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Abstract
Scoliosis is a common spinal deformity that considerably affects the physical and psychological health of patients. Studies 
have shown that genetic factors play an important role in scoliosis. However, its etiopathogenesis remain unclear, partially 
because of the genetic heterogeneity of scoliosis and the lack of appropriate model systems. Recently, the development of 
efficient gene editing methods and high-throughput sequencing technology has made it possible to explore the underlying 
pathological mechanisms of scoliosis. Owing to their susceptibility for developing scoliosis and high genetic homology 
with human, zebrafish are increasingly being used as a model for scoliosis in developmental biology, genetics, and clinical 
medicine. Here, we summarize the recent advances in scoliosis research on zebrafish and discuss the prospects of using 
zebrafish as a scoliosis model.
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Introduction

The spine is the most typical characteristic of vertebrates 
and is essential for survival and reproduction. Composed of 
alternating vertebrae and intervertebral disks, the vertebrate 
spine extends from the head to the pelvis and is fastened 

by robust spinal ligaments and tendons [1]. In addition to 
its role as a protector of the spinal cord inside it, the spine 
also helps support weight and maintain posture during body 
movement. The most common spinal disorder in humans 
is spinal curvature, known as scoliosis, which was first 
described by the Greek physician Hippocrates (460–370 
BC) [2]. Conceptually, scoliosis is characterized by a lat-
eral spinal curvature greater than 10°, as measured by the 
Cobb angle on X-ray images and can be divided into several 
subtypes including congenital, syndromic and idiopathic 
scoliosis [3–6]. Scoliosis is a disorder that affects the health 
of a large population of children and adolescents (2–3%) and 
has gradually become a major public health concern [3, 7].

Scoliosis has been studied for centuries. Although 
genetic factors have been suggested to play a vital role, 
its etiology and pathogenesis still remain unclear. Recent 
studies using zebrafish have demonstrated the advantages 
of using model organisms to examine the biological ori-
gins and mechanisms of scoliosis [8–13]. In humans, natu-
ral biomechanical strains, such as gravity, loads on the 
spine and are thought to contribute to scoliosis [14, 15]. 
The mouse and rat, the two most widely used mammalian 
models, are quadruped animals with biological forces per-
pendicular to the direction of the spine, in sharp contrast 
to that in humans, who have bipedal gait, thus rendering 
it a less useful model for scoliosis unless using a bipedal 
model through amputation of the forelimbs [16–18]. By 
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contrast, the teleost fish are prone to develop scoliosis 
under both natural and laboratory conditions, making them 
another candidate organism for modeling human scoliosis 
[19, 20].

Zebrafish have several advantages for modeling human 
scoliosis. First, the morphology and structure of the spine 
are similar in zebrafish and humans, and there is a high 
degree of genetic conservation between them [5, 8, 21–23]. 
Second, it is hypothesized that the mechanical force gen-
erated during swimming is loaded on the spine in a man-
ner similar to that in humans [20]. Zebrafish embryos are 
transparent and develop ex utero, which is convenient for 
monitoring spine development. Moreover, unlike mice, 
which have complex genetic operation, zebrafish are suitable 
for high-throughput screening through forward and reverse 
genetics [24–27]. Finally, various bone staining and imaging 
techniques, together with micro-CT and transgenic analy-
sis, have been developed, making it easier to visualize the 
development of the zebrafish spine directly and effectively 
[28] (Fig. 1).

Recently, important breakthroughs have been made 
in understanding the mechanisms underlying scoliosis in 
zebrafish. In this review, we will first introduce scoliosis and 
briefly discuss the disadvantages of current animal models. 
Next, we will focus on the progress of current research and 
discuss the potential molecular mechanisms of scoliosis in 
zebrafish. Finally, we will discuss future directions for sco-
liosis studies in zebrafish models.

