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Abstract
Background  The etiology of mild traumatic brain injury (mTBI) remains elusive due to the tissue and cellular heterogeneity 
of the affected brain regions that underlie cognitive impairments and subsequent neurological disorders. This complexity is 
further exacerbated by disrupted circuits within and between cell populations across brain regions and the periphery, which 
occur at different timescales and in spatial domains.
Methods  We profiled three tissues (hippocampus, frontal cortex, and blood leukocytes) at the acute (24-h) and subacute 
(7-day) phases of mTBI at single-cell resolution.
Results  We demonstrated that the coordinated gene expression patterns across cell types were disrupted and re-organized 
by TBI at different timescales with distinct regional and cellular patterns. Gene expression-based network modeling implied 
astrocytes as a key regulator of the cell–cell coordination following mTBI in both hippocampus and frontal cortex across 
timepoints, and mt-Rnr2, which encodes the mitochondrial peptide humanin, as a potential target for intervention based on 
its broad regional and dynamic dysregulation following mTBI. Treatment of a murine mTBI model with humanin reversed 
cognitive impairment caused by mTBI through the restoration of metabolic pathways within astrocytes.
Conclusions  Our results offer a systems-level understanding of the dynamic and spatial regulation of gene programs by 
mTBI and pinpoint key target genes, pathways, and cell circuits that are amenable to therapeutics.
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Abbreviations
AD	� Alzheimer’s disease
ALS	� Amyotrophic lateral sclerosis
CCA​	� Canonical correlation analysis
DGEs	� Digital expression gene matrices
FPI	� Fluid percussion injury
HN	� Humanin
kBET	� K-nearest-neighbor batch-effect test
MS	� Multiple sclerosis
mTBI	� Mild traumatic brain injury
NAA	� N-acetylaspartate
NAAG​	� N-acetylaspartyl-glutamate
PTSD	� Posttraumatic stress disorder
RBCs	� Red blood cells
scRNAseq	� Single-cell RNA sequencing
STAMPs	� Single-cell transcriptomes attached to 

microparticles
UMAP	� Uniform manifold approximation and 

projection

Background

Mild traumatic brain injury (mTBI) or concussive injury 
comprises over 90% of the brain injuries in the United States 
and can lead to deficits in neuronal function and cognitive 
abilities that can persist for years after the initial incident 
[1–3]. Neurons that survive the injury exhibit a decline in 
function [4, 5], and many patients become vulnerable to a 
large number of neuropsychiatric and cognitive disorders [2, 
3] such as Alzheimer’s disease (AD), posttraumatic stress 
disorder (PTSD), epilepsy, and anxiety [6–9].

The broad spectrum of clinical symptoms and behavio-
ral manifestations of mTBI reflects a highly complex brain 
pathophysiology that evolves over time across the complex 
cytoarchitecture of brain regions. Failure in cognitive pro-
cessing post-TBI has been associated with dysfunctions 
of the hippocampus [1, 10] and the cerebral frontal cortex 
[2]. The hippocampal formation is the main locus for cog-
nitive processing involving learning and memory, which 
are associated with cognitive disorders such as AD and 
PTSD. The frontal cortex is critical for problem solving, 

memory, judgment, and impulse control, and is implicated 
in the pathophysiology of major depression, PTSD, and 
schizophrenia. In addition to the central nervous system, 
the systemic immune system plays an important role in the 
response to acute and subacute injury and can serve as a 
clinically relevant source of prognostic and diagnostic bio-
markers. In addition to spatial heterogeneity, mTBI also 
exhibits distinct pathological features at acute, subacute, and 
chronic stages [11, 12]. To date, the regulatory mechanisms 
underlying these spatiotemporal changes in mTBI pathology 
remain unclear, especially at the level of the cell.

We previously used single-cell RNA sequencing (scR-
NAseq) [13] to dissect the complex pathophysiology under-
lying mTBI in the heterogenous hippocampus tissue using 
a mild fluid percussion injury (FPI) mouse model [14]. We 
were able to prioritize the hippocampal cell types most vul-
nerable to mTBI at the acute phase. Here, we aim to under-
stand the spatiotemporal dynamics of TBI across two brain 
regions (hippocampus, frontal cortex) as a function of post-
TBI time. In addition, we analyzed individual immune cells 
in peripheral blood to elucidate systemic immune system 
response to TBI and to identify peripheral biomarkers.

This study represents the first multi-tissue, multi-time-
point systems-level investigation of the mTBI pathophysi-
ology at single-cell resolution (Fig. 1a). Our findings offer 
unparalleled insights into the spatiotemporal pathophysi-
ology of mTBI by answering the following longstanding 
questions, such as: Which cell types, genes, and pathways 
are most sensitive to mTBI in a spatial- or temporal-spe-
cific manner? How do cells relate to each other to coor-
dinate a response to mTBI at different stages in different 
brain regions? Which cell types in specific brain regions 
are involved in behaviors associated with psychiatric and 
neurological disorders? Could the spatiotemporal patterns 
of single-cell gene regulation guide target prioritization 
and mTBI therapy? Could the peripheral blood inform on 
pathology in brain tissues and help identify diagnostic and 
prognostic biomarkers? Our studies offer critical answers for 
these questions. To address the therapeutic relevance of the 
results, we prioritized mt-Rnr2, a gene encoding the mito-
chondrial peptide humanin, as a key target for intervention. 
Humanin treatment improved cognitive ability following 
mTBI by restoring metabolic pathways in key cell popula-
tions such as astrocytes.

