Skip to main content

Advertisement

Log in

New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cholestasis is a key causative factor in alcohol-related liver disease (ALD) and variable degrees of cholestasis occur in all stages of ALD. However, the pathogenetic mechanisms and biomarkers associated with cholestasis are not well characterized. Cholestatic disease is marked by the disruption of bile acids (BA) transport and homeostasis. Consequently, in both human and experimental ALD, the disease shows a direct correlation with an imbalance in BA equilibrium, which in turn may also affect the severity of the disease. Modulation of BA metabolism or signaling pathways is increasingly considered as a potential therapeutic strategy for ALD in humans. In this paper, we highlight the key advances made in the past two decades in characterizing the molecular regulatory mechanisms of BA synthesis, enterohepatic circulation, and BA homeostasis. We summarize recent insights into the nature of the linkage between BA dysregulation and ALD, including the abnormal expression of genes involved in BA metabolism, abnormal changes in receptors that regulate BA metabolism, and disturbance in the gut flora engaged in BA metabolism caused by alcohol consumption. Additionally, we provide novel perspectives on the changes in BAs in various stages of ALD. Finally, we propose potential pharmacological therapies for ALD targeting BA metabolism and signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Abbreviations

ABCB4:

ATP-binding cassette subfamily B member 4

ACLF:

Acute-on-chronic liver failure

ACLI:

Acute-on-chronic liver injury

AD:

Acute decompensation

ADH:

Alcohol dehydrogenase

AFLD:

Alcoholic fatty liver disease

AH:

Alcoholic hepatitis

ALD:

Alcohol-related liver disease

ALDH:

Acetaldehyde dehydrogenase

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

ASBT:

Apical sodium-dependent BA transporter

ASCA:

Anti-Saccharomyces cerevisiae antibodies

ASH:

Alcoholic steatohepatitis

AST:

Aspartate aminotransferase

AUDs:

Alcohol use disorders

BA:

Bile acids

BAAT:

Bile acid-CoA: amino acid N-acyltransferase

BACS:

Bile acid-CoA synthetase

BSEP:

Bile salt export pump

BSH:

Bile salt hydrolase

CA:

Cholic acid

CB1R:

Cannabinoid receptor type 1

CDCA:

Chenodeoxycholic acid

COX-2:

Cyclooxygenase-2

CREBH:

CAMP response element-binding protein hepatocyte-specific

CYP2E1:

Cytochrome P450 2E1 enzyme

CYP7A1:

Cholesterol 7α-hydroxylase

CYP8B1:

Sterol 12α-hydroxylase

DAMPs:

Damage-associated molecular patterns

DCA:

Deoxycholic acid

ERK1/2:

Extracellular regulated protein kinases 1/2

FGF15/19:

Fibroblast growth factor 15/19

FGF21:

Fibroblast growth factor 21

FGR4:

Fibroblast growth factor receptor 4

FIB-4:

Fibrosis4Score

FOXP3:

Forkhead box protein 3

FXR:

Farnesoid X receptor

GCA:

Glycocholic acid

GCDCA:

Glycochenodeoxycholic acid

GDCA:

Glycodeoxycholic acid

GGT:

Gamma-glutamyl-transferase

GLCA:

Glycolithocholic acid

GLP1:

Glucagon-like peptide-1

HCA:

Hyocholic acid

HCC:

Hepatocellular carcinoma

HSC:

Hepatic stellate cells

IM:

Intestinal microbiota

LCA:

Lithocholic acid

LRH-1:

Liver receptor homolog-1

LTA:

Lipoteichoic acid

MAFLD:

Metabolic-associated fatty liver disease

MCD:

Methionine-choline-deficient diet

MCRS1:

Microspherule protein 1

MELD:

Model for end-stage liver disease

MEOS:

Microsomal ethanol oxidation system

MRP3/4:

Multidrug resistance-associated protein 3/4

NAFL:

Non-alcoholic fatty liver

NASH:

Non-alcoholic steatohepatitis

NF-κB:

Nuclear transcription factor-κB

NLRs:

Nod-like receptors

NTCP:

Sodium/taurocholate cotransporting polypeptide

OSTα/β:

Organic solute transporter α/β

PAMPs:

Pathogen-associated molecular patterns

PBC:

Primary biliary cirrhosis

PDC:

Pyruvate dehydrogenase complex

PDK4:

Pyruvate dehydrogenase kinase 4

PGE2:

Prostaglandin E2

PPAR:

Peroxisome proliferator-activated receptor

PSC:

Primary sclerosing cholangitis

PTGER4:

Prostaglandin E receptor 4

ROC:

Receiver operating characteristic

RORγt:

Retinoic acid receptor-related orphan receptor- γ t

ROS:

Reactive oxygen species

RXRα:

Retinoid X receptor-α

SASP:

Senescence-associated secretory phenotype

SHP:

Small heterodimer partner

SIRT1:

Sirtuins 1

SIRT5:

Sirtuins 5

TBA:

Total BA

TCA:

Taurocholic acid

TCDCA:

Taurochenodeoxycholic acid

TDCA:

Taurodeoxycholic acid

TGR5:

Takeda G protein-coupled receptor 5

TLCA:

Taurolithocholic acid

TLR4:

Toll-like receptor 4

TLRs:

Toll-like receptors

Treg:

Regulatory T cell

UDCA:

Ursodeoxycholic acid

β-MCA:

β-Muricholic acid

References

  1. Sohi I, Franklin A, Chrystoja B, Wettlaufer A, Rehm J, Shield K (2021) The global impact of alcohol consumption on premature mortality and health in 2016. Nutrients. https://doi.org/10.3390/nu13093145

