D, Mauvezin C, Palacín M, Zorzano A (2013) Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J 32:2348–2361. https://doi.org/10.1038/emboj.2013.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zou G-P, Yu C-X, Shi S-L, Li Q-G, Wang X-H, Qu X-H, Yang Z-J, Yao W-R, Yan D-D, Jiang L-P, Wan Y-Y, Han X-J (2021) Mitochondrial dynamics mediated by DRP1 and MFN2 contributes to cisplatin chemoresistance in human ovarian cancer SKOV3 cells. J Cancer 12(24):7358–7373. https://doi.org/10.7150/jca.61379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gyorffy B, Lanczky A, Szallasi Z (2012) Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian cancer using microarray data of 1287 patients. Endocr Relat Cancer 19(2):197–208. https://doi.org/10.1530/ERC-11-0329

    Article  CAS  PubMed  Google Scholar 

  50. Abeliovich H, Zarei M, Rigbolt KT, Youle RJ, Dengjel J (2013) Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat Commun 4:2789. https://doi.org/10.1038/ncomms3789

    Article  CAS  PubMed  Google Scholar 

  51. Ryter SW, Cloonan SM, Choi AMK (2013) Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells 36(1):7–16. https://doi.org/10.1007/s10059-013-0140-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wan Y, Ma J, Shen H, Wang C, Sun Y, Howell SB, Lin X (2014) Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway. Oncol Rep 32(5):2150–2158. https://doi.org/10.3892/or.2014.3448

    Article  CAS  Google Scholar 

  53. Fang C-L, Sun D-P, Chen H-K, Lin C-C, Hung S-T, Uen YH, Lin KY (2017) Overexpression of mitochondrial GTPase MFN2 represents a negative prognostic marker in human gastric cancer, and its inhibition exerts anti-cancer effects. J Cancer 8(7):1153–1161. https://doi.org/10.7150/jca.17986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahn SY, Li C, Zhang X, Hyun Y-M (2018) Mitofusin-2 expression is implicated in cervical cancer pathogenesis. Anticancer Res 38:3419–3426. https://doi.org/10.21873/anticanres.12610

    Article  CAS  PubMed  Google Scholar 

  55. Zhang R, Shi H, Ren F, Zhang M, Ji P, Wang W, Liu C (2017) The aberrant upstream pathway regulations of CDK1 protein were implicated in the proliferation and apoptosis of ovarian cancer cells. J Ovarian Res 10:60. https://doi.org/10.1186/s13048-017-0356-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhan L, Zhang Y, Wang W, Song E, Fan Y, Li J, Wei B (2016) Autophagy as an emerging therapy target for ovarian carcinoma. Oncotarget 7(50):83476–83487. https://doi.org/10.18632/oncotarget.13080

    Article  PubMed  PubMed Central  Google Scholar 

  57. He C, Klionsky D (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43(1):67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xue R, Meng Q, Lu D, Liu X, Wang Y, Hao J (2018) Mitofusin2 induces cell autophagy of pancreatic cancer through inhibiting the PI3K/Akt/mTOR signaling pathway. Oxid Med Cell Longev 2018:2798070. https://doi.org/10.1155/2018/2798070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ye X, Weinberg RA (2015) Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 25:675–686. https://doi.org/10.1016/j.tcb.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu M-J, Chen Y-S, Kim MR, Chang C-C, Gampala S, Zhang Y, Wang Y, Chang C-Y, Yang J-Y, Chang C-J (2019) Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin. Cell Metab 29:993-1002.e1006. https://doi.org/10.1016/j.cmet.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  61. Shankar J, Nabi IR (2015) Actin cytoskeleton regulation of epithelial-mesenchymal transition in metastatic cancer cells. PLoS ONE 10:e0119954. https://doi.org/10.1371/journal.pone.0119954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peng JM, Bera R, Chiou CY, Yu MC, Chen TC, Chen CW, Wang TR, Chiang WL, Chai SP, Wei Y, Wang H, Hung MC, Hsieh SY (2018) Actin cytoskeleton remodeling drives epithelial-mesenchymal transition for hepatoma invasion and metastasis in mice. Hepatology 67(6):2226–2243. https://doi.org/10.1002/hep.29678

    Article  CAS  PubMed  Google Scholar 

  63. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32(40):4814–4824. https://doi.org/10.1038/onc.2012.494

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SK is thankful to DST SERB for awarding the core research grant, DBT for granting the Ramalingaswami Re-entry fellowship, and the Indian Institute of Science Education & Research (IISER) Tirupati for their support. The authors thank Dr. Ravichandra S. Davargaon, and Urja Kamdar for their technical assistance.