Results

Overall study design

As depicted in Fig. 1a, we conducted scRNAseq on the cen-
tral nervous system (hippocampus and frontal cortex) and 
circulation (peripheral blood leukocytes) from mice with or 

Fig. 1   Overall study design and scRNAseq cell clusters and gene 
markers. a Overall study design. b–d Expression of cell markers for 
each cell type in peripheral blood (b), frontal cortex (c), and hip-
pocampus (d). e–h UMAP embeddings of 78,895 cells according 
to cell types (e), tissues (f; frontal cortex, hippocampus, and periph-
eral blood), timepoints (g; 24-h vs 7-day), and conditions (h; TBI vs 
sham control). Each point represents a single cell. Cells are clustered 
based on transcriptome similarity using Louvain clustering and cell 
types are identified using canonical markers and labeled on the plot. 
Within each tissue and timepoint, there are n = 3 animals per group. 
HN: Humanin
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without TBI treatment at acute (24-h) and subacute (7-day) 
phases. Sensitive cell types and differentially expressed 
genes (DEGs) within each cell type were identified, and cel-
lular communications were derived based on ligand–recep-
tor co-expression analysis. To connect the mouse genes 
with human diseases, enrichment of human GWAS signals 
of neurological diseases among cell-type-specific DEGs 
affected by TBI was assessed. We further prioritized the 
mitochondrial gene mt-Rnr2, encoding humanin, as a broad 
target of TBI across cell types, tissues, and time points, and 
tested the potential of humanin to improve TBI cognitive 
outcome and molecular and cellular pathways.

Unbiased identification of cell identities 
across tissues and timepoints

We sequenced a total of 78,895 single cells which passed 
quality control from blood, hippocampus, and frontal cortex 
at two time points (Supplementary Table 1). A single-cell 
digital gene expression matrix was generated using a Snake-
make [15] workflow of Drop-seq Tools [13] and dropEst 
[16]. Cells were projected onto two dimensions with uni-
form manifold approximation and projection (UMAP) [17] 
and Louvain [18] clustering was used to define cell clus-
ters (“Materials and methods”). Based on the assessment 
of sequencing depth per cell-type cluster (Supplementary 
Fig. 1a, b), overall library sequencing depth (Supplementary 
Fig. 2), batch effect (Supplementary Fig. 3), and the cluster-
ing of individual samples (Supplementary Fig. 4), we saw no 
evidence of technical or batch contribution to cell clusters.

We used canonical correlation analysis (CCA) [19] 
(“Materials and methods”) to identify cell-type marker 
genes which were consistent across the different timepoints 
or conditions. After each tissue was aligned using CCA, cell 
cluster identities were determined using previously defined 
cell-type marker genes (Supplementary Table 2) from lit-
erature as well as from single-cell transcriptome references 
based on hippocampus cells and frontal cortex cells from the 
DropViz mouse brain atlas [20] (“Materials and methods”). 
We determined the cell-type identities for all cell clusters 
of the three tissues using known marker genes for 8 blood 

leukocytes clusters (Fig. 1b; Supplementary Figs. 5, 6), 
13 frontal cortex clusters (Fig. 1c; Supplementary Figs. 7, 
8), and 17 hippocampal clusters (Fig. 1d; Supplementary 
Figs. 9, 10). Further subclustering of neuronal populations 
in hippocampus and frontal cortex revealed 7 and 13 neu-
ronal subtypes, respectively (Supplementary Figs. 11–14). 
In addition to canonical marker genes, we also identified 
additional highly expressed marker genes for each cell type 
in each tissue using our dataset (Supplementary Table 3) 
(details in “Materials and methods”). The 24 distinct cell 
clusters (Fig. 1e) showed observable gene expression differ-
ences among the three tissue types (Fig. 1f), between the two 
time points (Fig. 1g), and between TBI and sham controls 
(Fig. 1h).

Quantification of dynamic and regional shifts in cell 
types in response to mTBI

Visual inspection of the UMAP two-dimensional embed-
dings of single-cell transcriptomes from mTBI and sham 
control animals revealed striking differences in their gene 
programs in each tissue at each timepoint (Fig. 2a). To quan-
tify the transcriptomic shifts, we applied three approaches, 
namely Euclidean distance, subset DEG count, and a sup-
port vector machine (SVM)-based classifier to identify top 
ranked cell types sensitive to mTBI based on the average 
rank across all three methods with equal weight for each 
method (Table 1; Supplementary Table 4).

The first method used Euclidean distance to measure the 
global transcriptomic shift due to mTBI [14], where the 
rank was determined by the distance in gene expression 
profiles between TBI and sham control cells for each cell 
type within each tissue and timepoint with a bigger distance 
indicating a higher rank (“Materials and methods”). This 
analysis revealed a general stronger cellular response at 24 h 
compared to 7 days, particularly in leukocyte populations 
(Fig. 2b).

The second method quantified the number of statistically 
significant DEGs between sham control and TBI cells for 
each cell type using subsampled cells with equivalent num-
ber of cells across cell types under the assumption that cell 
types which are more perturbed by mTBI will have more 
DEGs. The rank is based on the number of DEGs for each 
cell type within each tissue and timepoint with a greater 
number of DEGs resulting in a higher rank. We calculated 
DEGs on subsampled cell clusters (Supplementary Table 5; 
Supplementary Fig. 15a, b) to give all cell types equivalent 
cell number and hence statistical power.