Scoliosis in humans

Congenital scoliosis

Congenital scoliosis (CS) is a deformity of the spine caused 
by vertebral body and rib deformity. Although termed “con-
genital scoliosis”, some CS patients only display a deformity 
of the spine at birth, while spinal curvature develops later 
during growth [29, 30]. The incidence of CS is approxi-
mately 1/1000 in the general population. CS may be caused 

Fig. 1  Zebrafish as a vertebrate model for scoliosis. Left: Differ-
ent types of scoliosis and their potential causes from zebrafish stud-
ies. Scoliosis due to neuromuscular defects is also illustrated as CS 
like group. Asterisks indicate the abnormally developed vertebrae in 
CS-like zebrafish mutants. Right: Various bone staining and imaging 
methods used to evaluate skeleton development in zebrafish. At lar-

vae stages, the notochord and vacuoles can be easily visualized via 
bright-field image (top left) or LysoTracker dye staining (top middle). 
Skeletal development in zebrafish can be visualized via alcian blue-
Alizarin red double staining (top right). At juvenile or adult stages, 
skeleton development can be visualized via transgenic labeling, cal-
cein staining, Alizarin red staining or micro-CT
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by defective vertebral segmentation involving fusion of 
hemivertebrae, wedges, and vertebrae and can occur 
throughout the spine. CS can occur in isolation or as part 
of other congenital syndromes, and genetic factors contrib-
ute substantially to its development [31, 32]. For instance, 
several studies have shown that abnormal Notch signaling 
is involved in the formation of CS [33–36]. However, the 
mechanisms underlying these signaling pathways remain 
unclear.

Compared with CS, which is directly related to defects 
in spinal development, neuromuscular scoliosis is usually 
a secondary scoliosis due to developmental defects in the 
nervous system and muscles [37]. It may develop as the 
result of cerebral palsy, spinal muscular atrophy, Duchenne 
muscular dystrophy, myelomeningocele, or Friedreich ataxia 
[38, 39]. In addition, similar to CS, neuromuscular scoliosis 
usually develops more severe spinal deformities than idi-
opathic scoliosis (IS) [37].

Idiopathic scoliosis

IS, the most common type of disease in spinal curvature, 
accounts for approximately 80% of scoliosis cases and 
affects around 4% of the population [40]. The term “idi-
opathic” indicates its etiology is still unknown [7]. Since 
IS usually occurs during adolescence (10–18 years of age), 
it is also referred to as AIS [40]. IS is characterized by a 
three-dimensional rotation of the spine without clear verte-
bral abnormalities or significant physical defects. Compared 
with CS, IS usually occurs in relatively healthy individuals; 
however, the exact reason and mechanisms are still unclear. 
Several hypotheses have been proposed regarding IS patho-
genesis, including defects in the development of the central 
nervous system, skeletal spinal growth, bone metabolism, 
and biomechanics [40–42]. Osteopenia and abnormal bone 
metabolism have been shown to be related to IS in patients, 
as well as in a mouse model [43–45]. Hormones may also 
influence the pathogenesis and progression of IS, as women 
usually have a higher incidence of scoliosis and suffer from 
more severe spinal curvature than men [40, 46]. Genetic 
factors play essential roles in IS progression. For instance, 
concordance rates are higher among monozygotic twins 
(as high as 70%) than in dizygotic twins (36%) [47]. Only 
a small number of genes have been reported to be associ-
ated with AIS using genome-wide association studies and 
exome sequencing, including ladybird homeobox 1 (LBX1), 
G protein-coupled receptor G6 (GPR126), centriolar protein 
(POC5), A-kinase anchoring protein 2 (AKAP2), chromo-
some domain helicase DNA binding protein 7 (CHD7) and 
planar cell polarity protein Vang-like protein 1 (VANGL1) 
[12, 48–54]. However, these genes are involved in a wide 
range of biological processes, and the mechanisms underly-
ing scoliosis remain to be determined.

Animal models of scoliosis

Because humans are upright walking vertebrates, the func-
tion and load of the human spine in adapting to the environ-
ment and daily life may differ from that of other vertebrates. 
Some studies have suggested that an upright posture may 
contribute to the development of scoliosis, especially IS 
[15, 17]. It is believed that the unique spatial structure of 
the upright human spine–pelvis complex and the resulting 
biomechanical load patterns make it easier to rotate than the 
spine of other animals. In fact, there is a small amount of 
intrinsic rotation even in healthy individuals. Development 
of rotation that exceeds a certain threshold and induces the 
development of scoliosis depends on several factors, includ-
ing gene expression and individual lifestyle [40].

