Skip to main content
Log in

METTL3 modulates chromatin and transcription dynamics during cell fate transition

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Transcriptional programming plays a key role in determining the cell state. Timely reconfiguration of chromatin structure and attenuation of pluripotent genes are required for efficient embryonic stem cell (ESC) differentiation. Here, we identify METTL3, a core N6-methyladenosine (m6A) catalyzing enzyme, as a crucial modulator of dynamic transcription and chromatin accessibility upon ESC-derived cardiac differentiation. Genome-wide analysis of chromatin-associated RNAs revealed that depletion of METTL3 failed to dramatically attenuate the transcription of pluripotent genes, as well as activate nascent cardiomyocyte-specific transcripts upon differentiation. Consistently, ATAC-seq analysis showed that loss of METTL3 markedly attenuated the dynamic alteration of chromatin accessibility at both promoters and gene bodies, resulting in reduced sensitivity of ESC chromatin structure to cardiac differentiation signal. Furthermore, we found that METTL3 negatively regulated the histone modifications H3K4me3 and H3K36me3, which are involved in METTL3-modulated dynamic chromatin architecture during cell state transition. Unexpectedly, using chromatin-associated m6A sequencing, we found that nuclear m6A underwent a dramatic increase upon differentiation, which correlates with the decrease of chromatin accessibility. Collectively, our findings reveal that METTL3 and nuclear m6A epitranscriptome couple with chromatin state to ensure transcriptional regulation of cell fate transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The ChrRNA-seq, ATAC-seq, and Chrm6A-seq data generated for this publication have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE190083. ChIP-seq for histone modifications used in this study has been reanalyzed from published sequencing data (GSE120376).

References

  1. Martello G, Smith A (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675. https://doi.org/10.1146/annurev-cellbio-100913-013116

    Article  CAS  PubMed  Google Scholar 

  2. Zhao H, Jin Y (2017) Signaling networks in the control of pluripotency. Curr Opin Genet Dev 46:141–148. https://doi.org/10.1016/j.gde.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  3. Chen CY, Cheng YY, Yen CYT, Hsieh PCH (2017) Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cell Mol Life Sci 74:1805–1817. https://doi.org/10.1007/s00018-016-2438-0

    Article  CAS  PubMed  Google Scholar 

  4. Schlesinger S, Meshorer E (2019) Open chromatin, epigenetic plasticity, and nuclear organization in pluripotency. Dev Cell 48:135–150. https://doi.org/10.1016/J.DEVCEL.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  5. Yadav T, Quivy J-P, Almouzni G (2018) Chromatin plasticity: a versatile landscape that underlies cell fate and identity. Science (80-) 361:1332–1336

    Article  CAS  Google Scholar 

  6. Rando OJ (2007) Global patterns of histone modifications. Curr Opin Genet Dev 17:94–99. https://doi.org/10.1016/j.gde.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Ahn JH, Wang GG (2019) Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 76:2899–2916. https://doi.org/10.1007/s00018-019-03144-y

    Article  CAS  PubMed  Google Scholar 

  8. Wei J, He C (2021) Chromatin and transcriptional regulation by reversible RNA methylation. Curr Opin Cell Biol 70:109–115. https://doi.org/10.1016/j.ceb.2020.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20:608–624. https://doi.org/10.1038/s41580-019-0168-5

    Article  CAS  PubMed  Google Scholar 

  10. Shi H, Wei J, He C (2019) Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74:640–650. https://doi.org/10.1016/j.molcel.2019.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patil DP, Chen CK, Pickering BF et al (2016) m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–373. https://doi.org/10.1038/nature19342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji Q, Zong X, Mao Y, Qian SB (2021) A heat shock–responsive lncRNA heat acts as a HSF1-directed transcriptional brake via m6A modification. Proc Natl Acad Sci U S A 118:1–11. https://doi.org/10.1073/pnas.2102175118

    Article  CAS  Google Scholar 

  13. Liu J, Dou X, Chen C et al (2020) N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science (80-) 367:580–586. https://doi.org/10.1126/science.aay6018

    Article  CAS  Google Scholar 

  14. Chen C, Liu W, Guo J et al (2021) Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein Cell 12:455–474. https://doi.org/10.1007/s13238-021-00837-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Gao M, He J et al (2021) The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature. https://doi.org/10.1038/s41586-021-03313-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu W, Li J, He C et al (2021) METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature. https://doi.org/10.1038/s41586-021-03210-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Batista PJ, Molinie B, Wang J et al (2014) m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–719. https://doi.org/10.1016/j.stem.2014.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geula S, Moshitch-Moshkovitz S, Dominissini D et al (2015) m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science (80-) 347:1002–1006. https://doi.org/10.1126/science.1261417