The final method used was a SVM-based classifier, 
a machine learning-based method [21] (Supplementary 
Fig. 15c, d), based on the premise that cell types with large 
differences in their transcriptomes between conditions will 
achieve high classification accuracy for the conditions. The 

Fig. 2   Transcriptomic shifts due to mTBI across cell types in the 
peripheral blood, frontal cortex, and hippocampus at 24-h and 7-day 
post-TBI. a Difference in the transcriptomes of cells in UMAP for 
each tissue, timepoint, and mTBI condition, with cells from TBI ani-
mals in red and cells from sham control animals in blue. b Euclidean 
distance between TBI and sham control cells within each cell type for 
each tissue and timepoint. The log fold change (logFC) between the 
empirical distance and null distribution for each cell type which quan-
tifies the global transcriptome shift is indicated on the y-axis. Each 
point is colored by timepoint and the size of each point relates to the 
adjusted p-value. Gray points do not achieve statistical significance 
whereas colored dots reach adjusted p-value < 0.05
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rank was determined by the median classification accuracy 
of identifying if a cell came from a TBI or a control sample 
across 1000 bootstraps for each cell type within each tissue 
and timepoint.

Given that each method possesses inherent strengths and 
weaknesses, we considered the consistency across all the 
methods to rank top sensitive cell types (Table 1; Supple-
mentary Table 4). In peripheral blood, CD8+ T cells and 
Ly6c+ monocytes were among the top sensitive cell types 
in both acute and subacute phases (Table 1). Ly6c+ mono-
cytes are known to increase in number following TBI [22] 
and CD8+ T cells are known to infiltrate the brain follow-
ing injury [23]. Our results point to the timepoints at which 
these cell types demonstrate major transcriptional shifts. 
CD4+ T cells demonstrated specificity to the 24-h timepoint, 
which aligns with immunosuppression at the acute phase 
following mTBI, which specifically affects CD4+ T cells 
[24] (Table 1). B cells demonstrated temporal specificity 
to the 7-day post-TBI timepoint (Table 1). Notably, B cells 
are poorly studied with respect to mTBI and may serve as a 
candidate for future study of the subacute phase.

In the CNS, astrocytes were the top ranked cell type 
to demonstrate global transcriptional sensitivity in both 
the hippocampus and frontal cortex at both the acute and 
subacute phases, highlighting its central role in mTBI 
(Table 1). Endothelial cells showed transcriptomic altera-
tions across both timepoints specifically in the frontal 
cortex. The hippocampus experienced a strong immediate 

immune response with large transcriptomic changes in the 
microglia and activated microglia in the acute phase. In 
contrast, the frontal cortex had a more delayed immune 
response from activated microglia at 7-day post-TBI 
(Table 1). Within the frontal cortex, layer 2/3 neurons 
were sensitive at the acute phase of mTBI, agreeing with 
neuronal hypoexcitation at this timepoint [25]. Oligo-
dendrocytes and choroid plexus epithelial cells both had 
strong transcriptomic alterations that were specific to the 
subacute phase in the hippocampus. Both cell types can 
facilitate the repair process where oligodendrocytes can 
repair myelin on damaged axons [26] and choroid plexus 
epithelial cells release growth factors [27] and recruit 
immune cells [28].

Across tissues and timepoints, our cellular sensitiv-
ity analyses based on multiple complementary methods 
revealed that astrocytes and activated microglia were con-
sistently perturbed across brain regions and timepoints, 
whereas monocytes, T cells, B cells, neurons, endothelial 
cells, oligodendrocytes, and choroid plexus epithelia cells 
were sensitive to mTBI with spatiotemporal specificity and 
dynamics.

It is important to note that all three methods were 
designed based on the hypothesis that more sensitive 
cell types to TBI will demonstrate more transcriptomic 
changes. In cases where cell sensitivity is reflected 
by other molecular or cellular features such as protein 

Table 1   Consensus ranks of 
transcriptome perturbation 
across three different analytical 
metrics

Ranks are calculated within tissue and timepoint. Top 3 cell types are displayed for each tissue and time-
point
ED: Euclidean distance; SVM: support vector machine; DEG: differentially expressed genes

Tissue Time Cell type ED SVM Subset DEG Avg rank

Blood 24-h CD8+ T cells 3 1 1 1.67
Blood 24-h CD4+ T cells 2 5 1 2.67
Blood 24-h Ly6c+ monocytes 5 3 3 3.67
Blood 7-day CD8+ T cells 4 1 1 2.00
Blood 7-day Ly6c+ monocytes 3 2 3 2.67
Blood 7-day B cells 1 3 5 3.00
Frontal cortex 24-h Astrocytes 1 2 1 1.33
Frontal cortex 24-h Layer 2/3 neurons 8 1 2 3.67
Frontal cortex 24-h Endothelial 2 6 4 4.00
Frontal cortex 7-day Endothelial 2 7 5 4.67
Frontal cortex 7-day Astrocytes 1 8 5 4.67
Frontal cortex 7-day Activated microglia 3 11 2 5.33
Hippocampus 24-h Astrocytes 1 1 1 1.00
Hippocampus 24-h Activated microglia 2 4 2 2.67
Hippocampus 24-h Microglia 5 5 3 4.33
Hippocampus 7-day Oligodendrocytes 1 1 5 2.33
Hippocampus 7-day Astrocytes 4 2 2 2.67
Hippocampus 7-day Choroid plexus epithelial 6 5 2 4.33
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expression or morphological changes, these methods will 
miss those cell types.

mTBI alters cell–cell ligand–receptor co‑expression 
with regional and dynamic specificity

To investigate how mTBI influences the coordinated gene 
expression between cell types, we used the ligand–recep-
tor-based method CellPhoneDB [29] to infer cell–cell gene 
expression coordination (Fig. 3a). We found a consistent 
increase in coordinated gene expression patterns across 
cell types at the acute phase of mTBI across the peripheral 
blood (Fig. 3b), hippocampus (Fig. 3c), and frontal cortex 
(Fig. 3d), which mostly subsided at the 7-day phase.