    Article  PubMed  PubMed Central  Google Scholar 

  2. Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, Al-Raddadi R, Alvis-Guzman N, Amoako Y, Artaman A, Ayele TA, Barac A, Bensenor I, Berhane A, Bhutta Z, Castillo-Rivas J, Chitheer A, Choi JY, Cowie B, Dandona L et al (2017) The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol 3:1683–1691. https://doi.org/10.1001/jamaoncol.2017.3055

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141:1572–1585. https://doi.org/10.1053/j.gastro.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  4. Russell DW (2009) Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res 50(Suppl):S120-125. https://doi.org/10.1194/jlr.R800026-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jia W, Xie G, Jia W (2018) Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15:111–128. https://doi.org/10.1038/nrgastro.2017.119

    Article  CAS  PubMed  Google Scholar 

  6. Fuchs CD, Trauner M (2022) Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/s41575-021-00566-7

    Article  PubMed  Google Scholar 

  7. Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA, Gonzalez FJ (2007) Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48:2664–2672. https://doi.org/10.1194/jlr.M700330-JLR200

    Article  CAS  PubMed  Google Scholar 

  8. Sun L, Cai J, Gonzalez FJ (2021) The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol 18:335–347. https://doi.org/10.1038/s41575-020-00404-2

    Article  CAS  PubMed  Google Scholar 

  9. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526. https://doi.org/10.1016/s1097-2765(00)00051-4

    Article  CAS  PubMed  Google Scholar 

  10. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225. https://doi.org/10.1016/j.cmet.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  11. Song KH, Li T, Owsley E, Strom S, Chiang JY (2009) Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 49:297–305. https://doi.org/10.1002/hep.22627

    Article  CAS  PubMed  Google Scholar 

  12. Wu W, Zhu B, Peng X, Zhou M, Jia D, Gu J (2014) Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease. Biochem Biophys Res Commun 443:68–73. https://doi.org/10.1016/j.bbrc.2013.11.057

    Article  CAS  PubMed  Google Scholar 

  13. Xie G, Zhong W, Li H, Li Q, Qiu Y, Zheng X, Chen H, Zhao X, Zhang S, Zhou Z, Zeisel SH, Jia W (2013) Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. Faseb J 27:3583–3593. https://doi.org/10.1096/fj.13-231860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chanda D, Kim YH, Li T, Misra J, Kim DK, Kim JR, Kwon J, Jeong WI, Ahn SH, Park TS, Koo SH, Chiang JY, Lee CH, Choi HS (2013) Hepatic cannabinoid receptor type 1 mediates alcohol-induced regulation of bile acid enzyme genes expression via CREBH. PLoS ONE 8:e68845. https://doi.org/10.1371/journal.pone.0068845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang DJ, Hylemon PB, Gillevet PM, Sartor RB, Betrapally NS, Kakiyama G, Sikaroodi M, Takei H, Nittono H, Zhou H, Pandak WM, Yang J, Jiao C, Li X, Lippman HR, Heuman DM, Bajaj JS (2017) Gut microbial composition can differentially regulate bile acid synthesis in humanized mice. Hepatol Commun 1:61–70. https://doi.org/10.1002/hep4.1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brandl K, Hartmann P, Jih LJ, Pizzo DP, Argemi J, Ventura-Cots M, Coulter S, Liddle C, Ling L, Rossi SJ, DePaoli AM, Loomba R, Mehal WZ, Fouts DE, Lucey MR, Bosques-Padilla F, Mathurin P, Louvet A, Garcia-Tsao G, Verna EC et al (2018) Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J Hepatol 69:396–405. https://doi.org/10.1016/j.jhep.2018.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jansen PL, Ghallab A, Vartak N, Reif R, Schaap FG, Hampe J, Hengstler JG (2017) The ascending pathophysiology of cholestatic liver disease. Hepatology 65:722–738. https://doi.org/10.1002/hep.28965

    Article  CAS  PubMed  Google Scholar 

  18. Doden HL, Ridlon JM (2021) Microbial hydroxysteroid dehydrogenases: from alpha to omega. Microorganisms. https://doi.org/10.3390/microorganisms9030469

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gong X, Zhang Q, Ruan Y, Hu M, Liu Z, Gong L (2020) Chronic alcohol consumption increased bile acid levels in enterohepatic circulation and reduced efficacy of irinotecan. Alcohol Alcohol 55:264–277. https://doi.org/10.1093/alcalc/agaa005

    Article  CAS  PubMed  Google Scholar 

  20. Zinchuk V, Zinchuk O, Akimaru K, Moriya F, Okada T (2007) Ethanol consumption alters expression and colocalization of bile salt export pump and multidrug resistance protein 2 in the rat. Histochem Cell Biol 127:503–512. https://doi.org/10.1007/s00418-007-0277-7

    Article  CAS  PubMed  Google Scholar 

  21. Xie G, Wang X, Huang F, Zhao A, Chen W, Yan J, Zhang Y, Lei S, Ge K, Zheng X, Liu J, Su M, Liu P, Jia W (2016) Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer 139:1764–1775. https://doi.org/10.1002/ijc.30219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Song X, Valanejad L, Vasilenko A, More V, Qiu X, Chen W, Lai Y, Slitt A, Stoner M, Yan B, Deng R (2013) Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology 57:1530–1541. https://doi.org/10.1002/hep.26187

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Zhang Q, Ding M, Yao J, Guo Y, Yan W, Yu S, Shen Q, Huang M, Zheng Y, Lin Y, Wang Y, Liu Z, Lu L (2022) Alcohol triggered bile acid disequilibrium by suppressing BSEP to sustain hepatocellular carcinoma progression. Chem Biol Interact 356:109847. https://doi.org/10.1016/j.cbi.2022.109847