Mice are the most commonly used animal models in 
biomedical research. The mouse spine is physiologically 
and anatomically comparable to the human spine. In addi-
tion, micro-CT and X-ray microscopy are easily performed 
to analyze the mouse spinal structure. Nevertheless, it is 
difficult to obtain IS models in mice or other quadrupeds, 
which may be due to the fact that the mechanical load on 
the spine in mice are different from those seen in humans 
[55]. By amputating rodent forelimbs and domesticating 
them by holding food in high places to mimic the mechan-
ics of the human spine, researchers have been able to cre-
ate mouse models of scoliosis. In these models, differ-
ences in leptin, osteopontin, and calmodulin levels were 
associated with the severity and progression of scoliosis 
[56–58]. However, whether these models can mimic the 
actual conditions of scoliosis remains controversial [16]. 
Pinealectomy has also been used to induce scoliosis in 
chickens, suggesting that disruption of the endocrine 
system and melatonin deficiency may induce IS [59, 60]. 
However, the intervertebral joints in chickens are histolog-
ically different from the human intervertebral disk, mak-
ing human AIS modeling difficult [61]. Notably, many of 
these procedures were aimed at recreating human scoliosis 
rather than studying its pathogenesis [16].

The overall structure of the vertebrate spine is evolution-
arily conserved [8]. Recent studies have shown that spinal 
curvature is the most common natural deformity of bony fish 
and scoliosis can be easily observed in teleost [19, 20]. It is 
thought that the spinal load of bony fish during swimming 
is similar to that of humans, which may give fish an innate 
advantage over traditional quadrupeds in modeling scoliosis 
[8, 20]. Many features of human IS have been identified 
in curved guppies [62]. However, the lack of genomic and 
genetic resources of the guppy hinders the identification and 
functional study of genes responsible for scoliosis.

Zebrafish, a vertebrate animal with abundant genetic 
resources and complete genomic information, has recently 
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become a powerful model for scoliosis (Fig. 1). The spi-
nal morphology and vertebral structure of zebrafish are 
similar to those of humans [5, 8, 21–23]. Zebrafish scolio-
sis models have been successfully established using both 
N-ethyl-N-nitrosourea (ENU) mutagenesis and reverse 
genetic methods [9, 24, 63, 64]. At present, with the rapid 
development of gene editing and sequencing technologies, 
zebrafish are providing new insights into the biology of 
scoliosis.

Scoliosis in zebrafish

Zebrafish model of CS

CS is usually caused by defects in vertebral development. 
Despite the difference in spinal formation and segmenta-
tion between humans and zebrafish [5], zebrafish can still 
be used to model the characteristics of CS, such as severe 
vertebral defects with fusion and disorganized neural and 
vascular arches [65, 66]. In most cases, CS occurs due to 
the disruption of notochord formation and maintenance in 
zebrafish (Fig. 1; Table 1) [66–69]. Therefore, the study of 
embryonic notochord development can provide new insights 
into the molecular mechanisms related to CS.

In zebrafish larvae, the notochord also serves as a scaffold 
to provide rigidity and flexibility to the body axis during 
movement [70]. In teleost, the notochord is a transitional 

form required for the formation of spinal and vertebral struc-
tures. In zebrafish larvae, the notochord mainly consists of 
vacuolated cells and peri-notochordal sheath cell epithe-
lium, which can secrete collagen as well as other extracel-
lular matrix to form a peri-notochordal basement membrane 
sheath that envelops the notochord [71]. The volume expan-
sion of vacuolated cells is essential for axial elongation in 
zebrafish, and defects of this process can result in shortening 
of the embryonic axis [67, 68, 72, 73]. The vacuolated cells 
of the teleost are defined by a rigid fluid-filled vacuole. The 
formation and maintenance of vacuoles are regulated by dual 
serine/threonine and tyrosine protein kinase (Dstyk) activity 
[67]. Dstyk mutants display abnormal vacuoles, which lead 
to a reduced volume of vacuolated cells and short embryonic 
axes [66, 67]. Furthermore, vacuolar development defects 
result in notochord deformation, together with late-onset 
scoliosis, due to vertebral bone growth defects [66, 67] 
(Fig. 2).