Astrocytes were found at the center of the increased coor-
dinated gene expression patterns across cell types, especially 
at the acute phase post-TBI in both the hippocampus and 
frontal cortex (Fig. 3c, d). This is consistent with the high 
global transcriptional sensitivity of astrocytes across tissues 
as revealed in the cell sensitivity analysis above (Table 1). 
There was tight coordination across astrocytes, neuronal 
populations, and oligodendrocytes at the acute phase post-
TBI in both the hippocampus and the frontal cortex. Axonal 
injury and demyelination are hallmarks of TBI which require 
oligodendrocytes for repair with signs of myelination known 
to begin as early as 6 h post-TBI [30]. Additionally, vascu-
lar populations, including endothelial cells, pericytes, and 
smooth muscle cells, were tightly coordinated in the frontal 
cortex at the acute phase (Fig. 3c, d), whereas the coordina-
tion of vascular populations in the hippocampus occurred at 
the subacute phase, which potentially indicates differential 
timing of vascular remodeling between brain regions.

Across the brain and periphery, at the acute phase, we 
observed an increase in coordinated immune cell gene 
expression patterns across many blood leukocyte cell types 
(Fig. 3b) as well as between activated microglia and mac-
rophages in the hippocampus (Fig. 3c) and frontal cortex 
(Fig. 3d). The immune cell coordination was sustained in 
peripheral blood at the subacute phase (Fig. 3b) but not in 
the CNS (Fig. 3c, d).

These results uniquely highlight divergent cellular coor-
dination between brain regions and between the CNS and 
periphery immunity in response to mTBI pathophysiology.

Dynamic and regional alterations in genes 
and pathways in mTBI

To determine the specific genes and pathways that may 
contribute to mTBI pathogenesis in a regional or dynamic 
fashion, we identified DEGs in individual cell types (Supple-
mentary Table 6) and annotated them with curated biologi-
cal pathways (Supplementary Table 7). The immune cells 
had large numbers of DEGs in the acute phase in peripheral 

blood (Fig. 4a). In both brain regions, activated microglia, 
astrocyte, and endothelial cells also had more DEGs in acute 
phase (Fig. 4b, c). Microglia, Nrip3+ interneurons and cells 
expressing neurogenesis markers had higher number of 
DEGs at 7-day post-TBI in frontal cortex (Fig. 4b).

The enrichment of numerous pathways among the DEGs 
in various cell types allowed us to identify both consist-
ent and unique pathways with spatiotemporal specificity 
(Fig. 4d; Supplementary Table 7). In the acute phase fol-
lowing mTBI, the apoptosis pathway was one of the consist-
ently enriched pathways among DEGs in glial cells across 
the hippocampus and frontal cortex in addition to several 
immune cell types in the peripheral blood. The mTOR sign-
aling pathway was also enriched among DEGs in many cell 
types across the hippocampus and frontal cortex, which is 
consistent with the role of mTOR signaling in metabolism, 
growth, proliferation, and survival [31]. There was also an 
enrichment of immune response pathways in macrophages, 
microglia, and activated microglia in the hippocampus and 
frontal cortex as well as in many cell types in the peripheral 
blood. In the subacute phase, the immune response path-
ways were no longer enriched in cell types in the peripheral 
blood and the frontal cortex, but remained enriched in the 
microglia populations in the hippocampus. Across both the 
acute and subacute phases, decreased expression of genes 
from Layer 2/3 neurons in the frontal cortex were enriched 
for long-term potentiation and neurotransmission.

We also identified pathways that showed both regional 
and dynamic specificity. Our results showed downregula-
tion of genes involved in oxidative phosphorylation and the 
electron transport chain across many cell types in the hip-
pocampus in the acute phase, supporting the hippocampus as 
the main site for the known metabolic suppression of acute 
mTBI. In the subacute phase, however, there was an increase 
in oxidative phosphorylation and the electron transport chain 
gene expression in hippocampal microglia, smooth muscle 
cells, and dentate gyrus granule cells, demonstrating the 
dynamic shift in hippocampal cell metabolism between 
mTBI stages. In the frontal cortex, the hypoxia pathway was 
enriched in primarily glial cells and vascular cells in the 
acute phase following mTBI.

The pathways along with their specific cell type, tissue, 
and injury time context revealed by our analysis portrait the 
complex and dynamic molecular processes underlying mTBI 
pathogenesis.