    Article  CAS  PubMed  Google Scholar 

  24. Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, White RC, Clarke TH, Nguyen K, Torralba M, Shao Y, Liu J, Hernandez-Morales A, Lessor L, Rahman IR, Miyamoto Y, Ly M, Gao B, Sun W, Kiesel R et al (2019) Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575:505–511. https://doi.org/10.1038/s41586-019-1742-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chu H, Duan Y, Lang S, Jiang L, Wang Y, Llorente C, Liu J, Mogavero S, Bosques-Padilla F, Abraldes JG, Vargas V, Tu XM, Yang L, Hou X, Hube B, Stärkel P, Schnabl B (2020) The Candida albicans exotoxin Candidalysin promotes alcohol-associated liver disease. J Hepatol 72:391–400. https://doi.org/10.1016/j.jhep.2019.09.029

    Article  CAS  PubMed  Google Scholar 

  26. Lang S, Duan Y, Liu J, Torralba MG, Kuelbs C, Ventura-Cots M, Abraldes JG, Bosques-Padilla F, Verna EC, Brown RS Jr, Vargas V, Altamirano J, Caballería J, Shawcross D, Lucey MR, Louvet A, Mathurin P, Garcia-Tsao G, Ho SB, Tu XM et al (2020) Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis. Hepatology 71:522–538. https://doi.org/10.1002/hep.30832

    Article  CAS  PubMed  Google Scholar 

  27. Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, Zheng Y, Longman RS, Rastinejad F, Devlin AS, Krout MR, Fischbach MA, Littman DR, Huh JR (2019) Bile acid metabolites control T(h)17 and T(reg) cell differentiation. Nature 576:143–148. https://doi.org/10.1038/s41586-019-1785-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paik D, Yao L, Zhang Y, Bae S, D’Agostino GD, Zhang M, Kim E, Franzosa EA, Avila-Pacheco J, Bisanz JE, Rakowski CK, Vlamakis H, Xavier RJ, Turnbaugh PJ, Longman RS, Krout MR, Clish CB, Rastinejad F, Huttenhower C, Huh JR et al (2022) Human gut bacteria produce T(H)17-modulating bile acid metabolites. Nature 603:907–912. https://doi.org/10.1038/s41586-022-04480-z

    Article  CAS  PubMed  Google Scholar 

  29. Gao B, Ahmad MF, Nagy LE, Tsukamoto H (2019) Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 70:249–259. https://doi.org/10.1016/j.jhep.2018.10.023

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lemmers A, Moreno C, Gustot T, Maréchal R, Degré D, Demetter P, de Nadai P, Geerts A, Quertinmont E, Vercruysse V, Le Moine O, Devière J (2009) The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49:646–657. https://doi.org/10.1002/hep.22680

    Article  CAS  PubMed  Google Scholar 

  31. Støy S, Sandahl TD, Dige AK, Agnholt J, Rasmussen TK, Grønbæk H, Deleuran B, Vilstrup H (2013) Highest frequencies of interleukin-22-producing t helper cells in alcoholic hepatitis patients with a favourable short-term course. PLoS ONE. https://doi.org/10.1371/journal.pone.0055101

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ortiz V, Wands JR (2014) Chronic ethanol diet increases regulatory t-cell activity and inhibits hepatitis c virus core-specific cellular immune responses in mice. Hepatol Res 44:788–797. https://doi.org/10.1111/hepr.12173

    Article  CAS  PubMed  Google Scholar 

  33. Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, Suda W, Takeshita K, Sasaki T, Okamoto S, Skelly AN, Okamura Y, Vlamakis H, Li Y, Tanoue T, Takei H, Nittono H, Narushima S, Irie J, Itoh H et al (2021) Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599:458–464. https://doi.org/10.1038/s41586-021-03832-5

    Article  CAS  PubMed  Google Scholar 

  34. Bajaj JS (2019) Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol 16:235–246. https://doi.org/10.1038/s41575-018-0099-1

    Article  PubMed  Google Scholar 

  35. Wahlström A, Sayin SI, Marschall HU, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:41–50. https://doi.org/10.1016/j.cmet.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  36. Litwinowicz K, Choroszy M, Waszczuk E (2020) Changes in the composition of the human intestinal microbiome in alcohol use disorder: a systematic review. Am J Drug Alcohol Abuse 46:4–12. https://doi.org/10.1080/00952990.2019.1669629

    Article  PubMed  Google Scholar 

  37. Hartmann P, Hochrath K, Horvath A, Chen P, Seebauer CT, Llorente C, Wang L, Alnouti Y, Fouts DE, Stärkel P, Loomba R, Coulter S, Liddle C, Yu RT, Ling L, Rossi SJ, DePaoli AM, Downes M, Evans RM, Brenner DA et al (2018) Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 67:2150–2166. https://doi.org/10.1002/hep.29676

    Article  CAS  PubMed  Google Scholar 

  38. Shen R, Ke L, Li Q, Dang X, Shen S, Shen J, Li S, Liang L, Peng B, Kuang M, Ma Y, Yang Z, Hua Y (2022) Abnormal bile acid-microbiota crosstalk promotes the development of hepatocellular carcinoma. Hepatol Int 16:396–411. https://doi.org/10.1007/s12072-022-10299-7