    Article  CAS  Google Scholar 

  19. Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications – writers that read. EMBO Rep 16:1467–1481. https://doi.org/10.15252/embr.201540945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Yue Y, Han D et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95. https://doi.org/10.1038/nchembio.1432

    Article  CAS  PubMed  Google Scholar 

  21. Fujita J, Tohyama S, Kishino Y et al (2019) Concise review: genetic and epigenetic regulation of cardiac differentiation from human pluripotent stem cells. Stem Cells 37:992–1002. https://doi.org/10.1002/stem.3027

    Article  PubMed  Google Scholar 

  22. Boland MJ, Nazor KL, Loring JF (2014) Epigenetic regulation of pluripotency and differentiation. Circ Res 115:311–324. https://doi.org/10.1161/CIRCRESAHA.115.301517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wamstad JA, Alexander JM, Truty RM et al (2012) Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151:206–220. https://doi.org/10.1016/j.cell.2012.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kashyap V, Rezende NC, Scotland KB et al (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the Nanog, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18:1093–1108. https://doi.org/10.1089/scd.2009.0113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954. https://doi.org/10.1016/j.cell.2011.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fong H, Hohenstein KA, Donovan PJ (2008) Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26:1931–1938. https://doi.org/10.1634/stemcells.2007-1002

    Article  CAS  PubMed  Google Scholar 

  27. Hough SR, Clements I, Welch PJ, Wiederholt KA (2006) Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells 24:1467–1475. https://doi.org/10.1634/stemcells.2005-0475

    Article  CAS  PubMed  Google Scholar 

  28. Niwa H, Miyazaki JI, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376. https://doi.org/10.1038/74199

    Article  CAS  PubMed  Google Scholar 

  29. Aguilo F, Zhang F, Sancho A et al (2015) Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming. Cell Stem Cell 17:689–704. https://doi.org/10.1016/J.STEM.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aguilo F, Walsh MJ (2017) The N6-methyladenosine RNA modification in pluripotency and reprogramming. Curr Opin Genet Dev 46:77–82. https://doi.org/10.1016/j.gde.2017.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546. https://doi.org/10.1038/nrm1938

    Article  CAS  PubMed  Google Scholar 

  32. Atlasi Y, Stunnenberg HG (2017) The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 18:643–658. https://doi.org/10.1038/nrg.2017.57

    Article  CAS  PubMed  Google Scholar 

  33. Wu C, Chen W, He J et al (2020) Interplay of m6A and H3K27 trimethylation restrains inflammation during bacterial infection. Sci Adv. https://doi.org/10.1126/sciadv.aba0647

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Xia L, Tan K et al (2020) N6-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet. https://doi.org/10.1038/s41588-020-0677-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Li Y, Yue M et al (2018) N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci 21:195–206. https://doi.org/10.1038/s41593-017-0057-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  37. Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. https://doi.org/10.1038/s41587-019-0201-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinforma. https://doi.org/10.1002/0471250953.bi1107s32

    Article  Google Scholar 

  39. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  PubMed  PubMed Central  Google Scholar 

  40. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Howard Y. Chang at Stanford University for kindly providing Mettl3 knockout ES cells, and Roman Spektor at Cornell University for the assistance with ATAC-seq library preparation. They are also grateful to Cornell University Life Sciences Core Laboratory Center for sequencing support.

Funding

This work was supported by US National Institutes of Health (R21CA227917), HHMI Faculty Scholar (55108556), and National Natural Science Foundation of China (32070868, 81974527), as well as Natural Science Foundation of Jiangsu Province, China (BK20211219, BK20190533).

Author information

Authors and Affiliations

Authors

Contributions

XML and SBQ conceived the project and wrote the manuscript. XML performed the majority of experiments. YM conducted the majority of data analysis. SW conducted protein blotting and cell differentiation assay with support from JZ. All the authors discussed the results and edited the manuscript.

Corresponding authors

Correspondence to Xiao-Min Liu or Shu-Bing Qian.

Ethics declarations

Conflict of interest

No conflicts of interest are declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 858 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XM., Mao, Y., Wang, S. et al. METTL3 modulates chromatin and transcription dynamics during cell fate transition. Cell. Mol. Life Sci. 79, 559 (2022). https://doi.org/10.1007/s00018-022-04590-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04590-x

Keywords

Navigation