Enrichment of human neurological disease genes 
among DEGs altered in cell types following mTBI

To assess the association of the cell-type-specific DEGs 
for each timepoint and tissue with human diseases, we 
intersected the DEGs with full summary statistics of 
human GWAS for 4 neurological diseases, including AD, 
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Fig. 3   Alterations in ligand–
receptor-mediated cell–cell 
communication in mTBI in 
individual tissues and time-
points. a Schematic diagram 
of CellPhoneDB which was 
applied to our single-cell data 
to infer significant ligand–
receptor interactions between 
pairs of cells within the same 
tissue. Each plot is split into 
four panels which denote the 
timepoint (24-h or 7-day post-
TBI) and the condition (sham 
control or TBI). The rows and 
columns indicate the interact-
ing cell types determined by 
the number of ligand–receptor 
pairs between cell types. The 
color of each tile denotes the 
number of significant interac-
tions between the two cell types 
under the assumption that cell 
types which are communicating 
more will have a larger number 
of ligand–receptor interactions. 
This method was applied to 
single-cell data from: b periph-
eral blood, c hippocampus, and 
d frontal cortex. The cell types 
mentioned in the main text were 
highlighted with red rectangles

a

c

d

b
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amyotrophic lateral sclerosis (ALS), epilepsy, and multi-
ple sclerosis (MS), which have been associated with TBI 
[32–35] (“Materials and methods”). We found significant 
enrichment of DEGs for GWAS association with neuro-
logical diseases, but cellular and gene specificity of disease 
association differed between tissues and timepoints (Fig. 4e).

Astrocytes have been associated with neurodegenerative 
diseases [36–38]. Our study provides molecular support for 
these associations by demonstrating that astrocyte DEGs 
were strongly enriched for GWAS associations with neu-
rological diseases across timepoints and tissues (Fig. 4e). 
For instance, in the acute phase, hippocampal astrocyte 
DEGs showed enrichment for ALS GWAS signals, whereas 
astrocyte DEGs in the frontal cortex showed enrichment for 
AD, epilepsy, and MS. At the 7-day timepoint, hippocampal 
astrocyte DEGs were enriched for genetic signals of MS, 
AD, and epilepsy.

Ventral CA1 pyramidal neuron DEGs in the hippocampus 
show an enrichment for ALS and AD GWAS signals in the 
subacute phase but no enrichment in the acute phase. Like-
wise, layer 2/3 neuron DEGs in the subacute phase in the 
frontal cortex had a specific enrichment for ALS associated 
genetic signals. B-cell DEGs in the peripheral blood had 
consistent enrichment across timepoints for genetic signals 
associated with ALS and AD. The role of B cells in AD 
has been extensively investigated [39, 40], and depletion of 
B cells showed promise in the reversal of AD progression 
[41]. However, the association of B cells with ALS has not 
been established, which could be investigated in the future.

These results suggest that tissue- and injury stage-spe-
cific gene alterations in vulnerable cell types to mTBI may 
contribute to development of neurological diseases and 
future experimental testing is necessary to confirm disease 
causality.

Cell‑type‑specific DEGs

Interrogating cell-type-specific genes perturbed by mTBI 
can reveal fine dysregulation of microcircuits which can be 
leveraged for cell-type-specific therapeutic interventions. 
There are many cell-type-specific DEGs with unique or con-
sistent spatiotemporal specificity (Fig. 5a). Many of these 
genes have been implicated in the pathophysiology of TBI 
and related disorders or affect pathways integral to TBI.

We replicated a number of previously reported cell-
type-specific DEGs, including Tnf and Il1b upregulation in 
microglia [42, 43] and Ctla2a and Adamts9 upregulation in 
vascular cells in both the frontal cortex and hippocampus in 
the acute phase [44]. We also found a greater fold change in 
Gfap expression in the frontal cortex compared to the hip-
pocampus in the acute phase as the frontal cortex is closer 
to the injury location in our experiments, which is consist-
ent with the reported Gfap increase relative to severity and 

proximity to the injury [45]. Increased expression of Il33 
in oligodendrocytes [46] and increased expression of Ly86 
in microglia [47] 24-h post-TBI were also consistent with 
previous reports and observed in both the frontal cortex and 
hippocampus.

Novel cell-type-specific DEGs identified from our study 
include Etnpll, which has been previously linked to schizo-
phrenia and bipolar disorder [48] and was found downregu-
lated in astrocytes across both brain regions and timepoints 
in our study. In the acute phase, downregulation of Gpr88, 
which is implicated in spatial learning and anxiety [49, 50], 
was specific to Nrip3+ interneurons in the frontal cortex; 
Tfrc, which modulates ferroptosis sensitivity [51]—a mecha-
nism of cell death, was downregulated in endothelial cells 
in the hippocampus and frontal cortex; Mrps6, which was 
specifically upregulated in astrocytes in both the cortex and 
the hippocampus, has been linked to PD [52]. In the suba-
cute phase, Timp3, which aids in neuroprotection [53], was 
downregulated in endothelial cells in the frontal cortex and 
hippocampus. Ncan, which suppresses axonal regeneration 
after neural injury [54], was upregulated in astrocytes in 
the frontal cortex at 24-h post-TBI but at 7-day post-TBI in 
astrocytes in the hippocampus, thereby suggesting different 
regional timelines for changes in axonal regeneration.

Robust mTBI DEGs across spatiotemporal domains

In addition to the above cell-type-specific DEGs, we also 
identified DEGs altered across cell types, tissues and time-
points. These DEGs may underlie the broad symptomology 
of mTBI due to their ultra-sensitivity to mTBI across spa-
tiotemporal domains, and may serve as biomarkers that can 
link mTBI brain pathology with peripheral blood cells.

In our previous study, we identified Ttr as a gene which 
was differentially upregulated in a majority of cell types in 
the hippocampus at 24 h. This guided our selection of T4 
thyroid hormone to test as a protective agent against the 
cognitive consequences post-TBI [14]. The pan-hippocampal 
upregulation of Ttr post-TBI in the acute phase was con-
firmed with this independent dataset (Fig. 5b). By expand-
ing the tissues and timepoints in the current study, we were 
able to reveal that Ttr regulation across cell types persisted 
from 24-h to 7-day post-TBI, which represents a new finding 
from the current study. The hippocampal specificity of Ttr, 
a main transporter of the T4 thyroid hormone in the brain, 
is consistent with the regional specificity of the metabolic 
pathway depression (oxidative phosphorylation and electron 
transport chain) to the hippocampus (Fig. 4d).