    Article  PubMed  Google Scholar 

  39. Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, Guo C, Higginbottom S, Almo SC, Fischbach MA (2020) A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582:566–570. https://doi.org/10.1038/s41586-020-2396-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee IK, Yun BS, Matsuzaki K, Furukawa M, Min HK, Bajaj JS, Zhou H, Hylemon PB (2019) Bile acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit Clostridium difficile: role of secondary bile acids. Cell Chem Biol 26:27-34.e24. https://doi.org/10.1016/j.chembiol.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  41. Loo TM, Kamachi F, Watanabe Y, Yoshimoto S, Kanda H, Arai Y, Nakajima-Takagi Y, Iwama A, Koga T, Sugimoto Y, Ozawa T, Nakamura M, Kumagai M, Watashi K, Taketo MM, Aoki T, Narumiya S, Oshima M, Arita M, Hara E et al (2017) Gut microbiota promotes obesity-associated liver cancer through PGE(2)-mediated suppression of antitumor immunity. Cancer Discov 7:522–538. https://doi.org/10.1158/2159-8290.Cd-16-0932

    Article  CAS  PubMed  Google Scholar 

  42. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, Ritz T, Longerich T, Theriot CM, McCulloch JA, Roy S, Yuan W, Thovarai V, Sen SK, Ruchirawat M, Korangy F et al (2018) Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. https://doi.org/10.1126/science.aan5931

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jin WB, Li TT, Huo D, Qu S, Li XV, Arifuzzaman M, Lima SF, Shi HQ, Wang A, Putzel GG, Longman RS, Artis D, Guo CJ (2022) Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 185:547-562.e522. https://doi.org/10.1016/j.cell.2021.12.035

    Article  CAS  PubMed  Google Scholar 

  44. Jiang Y, Zhang T, Kusumanchi P, Han S, Yang Z, Liangpunsakul S (2020) Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome p450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines. https://doi.org/10.3390/biomedicines8030050

    Article  PubMed  PubMed Central  Google Scholar 

  45. Langhi C, Pedraz-Cuesta E, Haro D, Marrero PF, Rodríguez JC (2013) Regulation of human class I alcohol dehydrogenases by bile acids. J Lipid Res 54:2475–2484. https://doi.org/10.1194/jlr.M039404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lívero FA, Stolf AM, Dreifuss AA, Bastos-Pereira AL, Chicorski R, de Oliveira LG, de Souza CE, Fabossi IA, Rabitto IS, Gremski LH, Henneberg R, Telles JE, Oude Elferink RP, Acco A (2014) The FXR agonist 6ECDCA reduces hepatic steatosis and oxidative stress induced by ethanol and low-protein diet in mice. Chem Biol Interact 217:19–27. https://doi.org/10.1016/j.cbi.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  47. Kong B, Zhang M, Huang M, Rizzolo D, Armstrong LE, Schumacher JD, Chow MD, Lee YH, Guo GL (2019) FXR deficiency alters bile acid pool composition and exacerbates chronic alcohol induced liver injury. Dig Liver Dis 51:570–576. https://doi.org/10.1016/j.dld.2018.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang M, Kong B, Huang M, Wan R, Armstrong LE, Schumacher JD, Rizzolo D, Chow MD, Lee YH, Guo GL (2018) FXR deletion in hepatocytes does not affect the severity of alcoholic liver disease in mice. Dig Liver Dis 50:1068–1075. https://doi.org/10.1016/j.dld.2018.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang M, Kong B, Zhang M, Rizzolo D, Armstrong LE, Schumacher JD, Chow MD, Lee YH, Joseph LB, Stofan M, Zhang L, Guo GL (2020) Enhanced alcoholic liver disease in mice with intestine-specific farnesoid X receptor deficiency. Lab Invest 100:1158–1168. https://doi.org/10.1038/s41374-020-0439-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haigis MC, Guarente LP (2006) Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921. https://doi.org/10.1101/gad.1467506

    Article  CAS  PubMed  Google Scholar 

  51. Sun R, Zhang Z, Bao R, Guo X, Gu Y, Yang W, Wei J, Chen X, Tong L, Meng J, Zhong C, Zhang C, Zhang J, Sun Y, Ling C, Tong X, Yu FX, Yu H, Qu W, Zhao B et al (2022) Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. J Hepatol. https://doi.org/10.1016/j.jhep.2022.02.030

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deng W, Fan W, Tang T, Wan H, Zhao S, Tan Y, Oware KA, Tan J, Li J, Qu S (2022) Farnesoid X receptor deficiency induces hepatic lipid and glucose metabolism disorder via regulation of pyruvate dehydrogenase kinase 4. Oxid Med Cell Longev 2022:3589525. https://doi.org/10.1155/2022/3589525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parlesak A, Schäfer C, Schütz T, Bode JC, Bode C (2000) Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J Hepatol 32:742–747. https://doi.org/10.1016/s0168-8278(00)80242-1

    Article  CAS  PubMed  Google Scholar 

  54. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14:397–411. https://doi.org/10.1038/nrgastro.2017.38

    Article  CAS  PubMed  Google Scholar 

  55. Garrido A, Kim E, Teijeiro A, Sánchez Sánchez P, Gallo R, Nair A, Matamala Montoya M, Perna C, Vicent GP, Muñoz J, Campos-Olivas R, Melms JC, Izar B, Schwabe RF, Djouder N (2022) Histone acetylation of bile acid transporter genes plays a critical role in cirrhosis. J Hepatol 76:850–861. https://doi.org/10.1016/j.jhep.2021.12.019

    Article  CAS  PubMed  Google Scholar 

  56. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, Mangelsdorf DJ, Kliewer SA (2006) Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA 103:3920–3925. https://doi.org/10.1073/pnas.0509592103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stärkel P, Leclercq S, de Timary P, Schnabl B (2018) Intestinal dysbiosis and permeability: the Yin and Yang in alcohol dependence and alcoholic liver disease. Clin Sci (Lond) 132:199–212. https://doi.org/10.1042/cs20171055