Maintenance of the notochord also depends on the 
function of the peri-notochordal sheath cell epithelium. 
Excess secretion of collagen proteins, such as those in 
morphants of the polycystic kidney genes pkd1a/b and 
pkd2, causes dorsal overbending of the notochord [74, 
75]. Pioneering work in zebrafish mutant screening iden-
tified many mutants characterized by abnormal notochord 
development [76]. One of these mutants, leviathan, was 
later linked to a mutation of col8a1a gene. The leviathan 
mutant displayed a folded notochord at the larval stage 

Table 1  Zebrafish mutants 
resembling congenital scoliosis

*ND not detected. The original paper reported scoliosis in these mutants, while no further information was 
given

Gene Function Type of scoliosis References

dstyk Notochord vacuole development CS-like [66, 67]
col8a1a Extracellular matrix CS-like [69]
tbx6 Somite development CS-like [77]
her1−/−; her7−/− Somite segmentation CS-like [77]
myadml2l Possible skeletal system development CS-like [64]
col1a1a Extracellular matrix CS-like [64]
col1a2 Extracellular matrix CS-like [64]
cmn Extracellular matrix CS-like [64]
col1a1b Extracellular matrix CS-like [64]
myhz2 Skeletal muscle fiber development CS-like [64]
col2a1a Extracellular matrix CS-like [64]
gim Undefined CS-like [24]
dwa Undefined CS-like [24]
dur Undefined CS-like [24]
meox1 Somite and skeletal system development CS-like [65]
bhu Undefined ND* [24]
nkx3.2 Axial and limb skeletogenesis ND* [161]
abcc6a Membrane transporter, osteogenesis ND* [162]
stat3 Signal transduction ND* [163]
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and was CS-like with vertebral malformations in adult-
hood [69]. In leviathan mutants, notochord curvature is 
caused by the loss of type VIII collagen in the notochord 
extracellular matrix, which further affects the position 
of osteoblasts and causes vertebral defects during later 
development [69]. In addition, ENU mutagenesis screen-
ing also identified several CS-like mutants due to defects 
in genes related to collagen proteins and extracellular 
matrix [64]. These results suggest that abnormal extra-
cellular matrix secretion may be one of the key factors 
affecting CS.

In addition to scoliosis due to notochord defects, sev-
eral zebrafish scoliosis models harboring defects in the 
nervous system and muscle have recently been reported 
(Table 1). Early defects in somitogenesis due to muta-
tions in somite clock genes or myosin heavy chain genes 
lead to scoliosis during later development [77, 78]. Nota-
bly, abnormal notochord development was also observed 
in these mutants, suggesting that scoliosis may develop 
through a combination of muscle and notochord defects 
[78]. Similarly, tissue-specific knockdown of smn1 in 
motor neurons induced severe late-onset scoliosis, resem-
bling neuromuscular scoliosis [79]. Although the underly-
ing mechanisms remain to be elucidated, these scoliosis 
zebrafish models open new avenues for studying CS and 
neuromuscular scoliosis.

Zebrafish model of IS

Compared to CS, IS is more complicated due to the lack 
of apparent causes. Exome sequencing analysis of the fam-
ily population with IS revealed that some mutation sites 
were related to cilia, microtubule skeletons, extracellu-
lar matrices and muscles [12, 48, 52, 80–86]. Recently, a 
potential relationship between cilia and scoliosis was sug-
gested using a zebrafish model. These studies showed that 
zebrafish cilia mutants will develop late-onset scoliosis 
with no apparent vertebral deformity, resembling IS [9, 
63, 84, 87] (Fig. 2; Table 2).

Cilia are hair-like organelles that protrude from the sur-
face of eukaryotic cells and can be classified as primary 
(immotile) and motile cilia based on their motility prop-
erties. The beating of motile cilia can either propel the 
movement of unicellular organisms or drive fluid flow in 
metazoan animals. By contrast, primary cilia can function 
as cellular antennas to mediate the transfer of chemical 
or physical signals between the cell and its environment 
[88–90]. Ciliary dysfunction can cause several debilitating 
genetic disorders, termed ciliopathies [91–93]. For exam-
ple, defects in motile cilia are the main cause of primary 
ciliary dyskinesia (PCD), a rare autosomal recessive cili-
opathy [94–97].