In addition to Ttr, we identified numerous additional con-
sistent DEGs across cell types including Rimklb, Malat1, mt-
Cytb, mt-Rnr1, and mt-Rnr2 (Fig. 5b). Rimklb, which encodes 
a glutamate ligase, was decreased in cell types in the hip-
pocampus and frontal cortex only in the acute phase. Rimklb 
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couples glutamate to the acceptor molecule N-acetylaspartate 
(NAA) which directly controls the availability of N-acetylas-
partyl-glutamate (NAAG) [55, 56], the most prevalent neu-
roactive peptide in the mammalian CNS. This decrease of 
Rimklb, potentially limiting NAAG, offers molecular support 
for the suppression of neurotransmission observed across the 
hippocampus and frontal cortex at the acute phase post-TBI. 
Malat1, which encodes a lncRNA showing potential of neu-
ral repair [57, 58], was consistently upregulated across all 
tissues in the acute phase and, interestingly, downregulated 
across both brain regions in the subacute phase, demonstrat-
ing dynamic temporal specificity. Gene mt-Cytb, part of the 
electron transport chain, was downregulated in the acute and 
subacute timepoints in the hippocampus. Gene mt-Rnr2 was 
upregulated in six or more cell types in each of the tissues 
profiled in the acute phase post-TBI, but downregulated mainly 
across the hippocampus cell types in the subacute phase. mt-
Rnr2 encodes the mitochondrial peptide humanin, which has 
diverse intracellular and extracellular functions and plays an 
important role in neuroprotection and metabolism [59–69]. 
These genes represent potential novel targets of the mTBI 
pathophysiology due to their broad and dynamic alterations 
across many cell types. Additionally, the consistent expres-
sion changes of several of these genes in peripheral blood 
cells point to the possibility of using these genes as biomark-
ers of mTBI for the acute (upregulation of mt-Rnr2, mt-Rnr1, 
Malat1) or subacute phase (downregulation of mt-Cytb).

Since multiple mitochondrial genes were among DEGs, 
we further investigated whether mitochondria content, an 
indicator of scRNAseq quality, affected the results. All 
cells passing our quality control had mitochondrial gene 
content < 15%, and one third of the mitochondrial genes 
were DEGs in one or more cell types but showed different 
spatial, temporal, and directional changes (Supplementary 
Table 6). Therefore, our findings on mitochondrial genes in 
our DEGs are most likely not due to mitochondria content 
or scRNAseq quality issues.

Targeting mt‑Rnr2 with humanin treatment 
reversed cognitive impairment

To experimentally validate the functional role of the genes 
demonstrating broad spatiotemporal alterations in mTBI, 
we focused on mt-Rnr2. We postulate that humanin modu-
lates the metabolic crisis in the acute phase and protect from 
neuronal death in the subacute phase following mTBI. To 
test this hypothesis, we introduced humanin post-TBI and 
evaluated cognitive behaviors as determined with a Barnes 
Maze test, followed by scRNAseq analysis to understand the 
molecular mechanisms (Fig. 6a). Acute intraperitoneal injec-
tion of humanin post-mTBI prevented learning and memory 
impairment at one-week post-mTBI (Fig. 6b).

To tease apart the underlying mechanisms, we conducted 
scRNAseq on the frontal cortex and hippocampus of TBI 
mice with and without humanin treatment (Supplementary 
Fig. 16). We found that humanin treatment reversed the 
expression of hundreds of DEGs (Supplementary Table 8) 
and pathways (Fig. 6c, d; Supplementary Table 9) induced 
by mTBI across many cell types in both the hippocampus 
and frontal cortex at 24-h post-mTBI.

In the hippocampus, humanin treatment reversed the met-
abolic depression (Fig. 6c) observed in astrocytes, oligoden-
drocyte populations, endothelial cells, and smooth muscle 
cells under mTBI (Fig. 4d). Astrocytes, known for their role 
in metabolic support of neurons, showed a strong upregu-
lation in genes in the oxidative phosphorylation pathway 
after humanin treatment compared to TBI animals (Fig. 6e). 
Humanin also increased the expression of genes involved in 
neurotransmission in layer 2/3 supragranular cortical neu-
rons in the frontal cortex as well as in multiple neuronal 
populations in the hippocampus and mitigated the disruption 
of the vascular system which can lead to secondary injury in 
the frontal cortex (Fig. 6c, d).

We also further validated select DEGs in oligodendro-
cytes of cortex using RNAscope. We found the mt-Rnr1 
and mt-Rnr2 expression levels were enhanced in response to 
TBI injury, but were normalized by humanin treatment. The 
expression of another mitochondrial gene mt-Cytb, which 
showed decreased expression in numerous hippocampal and 
blood cell types post-TBI, was elevated by humanin treat-
ment (Fig. 7).

Overall, the phenotypic and molecular reversals by huma-
nin treatment support that humanin is a regulator that cor-
rects diverse processes in numerous cell types involved in 
mTBI.