    Article  Google Scholar 

  58. Wolfe A, Thomas A, Edwards G, Jaseja R, Guo GL, Apte U (2011) Increased activation of the Wnt/β-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice. J Pharmacol Exp Ther 338:12–21. https://doi.org/10.1124/jpet.111.179390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kakiyama G, Hylemon PB, Zhou H, Pandak WM, Heuman DM, Kang DJ, Takei H, Nittono H, Ridlon JM, Fuchs M, Gurley EC, Wang Y, Liu R, Sanyal AJ, Gillevet PM, Bajaj JS (2014) Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am J Physiol Gastrointest Liver Physiol 306:G929-937. https://doi.org/10.1152/ajpgi.00315.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schaap FG, van der Gaag NA, Gouma DJ, Jansen PL (2009) High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 49:1228–1235. https://doi.org/10.1002/hep.22771

    Article  CAS  PubMed  Google Scholar 

  61. Wunsch E, Milkiewicz M, Wasik U, Trottier J, Kempińska-Podhorodecka A, Elias E, Barbier O, Milkiewicz P (2015) Expression of hepatic fibroblast growth factor 19 is enhanced in primary biliary cirrhosis and correlates with severity of the disease. Sci Rep 5:13462. https://doi.org/10.1038/srep13462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L (2016) Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology 63:914–929. https://doi.org/10.1002/hep.28257

    Article  CAS  PubMed  Google Scholar 

  63. Maddrey WC, Boitnott JK, Bedine MS, Weber FL Jr, Mezey E, White RI Jr (1978) Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 75:193–199

    Article  CAS  Google Scholar 

  64. Dominguez M, Rincón D, Abraldes JG, Miquel R, Colmenero J, Bellot P, García-Pagán JC, Fernández R, Moreno M, Bañares R, Arroyo V, Caballería J, Ginès P, Bataller R (2008) A new scoring system for prognostic stratification of patients with alcoholic hepatitis. Am J Gastroenterol 103:2747–2756. https://doi.org/10.1111/j.1572-0241.2008.02104.x

    Article  PubMed  Google Scholar 

  65. Thursz MR, Richardson P, Allison M, Austin A, Bowers M, Day CP, Downs N, Gleeson D, MacGilchrist A, Grant A, Hood S, Masson S, McCune A, Mellor J, O’Grady J, Patch D, Ratcliffe I, Roderick P, Stanton L, Vergis N et al (2015) Prednisolone or pentoxifylline for alcoholic hepatitis. N Engl J Med 372:1619–1628. https://doi.org/10.1056/NEJMoa1412278

    Article  CAS  PubMed  Google Scholar 

  66. Ventura-Cots M, Argemi J, Jones PD, Lackner C, El Hag M, Abraldes JG, Alvarado E, Clemente A, Ravi S, Alves A, Alboraie M, Altamirano J, Barace S, Bosques F, Brown R, Caballeria J, Cabezas J, Carvalhana S, Cortez-Pinto H, Costa A et al (2022) Clinical, histological and molecular profiling of different stages of alcohol-related liver disease. Gut. https://doi.org/10.1136/gutjnl-2021-324295

    Article  PubMed  Google Scholar 

  67. Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A, Ferrere G, Puchois V, Martin JC, Lepage P, Le Roy T, Lefèvre L, Langelier B, Cailleux F, González-Castro AM, Rabot S, Gaudin F, Agostini H, Prévot S, Berrebi D, Ciocan D et al (2016) Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 65:830–839. https://doi.org/10.1136/gutjnl-2015-310585

    Article  CAS  PubMed  Google Scholar 

  68. Ciocan D, Voican CS, Wrzosek L, Hugot C, Rainteau D, Humbert L, Cassard AM, Perlemuter G (2018) Bile acid homeostasis and intestinal dysbiosis in alcoholic hepatitis. Aliment Pharmacol Ther 48:961–974. https://doi.org/10.1111/apt.14949

    Article  CAS  PubMed  Google Scholar 

  69. Muthiah MD, Smirnova E, Puri P, Chalasani N, Shah VH, Kiani C, Taylor S, Mirshahi F, Sanyal AJ (2022) Development of alcohol-associated hepatitis is associated with specific changes in gut-modified bile acids. Hepatol Commun. https://doi.org/10.1002/hep4.1885

    Article  PubMed  PubMed Central  Google Scholar 

  70. He L, Vatsalya V, Ma X, Zhang J, Yin X, Kim S, Feng W, McClain CJ, Zhang X (2021) Metabolic profiling of bile acids in the urine of patients with alcohol-associated liver disease. Hepatol Commun 5:798–811. https://doi.org/10.1002/hep4.1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singal AK, Mathurin P (2021) Diagnosis and treatment of alcohol-associated liver disease: a review. JAMA 326:165–176. https://doi.org/10.1001/jama.2021.7683

    Article  CAS  PubMed  Google Scholar 

  72. Bajaj JS, Kakiyama G, Zhao D, Takei H, Fagan A, Hylemon P, Zhou H, Pandak WM, Nittono H, Fiehn O, Salzman N, Holtz M, Simpson P, Gavis EA, Heuman DM, Liu R, Kang DJ, Sikaroodi M, Gillevet PM (2017) Continued alcohol misuse in human cirrhosis is associated with an impaired gut-liver axis. Alcohol Clin Exp Res 41:1857–1865. https://doi.org/10.1111/acer.13498