Fig. 2  Phenotypes of CS-like 
and IS-like zebrafish mutants. 
Left, Micro-CT images showing 
the morphology of spine in wild 
type, dstyk mutant (CS-like) and 
uts2r3 mutant (IS-like). Alizarin 
red staining images of the ver-
tebral body in different mutants 
were shown on the right. Arrow 
indicates the fusion between 
two adjacent vertebrae in 
dstyk mutants. Images of dstyk 
mutants courtesy of Xianding 
Sun and Lin Chen
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Defects in ciliogenesis cause body curvature in zebrafish 
larvae

In zebrafish larvae, cilia are present in many tissues, 
including the Kupffer’s vesicle, olfactory epithelia, pro-
nephric ducts, ependymal epithelium, and sperm [90, 98]. 
Defects in ciliogenesis often lead to ventral body curvature 
in zebrafish, and most ciliary mutants fail to survive into 
adulthood [99, 100]. The development of a curved body 
axis in zebrafish cilia mutants has long been an enigma. 
Recently, our research group and others have uncovered 
the essential role of cilia-driven cerebrospinal fluid (CSF) 
in zebrafish body axis development. CSF is a water-like 
fluid found in the brain and spinal cord and is vital for 
homeostasis of the central nervous system. Unlike humans, 
ciliary beating is the dominant factor for CSF circulation 
in the brain ventricles and central canal of zebrafish lar-
vae [101–103]. Interestingly, the severity of motile cilia 
defects and curvature of the body axis were correlated 
with transport efficiency of the spinal cord CSF flow, sug-
gesting a close link between CSF and axial development 
in zebrafish [101–105].

CSF signals are sensed, at least partially, by CSF-
contacting neurons (CSF-cNs) located on the floor plate 
of the central canal in zebrafish (Fig. 3). CSF-cNs are 
ciliated and GABAergic sensory neurons found in most 
vertebrates [106–108]. Urotensin neuropeptides are a 
special type of neuropeptides that can be secreted from 
CSF-cNs [109] (Fig. 3). These neuropeptides are wide-
spread in vertebrates and perform a variety of functions, 
including the constriction and relaxation of blood vessels 
and sleep regulation [110–113]. Urp1 and Urp2 are the 
two major urotensins expressed in CSF-cNs in zebrafish 
larvae [109]. The adrenergic signals from the CSF are 
essential for the expression of the Urp1 and Urp2 neuro-
peptides [105, 114, 115]. Upon activation, these neuro-
peptides may be secreted from the CSF-cNs and further 
bind to their receptor (Uts2r3, also known as Uts2ra) in 
the dorsal muscle fibers [105, 114] (Fig. 3). This pro-
cess plays an important role in straightening the body 
axis during embryonic development and knocking down 
either urotensin genes (urp1 and urp2), receptor genes 
(uts2r3), or adrenergic receptor genes (adrb1/adrb2b), 
will lead to ventral body curvature [105, 114, 115]. 

Table 2  Zebrafish mutants 
resembling idiopathic scoliosis

*ND, not detected. The original paper reported scoliosis in these mutants, while no further information 
was given. Most of these genes are cilia related, it is likely that these mutants display IS-like phenotype. 
**These scoliosis phenotypes were generated through an overexpression (OE) of mutant mRNA (poc5) or 
wild type transgene (lbx1b)

Gene Function Type of scoliosis References

ptk7 Regulator of Wnt signaling IS-like [11]
sspo Matricellular protein, Reissner

fiber component
IS-like [134]

uts2r3 Urotensin-II receptor IS-like [105]
ccdc151 Cilia motility IS-like [63]
ccdc40 Cilia motility IS-like [63]
dnaaf4 Cilia motility IS-like [63]
cfap298 Cilia motility IS-like [63]
kif6 Cilia biogenesis IS-like [9]
kif7 Cilia biogenesis IS-like [85]
ttll11 Modification of ciliary tubulin IS-like [84]
armc9 Cilia biogenesis IS-like [131, 164]
mapk7 Osteogenesis IS-like [10, 150]
slc39a8 Cationic transport IS-like [165]
dnah10 Cilia motility IS-like [166]
poc5(OE)** Cilia biogenesis IS-like [12]
lbx1b(OE)** Wnt/planar cell polarity signaling IS/CS-like [50]
cep290 Centriole formation ND* [129]
bbs1 Cilia biogenesis ND* [130]
bbs5 Cilia biogenesis ND* [122]
adamts9 Cleavage of the extracellular matrix, 

cilia biogenesis
ND* [24]

falkor Undefined ND* [24]
foxc1a±; foxc1b−/− Transcription factor ND* [167]
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Moreover, injection of synthesized Urp peptides or epi-
nephrine treatment can rescue axial bending defects in 
cilia-related mutants [105, 114]. These data suggest that 
motile cilia play an important role in the maintenance 
of the body axis morphology during embryonic devel-
opment in zebrafish (Fig. 3). Interestingly, the urotensin 

signaling pathway seems to be conserved in regulating 
body axis development in bony vertebrates, as disruption 
of Utr4, the homolog of Uts2r3, also led to body curva-
ture in Xenopus [116].