Fig. 4   Differentially expressed genes (DEGs) and pathways induced 
by mTBI across tissues and timepoints and relevance of DEGs to 
human neurological disorders. a–c The comparison of DEG num-
ber in each cell type induced by TBI between two timepoints for 
peripheral blood (a), frontal cortex (b), and hippocampus (c). d Top 
enriched pathways induced by mTBI for each tissue and timepoint 
combination. Each dot is colored by the average log fold change 
between TBI vs sham control cells within that cell type for significant 
DEGs which overlap the indicated pathway. The size of each dot is 
proportional to the −log10(FDR). Cell types and pathways have been 
clustered with hierarchical clustering. e Enrichment of human disease 
GWAS genes in cell-type DEG gene sets across three tissues and two 
timepoints as assessed by MSEA in Mergeomics. Color corresponds 
to −log10(FDR) of the enrichment
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Discussion

In this first systems-level investigation of individual cell 
types across three tissues and two timepoints using high-
throughput scRNAseq, we determined differential cellular 
and molecular sensitivity to mTBI and revealed comprehen-
sive and novel molecular insights into the spatiotemporal 
gene regulation of mTBI response and their connections to 
pathophysiological consequences. The specific cell types, 
pathways, and cell–cell interactions that are affected across 
different tissues and timepoints with varying spatiotemporal 
sensitivity provide a comprehensive cellular map for prior-
itizing the most vulnerable cell types, genes, and pathways 
for intervention at the right time point, tissue site, and cell 
types.

In hippocampus, previous studies have mainly noted met-
abolic depression as a known consequence of TBI [70–73]. 
Instead, we found cellular and temporal specificity in hip-
pocampus with respect to metabolic regulation. We observed 
downregulation of genes involved in oxidative phosphoryla-
tion and the electron transport chain in astrocytes, oligoden-
drocytes, vascular cells, and interneurons in the acute phase, 
but a boost in metabolic pathways in dentate gyrus granule 
cells, smooth muscle cells, and microglia in the subacute 
phase. The temporal specificity of metabolic regulation in 
specific cell types at specific timepoints supports the need 
for precision targeting of hippocampal cellular metabolism 
in mTBI.

In the frontal cortex, we observed regional specificity 
with respect to endothelial cells, which had large alterations 
in their global transcriptomic profiles in both the acute and 
subacute phases and demonstrated tight gene to gene tran-
scriptional coordination in the acute phase post-TBI. Injuries 
to the microvasculature can lead to neurodegenerative dis-
ease [74], making this an attractive target for future thera-
peutic interventions. In addition, the hypoxia pathway also 
exhibited a regional specificity to the cortex across many 

cell types in the acute phase following mTBI. It has been 
previously shown that the frontal lobe is particularly sen-
sitive to hypoxia in the acute phase following mTBI [75, 
76], making this an important tissue and timepoint to target 
for intervention to mitigate hypoxia-related consequences 
of mTBI. However, it is important to consider that changes 
in pathways like hypoxia may promote pathology or confer 
neuroprotection [77–81]. Therefore, it is important to tease 
apart protective versus deleterious effects for the implicated 
pathways.

Across brain sites and injury stages, we identify astro-
cytes as a key cell type to the mTBI pathology. Astrocytes 
are known to play an important role in the acute and chronic 
responses to mTBI and the resulting changes in gene expres-
sion, morphology, proliferation and function are known as 
astrogliosis [45, 82, 83]. The diverse functions of astro-
cytes are central to the mTBI pathogenesis and explain why 
astrocytes have such massive global transcriptional changes 
across regions and timepoints. Our cell–cell coordination 
analysis based on ligand–peptide gene coregulation also pro-
vided evidence supporting astrocytes as key regulators of the 
other cell types and processes. In particular, astrocytes are 
highly connected to cell types such as neurons, especially in 
the acute phase in the frontal cortex and the hippocampus. 
These neuronal populations may be particularly vulnerable 
to metabolic depression and astrocytes may serve to stabilize 
or inhibit neuronal circuit function following mTBI.

In the peripheral blood, CD8+ T cells and Ly6c+ mono-
cytes were found to be sensitive to mTBI in both acute and 
subacute phases, whereas CD4+ T cells showed specificity 
to the acute phase and B cells showed specificity to the suba-
cute phase. Immune response pathways were also found to 
be significantly altered in immune cells in the acute phase 
of TBI. The strong transcriptional perturbations in periph-
eral immune cells support adaptive immune activation to the 
CNS injury signals. In contrast to previous reports on the 
lack of effect of TBI on B-cell biology [84–86], our study 
found that B cells displayed perturbations at 7-day post-TBI. 
B cells may play a role in neuronal function recovery post-
TBI, as previously observed in stroke induced brain injury 
[87].

Comparison of DEGs across tissues, cell types, and time 
points also revealed numerous cell-type-specific and cell-
type-independent genes responsive to mTBI. Examples of 
cell-type-specific DEGs include endothelial-specific Tfrc at 
the acute phase and Timp3 at the subacute timepoint, and 
astrocyte-specific Ncan in the acute phase in hippocampus 
and in the subacute phase in frontal cortex. Tfrc is known to 
be highly expressed in brain endothelial cells and respon-
sible for ion homeostasis maintenance [88, 89], while 
increased Timp3 expression in cerebral vessels is associ-
ated with amyloid angiopathy [53, 90–92]. Ncan encodes 
neurocan, which is produced by astrocytes and may interfere 