Funding

This work was supported by DST-SERB (CRG/2019/002104), Ramalingaswami re-entry fellowship, DBT (BT/RLF/Re-entry/13/2016), and IISER Tirupati funds to SK. RA is thankful to IISER Tirupati for the fellowship.

Author information

Authors and Affiliations

Authors

Contributions

RA contributed to methodology, formal analysis, investigation, and data curation. SK was involved in conceptualization, methodology, writing–original draft, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Sanjay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no commercial or other competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2022_4595_MOESM1_ESM.png

Supplementary file1 Supplementary Figure 1A: Western blot analysis determines the expression of Cyclin D1, PCNA, Beclin1, Vimentin, and β-Actin in A2780 cells after transient transfection with two Mfn2 siRNA as indicated. (1B) Cell death assay by staining with PI using FACS (BD) in two OC cells. (PNG 1459 KB)

18_2022_4595_MOESM2_ESM.png

Supplementary file2 Supplementary Figure 2A: Microscopy images of wound closure after Mfn2 silencing in SKOV-3 cells with or without NAC treatment (20 mM for 12 h). The percentage of a reduced area or wound closure in the captured images was calculated using Image J at each time point. NAC treatment reduces the cell migration. si, small interfering RNAs; NAC, N-acetyl cysteine. Data were represented as mean ± SD. Differences among groups were considered significant *p < 0.05, ** p < 0.01 and *** p < 0.001 (PNG 9316 KB)

18_2022_4595_MOESM3_ESM.png

Supplementary file3 Supplementary Figure 3A and Ai: Western blot analysis and quantification demonstrated Mfn2 overexpression in two OC cells was positively correlated with ATG5 and Beclin-1 expression. In contrast, silencing Mfn2 reduces the expression of autophagic markers. (3B and C) Representative confocal images of OC cells indicate a correlation between Mfn2 expression and ATG5. Both cell types were transiently transfected with Mfn2 siRNA or overexpression plasmid stained with DAPI and ATG5 antibodies. DAPI is dark blue, and ATG5 is green. (3B) Scale bar 25 µm, (3C) Scale bar 10 µm. Data were represented as mean ± SD. Differences among groups were considered significant *p < 0.05, ** p < 0.01 and *** p < 0.001 (PNG 9141 KB)

18_2022_4595_MOESM4_ESM.png

Supplementary file4 Supplementary Figure 4A: Representative confocal images of A2780 cells indicates a correlation between Mfn2 expression and p-ERK. Cells were transiently transfected with Mfn2 siRNA or overexpression plasmid stained with DAPI, Mfn2, and p-ERK antibodies. DAPI: dark blue, Mfn2: red, and p-ERK: green. Scale bar 10 µm. (4B) Graphs display the relative cell proliferation analyzed by MTT assay after Mfn2 silencing in OC cells with or without NAC treatment (20 mM for 12 h). NAC treatment notably reduced the proliferation of OC cells compared to the silenced Mfn2 cells without NAC treatment. si, small interfering RNAs, NAC, N-acetyl cysteine. Immunoblotting analysis showed that NAC treatment reduces OC cell proliferation by reducing PCNA and Cyclin D1 expression (PNG 7202 KB)

Supplementary file5 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, R., Kumar, S. Mfn2-mediated mitochondrial fusion promotes autophagy and suppresses ovarian cancer progression by reducing ROS through AMPK/mTOR/ERK signaling. Cell. Mol. Life Sci. 79, 573 (2022). https://doi.org/10.1007/s00018-022-04595-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04595-6

Keywords

Navigation