Fig. 3  Model illustrating the Urotensin signaling pathway during 
body axis development of zebrafish. The beating of ependymal motile 
cilia drives CSF flow, which mediates the transmission of epinephrine 
signals and the assembly of Reissner’s fiber. The adrenergic signals 
activate the expression of Urotensin neuropeptides in the CSF-cNs 

(Urp1 and Urp2). Finally, the urotensin neuropeptides may further 
activate the Uts2r3 receptor localized to the dorsal muscle fibers and 
promote body straightening. Abnormalities in the Urotensin signal-
ing pathway will induce either body curvature in larvae or scoliosis 
in adult zebrafish
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Ciliary defects cause scoliosis in adult zebrafish

Recently, CSF flow defects have been linked to scoliosis in 
adult fish [63]. In the brain ventricles, CSF flow is directed 
by the coordinated beating of motile cilia of multiciliated 
ependymal cells. The beating direction of these cilia is con-
trolled by cellular polarity, which includes rotational polarity 
of the basal foot orientation, translational polarity of cilia 
distribution, and tissue-level polarity of the relative cilia 
positions within different cells [117, 118]. The establishment 
of these polarities depends on the core PCP proteins, includ-
ing VANGL, Frizzled, Dishevelled, and Prickle [119–121]. 
Since beating of motile cilia contributes substantially to CSF 
flow, it is not surprising that defects in cilia motility cause 
scoliosis in zebrafish. For instance, zebrafish mutants with 
cilia motility defects develop late-onset scoliosis [9, 63, 87, 
122]. Protein tyrosine kinase 7 (PTK7), a catalytically defec-
tive receptor protein tyrosine kinase involved in the Wnt/
PCP signaling pathway, is the causative gene for scoliosis 
[11, 123]. Interestingly, zebrafish ptk7 mutants also display 
strong scoliosis during development [63, 124]. Further stud-
ies showed that zebrafish Ptk7 is essential for coordinated 
ciliary beating and PCP polarity of ependymal cells, defects 
of which cause abnormal CSF flow, severe hydrocephalus, 
and scoliosis [63]. Restoring the function of Ptk7 in motile 
ciliated cells can successfully rescue defects in spinal mor-
phogenesis. Moreover, ptk7 mutants exhibited abnormal 
immune responses within the spinal cord, suggesting that 
neuroinflammation is a possible trigger for scoliosis. Treat-
ment with anti-inflammatory drugs such as acetylsalicylic 
acid (aspirin) alleviated the severity of scoliosis, providing 
a potential strategy for the prevention and treatment of sco-
liosis [125]. Finally, mutations in PCD-related genes also 
induce scoliosis in zebrafish [63]. These data highlight the 
importance of cilia-driven CSF flow in the spinal develop-
ment of zebrafish and suggest that disturbances or blockages 
of CSF flow are potential contributing factors of scoliosis. In 
line with this, several studies have consistently reported that 
the prevalence of scoliosis is elevated in patients with PCD 
[96, 126]. In addition, genetic variations in PCD-related 
genes have been detected in patients with clinical scoliosis 
[127].

Interestingly, defects in other ciliogenesis-related genes 
also resulted in scoliosis in zebrafish (Table 2). For exam-
ple, mutations of Cep290, Cc2d2a, Bbs1, Bbs5, Kif6, Kif7, 
Ttll11 and Armc9 all lead to scoliosis in zebrafish [9, 84, 
85, 122, 128–131]. Mutations in KIF6/7 are also related to 
scoliosis in humans [9, 85]. These genes are not related to 
cilia motility but are involved in ciliary functions. Moreo-
ver, most cilia are grossly normal in zebrafish mutants [85, 
128, 130]. These data imply that, in addition to its role as a 
driving force for CSF flow, the signal transduction function 
of primary cilia may also contribute to the development of 

the zebrafish spine. However, the underlying mechanisms 
remain unknown.