    Article  CAS  PubMed  Google Scholar 

  73. Balazs I, Horvath A, Leber B, Feldbacher N, Sattler W, Rainer F, Fauler G, Vermeren S, Stadlbauer V (2022) Serum bile acids in liver cirrhosis promote neutrophil dysfunction. Clin Transl Med 12:e735. https://doi.org/10.1002/ctm2.735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Michelena J, Altamirano J, Abraldes JG, Affò S, Morales-Ibanez O, Sancho-Bru P, Dominguez M, García-Pagán JC, Fernández J, Arroyo V, Ginès P, Louvet A, Mathurin P, Mehal WZ, Caballería J, Bataller R (2015) Systemic inflammatory response and serum lipopolysaccharide levels predict multiple organ failure and death in alcoholic hepatitis. Hepatology 62:762–772. https://doi.org/10.1002/hep.27779

    Article  CAS  PubMed  Google Scholar 

  75. Jalan R, Gines P, Olson JC, Mookerjee RP, Moreau R, Garcia-Tsao G, Arroyo V, Kamath PS (2012) Acute-on chronic liver failure. J Hepatol 57:1336–1348. https://doi.org/10.1016/j.jhep.2012.06.026

    Article  PubMed  Google Scholar 

  76. Horvatits T, Drolz A, Roedl K, Rutter K, Ferlitsch A, Fauler G, Trauner M, Fuhrmann V (2017) Serum bile acids as marker for acute decompensation and acute-on-chronic liver failure in patients with non-cholestatic cirrhosis. Liver Int 37:224–231. https://doi.org/10.1111/liv.13201

    Article  CAS  PubMed  Google Scholar 

  77. Christidis G, Karatayli E, Hall RA, Weber SN, Reichert MC, Hohl M, Qiao S, Boehm U, Lütjohann D, Lammert F, Karatayli SC (2021) Fibroblast growth factor 21 response in a preclinical alcohol model of acute-on-chronic liver injury. Int J Mol Sci. https://doi.org/10.3390/ijms22157898

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bertola A, Mathews S, Ki SH, Wang H, Gao B (2013) Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 8:627–637. https://doi.org/10.1038/nprot.2013.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Karatayli E, Hall RA, Weber SN, Dooley S, Lammert F (2019) Effect of alcohol on the interleukin 6-mediated inflammatory response in a new mouse model of acute-on-chronic liver injury. Biochim Biophys Acta Mol Basis Dis 1865:298–307. https://doi.org/10.1016/j.bbadis.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  80. Søberg S, Andersen ES, Dalsgaard NB, Jarlhelt I, Hansen NL, Hoffmann N, Vilsbøll T, Chenchar A, Jensen M, Grevengoed TJ, Trammell SAJ, Knop FK, Gillum MP (2018) FGF21, a liver hormone that inhibits alcohol intake in mice, increases in human circulation after acute alcohol ingestion and sustained binge drinking at Oktoberfest. Mol Metab 11:96–103. https://doi.org/10.1016/j.molmet.2018.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease study 2016 (2017). Lancet 390:1151–1210. https://doi.org/10.1016/s0140-6736(17)32152-9

  82. Pawlikowska L, Strautnieks S, Jankowska I, Czubkowski P, Emerick K, Antoniou A, Wanty C, Fischler B, Jacquemin E, Wali S, Blanchard S, Nielsen IM, Bourke B, McQuaid S, Lacaille F, Byrne JA, van Eerde AM, Kolho KL, Klomp L, Houwen R et al (2010) Differences in presentation and progression between severe FIC1 and BSEP deficiencies. J Hepatol 53:170–178. https://doi.org/10.1016/j.jhep.2010.01.034

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ (2012) Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 56:118–129. https://doi.org/10.1002/hep.25630

    Article  CAS  PubMed  Google Scholar 

  84. Nimer N, Choucair I, Wang Z, Nemet I, Li L, Gukasyan J, Weeks TL, Alkhouri N, Zein N, Tang WHW, Fischbach MA, Brown JM, Allayee H, Dasarathy S, Gogonea V, Hazen SL (2021) Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression. Metabolism 116:154457. https://doi.org/10.1016/j.metabol.2020.154457

    Article  CAS  PubMed  Google Scholar 

  85. Montanari NR, Ramírez R, Aggarwal A, van Buuren N, Doukas M, Moon C, Turner S, Diehl L, Li L, Debes JD, Feierbach B, Boonstra A (2022) Multi-parametric analysis of human livers reveals variation in intrahepatic inflammation across phases of chronic hepatitis B infection. J Hepatol. https://doi.org/10.1016/j.jhep.2022.02.016

    Article  PubMed  Google Scholar 

  86. Gulamhusein AF, Hirschfield GM (2020) Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 17:93–110. https://doi.org/10.1038/s41575-019-0226-7

    Article  PubMed  Google Scholar 

  87. Panzitt K, Jungwirth E, Krones E, Lee JM, Pollheimer M, Thallinger GG, Kolb-Lenz D, Xiao R, Thorell A, Trauner M, Fickert P, Marschall HU, Moore DD, Wagner M (2020) FXR-dependent rubicon induction impairs autophagy in models of human cholestasis. J Hepatol 72:1122–1131. https://doi.org/10.1016/j.jhep.2020.01.014

    Article  CAS  PubMed  Google Scholar 

  88. Gao L, Lv G, Li R, Liu WT, Zong C, Ye F, Li XY, Yang X, Jiang JH, Hou XJ, Jing YY, Han ZP, Wei LX (2019) Glycochenodeoxycholate promotes hepatocellular carcinoma invasion and migration by AMPK/Mtor dependent autophagy activation. Cancer Lett 454:215–223. https://doi.org/10.1016/j.canlet.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  89. Trauner M, Nevens F, Shiffman ML, Drenth JPH, Bowlus CL, Vargas V, Andreone P, Hirschfield GM, Pencek R, Malecha ES, MacConell L, Shapiro D (2019) Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. Lancet Gastroenterol Hepatol 4:445–453. https://doi.org/10.1016/s2468-1253(19)30094-9