Scoliosis due to Reissner’s fiber (RF) defects

Defects in the assembly of RF have also been shown to 
cause scoliosis in zebrafish [132–135]. RF was originally 
described in lampreys and later shown to be widely present 
in vertebrates [136, 137]. In zebrafish, RF is localized from 
the posterior ventricles of the brain to the caudal tip of the 
spinal cord [138]. RF is assembled through the aggrega-
tion of the subcommissural organ (SCO)-spondin protein, 
which is secreted from the SCO of the brain into the ven-
tricular CSF [136, 139]. Although RF has long been thought 
to promote CSF flow and prevent hydrocephalus formation 
[140], its function remains largely unknown. In zebrafish, 
RF is suspended in the CSF and exist throughout the cen-
tral canal [132, 135]. Interestingly, SCO-spondin mutants 
exhibited body curvature at larval stages and developed pro-
gressive scoliosis during later growth [133–135], pointing 
to a critical role of RF during axial development. Notably, 
the absence of RF did not affect ciliary beating or CSF flow 
in the brain ventricle and spinal canal [132]. By contrast, 
coordinated beating of the floor plate cilia is essential for 
RF assembly [132, 135].

RF interacts with monoamines and catecholamines, 
which may participate in the transmission of neural signals 
in body axis development [141]. Soluble SCO-spondin can 
be used as a regulator of synaptic growth, thus promoting 
neurogenesis [142–144]. Similarly, RF is closely associated 
with CSF-cNs in the spinal cord, which may aid transmis-
sion of CSF epinephrine signals [105, 141, 145]. The apical 
cilia and microvilli of CSF-cNs may interact directly with 
RF in the spinal canal to receive these signals. Further analy-
sis showed that the loss of RF reduced spontaneous calcium 
activity in CSF-cNs [102, 114]. The stimulation of calcium 
activity requires the presence of polycystic kidney disease 
2-like 1 (PKD2L1), a mechanosensitive channel protein of 
the TRP superfamily [146]. Moreover, pkd2l1 mutants also 
exhibit scoliosis during later development [102]. These stud-
ies suggest a relationship between cilia motility, CSF flow, 
RF assembly, and the physiology of CSF-cNs. Nevertheless, 
it remains unclear how defects in CSF-cNs result in abnor-
mal spinal development in scoliosis mutants.

Scoliosis due to defects downstream of CSF‑cNs

One of the critical factors controlling body axis develop-
ment in zebrafish larvae is the urotensin neuropeptide, which 
is mainly secreted from CSF-cNs. These neuropeptides are 
essential for the body straightening of early zebrafish larvae 
through activating downstream Urotensin receptor Uts2r3 
(Fig. 3). Strikingly, uts2r3 mutants also exhibited severe 
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scoliosis in adults, similar to those mutants with ciliary 
motility defects [105] (Fig. 2). These data suggest that, in 
parallel with its role during body axis straightening at larval 
stages, urotensin signals also participate in the regulation of 
spinal development during later stages. In SCO-spondin sco-
liosis mutants, the expression of these neuropeptides is com-
promised in CSF-cNs. Interestingly, epinephrine treatment 
or overexpression of Urp2 in CSF-cNs could rescue axis 
bending in RF-defective mutants [114, 133, 134], suggesting 
that RF regulates body axis straightening through urotensin 
signals. Importantly, scoliosis is common in patients with 
Parkinson’s disease, characterized by defects in dopamine 
production, which further demonstrates the role of epineph-
rine signals in scoliosis [147, 148].

The urotensin receptor is mainly expressed in the dor-
sal muscle fiber cells of zebrafish larvae, as suggested by 
the expression of green fluorescent protein (GFP) driven by 
uts2r3 promoter. Unfortunately, GFP expression is lost in 
adult fish (our unpublished data), making it unclear whether 
the asymmetric distribution of this receptor is still present. 
Moreover, it is still unclear how the abnormal function of 
this receptor in muscle cells causes spinal curvature. Inter-
estingly, a recent study of human patients with scoliosis 
identified defects in UTS2R, the homolog of zebrafish 
Uts2r3, strongly implying that urotensin signals may par-
ticipate in the regulation of spine development [149].

Diversity of factors causing IS

Scoliosis is thought to be attributable to many factors, 
including hormonal dysregulation, genetic defects, and envi-
ronmental exposure. Zebrafish can also serve as a candidate 
model for investigating these conditions. The prevalence and 
severity of scoliosis are higher in females, which was also 
demonstrated in zebrafish ptk7 mutants, making zebrafish an 
alternative model for studying the role of hormones in scoli-
osis [11, 46]. Mitogen-activated protein kinase 7 (MAPK7), 
also known as extracellular-signal-regulated kinase 5 
(ERK5), belongs to the family of conventional MAPKs. 
Recently, a MAPK7 variant was identified in a three-gener-
ation family affected by AIS, and zebrafish mapk7 mutants 
also exhibited severe scoliosis [10, 150]. ERK5 plays vari-
ous roles during cell proliferation and migration, which are 
essential for osteoblast differentiation. These data suggest 
that osteogenic defects may also be associated with IS in 
both zebrafish and humans.

Scoliosis is a common phenotype in zebrafish larvae 
treated with toxic compounds [151–154]. Noticeably, most 
of the treatments caused spinal curvature together with other 
defects, including pericardial edema, heartbeat defects, and 
craniofacial malformation at larval stages, making it unfea-
sible to investigate vertebral defects at later stages due to 
high mortality. Interestingly, one study showed that exposure 

to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in juvenile 
zebrafish caused scoliosis in adult fish. Strikingly, scoliosis 
was also common in the next two generations (F1 and F2 
offspring), indicating that TCDD exposure causes genetic 
defects in zebrafish spine development [155, 156].

Perspectives

Recent studies in zebrafish models have made significant 
contributions to our understanding of the mechanisms under-
lying scoliosis. Owing to their strong reproductive capacity, 
zebrafish are suitable for high-throughput forward genetic 
screening (ENU mutagenesis screening) to identify potential 
genes responsible for scoliosis [24, 64]. In addition, current 
gene editing techniques, such as CRISPR/Cas9, have made it 
possible to efficiently and economically target the zebrafish 
genome to produce mutants based on information from clini-
cal screening for scoliosis. Reverse screening for scoliosis 
mutants can also help to identify pathogenic variants from 
DNA sequencing of scoliosis patients.

Finally, caution should also be taken when investigating 
scoliosis using zebrafish. The SCO of the human fetus failed 
to immunoreact with any RF-associated antibodies, mak-
ing the presence of RF in humans controversial [157]. In 
humans, CSF flow in the ventricle and spinal canal is mainly 
driven by arterial pulsation and respiration [158], which dif-
fers from the cilia-driven pattern of CSF in zebrafish. More-
over, the mechanisms of spinal formation and segmentation 
in zebrafish differ slightly from those in humans [5]. Despite 
these findings, clinical data have suggested a conserved role 
of the ciliary pathway during scoliosis progression between 
humans and zebrafish [96, 127, 147, 149].

In summary, zebrafish provide an effective model for elu-
cidating the mechanisms underlying scoliosis. Recent stud-
ies have shown that ciliary defects contribute to scoliosis by 
disrupting the physiological roles of muscle fibers, imply-
ing that IS may be associated with neuromuscular defects. 
Exploring the underlying mechanisms of IS in neuromuscu-
lar related defects should be a focus of future studies. The 
mechanisms underlying spatial multidirectional curvature 
(left–right and dorsal–ventral curvature) in IS-like zebrafish 
mutants remain unknown. Future studies on axon guidance 
and differential activation of CSF-cNs may help resolve this 
query. Moreover, it is still unknown how urotensin neuro-
peptides are secreted from CSF-cNs, which may provide key 
information for understanding spinal curvature formation. 
Finally, the mechanism by which muscular dysplasia leads to 
scoliosis remain to be determined. Similarly, the regulatory 
mechanisms underlying scoliosis and Uts2r3 malfunction 
in zebrafish muscle fibers need to be further investigated. 
Recently, it has been suggested that asymmetrical paraspinal 
muscle activation may be associated with AIS [159, 160], 
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which provides new insights into neuromuscular function 
during spine development. Zebrafish will offer an effective 
platform for investigating these processes.
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