    Article  PubMed  Google Scholar 

  90. Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Klein S, Elst IV, Windmolders P, Vanuytsel T, Nevens F, Laleman W (2014) Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 59:2286–2298. https://doi.org/10.1002/hep.26939

    Article  CAS  PubMed  Google Scholar 

  91. Smets L, Verbeek J, Korf H, van der Merwe S, Nevens F (2021) Improved markers of cholestatic liver injury in patients with primary biliary cholangitis treated with obeticholic acid and Bezafibrate. Hepatology 73:2598–2600. https://doi.org/10.1002/hep.31613

    Article  CAS  PubMed  Google Scholar 

  92. Kowdley KV, Vuppalanchi R, Levy C, Floreani A, Andreone P, LaRusso NF, Shrestha R, Trotter J, Goldberg D, Rushbrook S, Hirschfield GM, Schiano T, Jin Y, Pencek R, MacConell L, Shapiro D, Bowlus CL (2020) A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J Hepatol 73:94–101. https://doi.org/10.1016/j.jhep.2020.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rinella ME, Dufour JF, Anstee QM, Goodman Z, Younossi Z, Harrison SA, Loomba R, Sanyal AJ, Bonacci M, Trylesinski A, Natha M, Shringarpure R, Granston T, Venugopal A, Ratziu V (2022) Non-invasive evaluation of response to obeticholic acid in patients with NASH: results from the regenerate study. J Hepatol 76:536–548. https://doi.org/10.1016/j.jhep.2021.10.029

    Article  CAS  PubMed  Google Scholar 

  94. Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, Bedossa P, Geier A, Beckebaum S, Newsome PN, Sheridan D, Sheikh MY, Trotter J, Knapple W, Lawitz E, Abdelmalek MF, Kowdley KV, Montano-Loza AJ, Boursier J, Mathurin P et al (2019) Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394:2184–2196. https://doi.org/10.1016/s0140-6736(19)33041-7

    Article  CAS  PubMed  Google Scholar 

  95. Peeraphatdit TB, Simonetto DA, Shah VH (2018) Exploring new treatment paradigms for alcoholic hepatitis by extrapolating from NASH and cholestasis. J Hepatol 69:275–277. https://doi.org/10.1016/j.jhep.2018.05.012

    Article  PubMed  Google Scholar 

  96. Yin Y, Wang M, Gu W, Chen L (2021) Intestine-specific FXR agonists as potential therapeutic agents for colorectal cancer. Biochem Pharmacol 186:114430. https://doi.org/10.1016/j.bcp.2021.114430

    Article  CAS  PubMed  Google Scholar 

  97. Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, Patterson AD, Gonzalez FJ, Chiang JYL (2018) Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68:1574–1588. https://doi.org/10.1002/hep.29857

    Article  CAS  PubMed  Google Scholar 

  98. Chiang JYL, Ferrell JM (2020) Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 318:G554–G573. https://doi.org/10.1152/ajpgi.00223.2019

    Article  PubMed  PubMed Central  Google Scholar 

  99. Raja A, Park I, Haq F, Ahn SM (2019) FGF19-FGR4 signaling in hepatocellular carcinoma. Cells. https://doi.org/10.3390/cells8060536

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhou M, Wang X, Phung V, Lindhout DA, Mondal K, Hsu JY, Yang H, Humphrey M, Ding X, Arora T, Learned RM, DePaoli AM, Tian H, Ling L (2014) Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res 74:3306–3316. https://doi.org/10.1158/0008-5472.Can-14-0208

    Article  CAS  PubMed  Google Scholar 

  101. Hirschfield GM, Chazouillères O, Drenth JP, Thorburn D, Harrison SA, Landis CS, Mayo MJ, Muir AJ, Trotter JF, Leeming DJ, Karsdal MA, Jaros MJ, Ling L, Kim KH, Rossi SJ, Somaratne RM, DePaoli AM, Beuers U (2019) Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: a multicenter, randomized, double-blind, placebo-controlled phase II trial. J Hepatol 70:483–493. https://doi.org/10.1016/j.jhep.2018.10.035

    Article  CAS  PubMed  Google Scholar 

  102. Harrison SA, Neff G, Guy CD, Bashir MR, Paredes AH, Frias JP, Younes Z, Trotter JF, Gunn NT, Moussa SE, Kohli A, Nelson K, Gottwald M, Chang WCG, Yan AZ, DePaoli AM, Ling L, Lieu HD (2021) Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology 160:219–231. https://doi.org/10.1053/j.gastro.2020.08.004

    Article  CAS  PubMed  Google Scholar 

  103. Mayo MJ, Wigg AJ, Leggett BA, Arnold H, Thompson AJ, Weltman M, Carey EJ, Muir AJ, Ling L, Rossi SJ, DePaoli AM (2018) NGM282 for treatment of patients with primary biliary cholangitis: a multicenter, randomized, double-blind, placebo-controlled trial. Hepatol Commun 2:1037–1050. https://doi.org/10.1002/hep4.1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Matye DJ, Li Y, Chen C, Chao X, Wang H, Ni H, Ding WX, Li T (2021) Gut-restricted apical sodium-dependent bile acid transporter inhibitor attenuates alcohol-induced liver steatosis and injury in mice. Alcohol Clin Exp Res 45:1188–1199. https://doi.org/10.1111/acer.14619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Karpen SJ, Kelly D, Mack C, Stein P (2020) Ileal bile acid transporter inhibition as an anticholestatic therapeutic target in biliary atresia and other cholestatic disorders. Hepatol Int 14:677–689. https://doi.org/10.1007/s12072-020-10070-w

    Article  PubMed  Google Scholar 

  106. Matye DJ, Wang H, Luo W, Sharp RR, Chen C, Gu L, Jones KL, Ding WX, Friedman JE, Li T (2021) Combined ASBT inhibitor and FGF15 treatment improves therapeutic efficacy in experimental nonalcoholic steatohepatitis. Cell Mol Gastroenterol Hepatol 12:1001–1019. https://doi.org/10.1016/j.jcmgh.2021.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hegade VS, Kendrick SF, Dobbins RL, Miller SR, Thompson D, Richards D, Storey J, Dukes GE, Corrigan M, Oude Elferink RP, Beuers U, Hirschfield GM, Jones DE (2017) Effect of ileal bile acid transporter inhibitor GSK2330672 on pruritus in primary biliary cholangitis: a double-blind, randomised, placebo-controlled, crossover, phase 2a study. Lancet 389:1114–1123. https://doi.org/10.1016/s0140-6736(17)30319-7

    Article  CAS  PubMed  Google Scholar 

  108. Dhanda A, Atkinson S, Vergis N, Enki D, Fisher A, Clough R, Cramp M, Thursz M (2020) Trace element deficiency is highly prevalent and associated with infection and mortality in patients with alcoholic hepatitis. Aliment Pharmacol Ther 52:537–544. https://doi.org/10.1111/apt.15880

    Article  CAS  PubMed  Google Scholar 

  109. Chu H, Jiang L, Gao B, Gautam N, Alamoudi JA, Lang S, Wang Y, Duan Y, Alnouti Y, Cable EE, Schnabl B (2021) The selective PPAR-delta agonist seladelpar reduces ethanol-induced liver disease by restoring gut barrier function and bile acid homeostasis in mice. Transl Res 227:1–14. https://doi.org/10.1016/j.trsl.2020.06.006

    Article  CAS  PubMed  Google Scholar 

  110. Bowlus CL, Galambos MR, Aspinall RJ, Hirschfield GM, Jones DEJ, Dörffel Y, Gordon SC, Harrison SA, Kremer AE, Mayo MJ, Thuluvath PJ, Levy C, Swain MG, Neff GW, Sheridan DA, Stanca CM, Berg CP, Goel A, Shiffman ML, Vierling JM et al (2022) A phase II, randomized, open-label, 52-week study of seladelpar in patients with primary biliary cholangitis. J Hepatol. https://doi.org/10.1016/j.jhep.2022.02.033

    Article  PubMed  Google Scholar 

  111. Jones D, Boudes PF, Swain MG, Bowlus CL, Galambos MR, Bacon BR, Doerffel Y, Gitlin N, Gordon SC, Odin JA, Sheridan D, Wörns MA, Clark V, Corless L, Hartmann H, Jonas ME, Kremer AE, Mells GF, Buggisch P, Freilich BL et al (2017) Seladelpar (MBX-8025), a selective ppar-δ agonist, in patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid: a double-blind, randomised, placebo-controlled, phase 2, proof-of-concept study. Lancet Gastroenterol Hepatol 2:716–726. https://doi.org/10.1016/s2468-1253(17)30246-7

    Article  PubMed  Google Scholar 

  112. Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, Ciocan D, Rainteau D, Humbert L, Hugot C, Gaudin F, Noordine ML, Robert V, Berrebi D, Thomas M, Naveau S, Perlemuter G, Cassard AM (2017) Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 66:806–815. https://doi.org/10.1016/j.jhep.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  113. Ciocan D, Spatz M, Trainel N, Hardonnière K, Domenichini S, Mercier-Nomé F, Desmons A, Humbert L, Durand S, Kroemer G, Lamazière A, Hugot C, Perlemuter G, Cassard AM (2022) Modulation of the bile acid enterohepatic cycle by intestinal microbiota alleviates alcohol liver disease. Cells. https://doi.org/10.3390/cells11060968

    Article  PubMed  PubMed Central  Google Scholar 

  114. Khorasani AC, Kouhfar F, Shojaosadati SA (2021) Pectin/lignocellulose nanofibers/chitin nanofibers bionanocomposite as an efficient biosorbent of cholesterol and bile salts. Carbohydr Polym 261:117883. https://doi.org/10.1016/j.carbpol.2021.117883

    Article  CAS  PubMed  Google Scholar 

  115. Wrzosek L, Ciocan D, Hugot C, Spatz M, Dupeux M, Houron C, Lievin-Le Moal V, Puchois V, Ferrere G, Trainel N, Mercier-Nomé F, Durand S, Kroemer G, Voican CS, Emond P, Straube M, Sokol H, Perlemuter G, Cassard AM (2021) Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut 70:1299–1308. https://doi.org/10.1136/gutjnl-2020-321565

    Article  CAS  PubMed  Google Scholar 

  116. Takahashi S, Fukami T, Masuo Y, Brocker CN, Xie C, Krausz KW, Wolf CR, Henderson CJ, Gonzalez FJ (2016) Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res 57:2130–2137. https://doi.org/10.1194/jlr.M071183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was sponsored by the National Natural Science Foundation of China (Grants nos. 81972265, 82170602), the National Natural Science Foundation of Jilin Province (20200201324JC), and the Project for Health Talents of Jilin Province (JLSWSRCZX 2021-079).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YG designed the review outline; YG and YL drafted the manuscript; YG, YL, TL, and XZ revised and edited the paper. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanhang Gao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

All authors agreed on the publication of the current version of manuscript.

Ethical approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, T., Zhao, X. et al. New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease. Cell. Mol. Life Sci. 79, 486 (2022). https://doi.org/10.1007/s00018-022-04509-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04509-6

Keywords

Navigation