Fig. 5   Top cell-type-specific and multi-cell-type DEGs. a The top 
DEGs which were significantly differentially expressed in a sin-
gle cell type within a particular tissue and timepoint. Each DEG is 
depicted in a separate column and cell types are indicated by rows. 
The left panel is from 24-h post-TBI and the right panel is from 7-day 
post-TBI. The color of each dot indicates the log (fold change) of 
the bene between TBI and sham control cells (red indicates higher 
in TBI; cyan indicates lower in TBI) within a particular cell type. 
The size of each dot corresponds to the −log10(adjusted p-value). 
b The top DEGs significantly differentially expressed in the most 
cell types across tissues and timepoints. Each row depicts a DEG. 
The genes which are significantly differentially expressed (adjusted 
p-value < 0.05) in specific cell types are indicated by a star. The color 
of each dot indicates the timepoint (24-h in red and 7-day in blue) 
at which the DEG was found and the size of the dot corresponds to 
the −log10(p-value). The y-axis is the log(fold change) of the gene 
between TBI and sham control cells within a particular cell type. Cell 
types are indicated on the x-axis
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with axonal regeneration after CNS injury [54, 93]. Exam-
ples of highly sensitive genes across cell types, tissues, and 
stages include mt-Rnr2, Malat1, and Rimklb. These genes 
serve as promising targets for future mechanistic studies. 

As a functional validation of mt-Rnr2, treatment of mTBI-
induced animals with an i.p. injection of humanin protected 
against learning and memory deficits and reversed numerous 
mTBI-perturbed pathways including metabolic depression, 
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Fig. 6   Experimental validation of humanin as a treatment target. 
a Schematic diagram of study design. b Bar plot of latency to nav-
igate the maze for sham control and TBI mice treated with vehicle 
and humanin. Learning was conducted for 4  days prior to injury/
surgery and memory was tested 7 days after injury/surgery. Statistics 
was computed using two-way ANOVA with Bonferroni correction 
for multiple comparison test. *p < 0.05, ns represents not significant, 
n = 6 per group. c, d Top enriched pathways of genes reversed by 
humanin treatment in hippocampus (c) and frontal cortex (d). Each 
point is colored by the average log(fold change) between cells from 
humanin-treated TBI animals and TBI cells within that cell type for 

significant DEGs which overlap the indicated pathway. The size of 
each dot corresponds to the −log10(FDR). Cell types and pathways 
have been clustered with hierarchical clustering. e Differentially 
expressed genes in the oxidative phosphorylation pathway in hip-
pocampal astrocytes at 24-h post-TBI. Genes within the pathway 
are on the x-axis and −log10(adjusted p-value) of the differentially 
expressed gene on the y-axis. The color of each dot indicates the fold 
change between the groups; positive fold change is in red and nega-
tive fold change is in blue. The top panel shows differential expres-
sion for TBI versus sham control cells and the bottom panel shows 
differential expression for humanin-treated TBI cells versus TBI cells
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specifically in astrocytes, which may allow the neurons to 
maintain normal function and thus protect learning and 
memory. Interestingly, alteration of mt-Rnr2 is also consist-
ent in blood leukocyte populations, making it a potential 
biomarker accessible in the peripheral blood.

mTBI is the most prevalent form of brain injury and is 
associated with severe downstream neurological conse-
quences. We found evidence supporting that genes and path-
ways in individual cell types, tissues, and timepoints sensi-
tive to mTBI are enriched for genetic association signals for 
neurological disorders associated with TBI including AD, 
MS, epilepsy, and ALS. Pathways such as metabolic depres-
sion, neurotransmission, blood vessel disruption and repair, 
and immune response and their specific cellular, tissue, and 
injury stage context likely underline the disease associations.

Conclusions

In summary, our single-cell resolution study across tissues 
and timepoints offers the first spatiotemporal cellular and 
molecular atlas of mTBI using a rodent model. The novel 
genes and pathways along with their cell type, tissue, and 
timepoint specificity warrant future functional studies to 
investigate their causal role in TBI pathology or protection. 
Our findings serve as the basis to prioritize cell types and 
gene targets for intervention to mitigate the broad down-
stream neurological consequences associated with TBI. 
We acknowledge that the rodent FPI model used represents 
a specific type of mTBI and future investigation of other 
injury models is warranted. We also acknowledge that it is 
critical to study both sexes. Due to the high cost of scR-
NAseq and the extensive coverage of tissues, timepoints, and 
biological replicates, we conducted our studies in males here 
and will examine females in future studies.

Materials and methods

Animals and mild fluid percussion injury (FPI)

Ten-week-old male C57BL/6J (B6) mice (Jackson Labo-
ratory, Bar Harbor, ME, USA) weighing between 20 and 
25 g were housed in cages (n = 3–4/group) and maintained 
in environmentally controlled rooms (22–24 °C) with a 
12 h light/dark cycle. Mice were randomized to receive 
either FPI or sham control surgeries, with no investigator 
blinding. Mice were anesthetized with 3% inhaled isoflu-
rane in an induction chamber and transferred to a nose 
cone connecting with 1.6% isoflurane for maintenance 
on a heating pad. FPI was performed with the aid of a 
microscope [94] (Wild, Heerburg, Switzerland), where a 
1.5 mm radius craniotomy was made 2.5 mm posterior to 

the bregma and 2.0 mm lateral (left) of the midline with 
a high-speed drill (Dremel, Racine, WI, USA). A plastic 
injury cap was placed over the craniotomy with silicone 
adhesive and dental cement. When the dental cement hard-
ened, the cap was filled with 0.9% saline solution. Anes-
thesia was discontinued, and the injury cap was attached to 
the fluid percussion device. At the first sign of hind-limb 
withdrawal to a paw pinch, a mild fluid percussion pulse 
(1.4–1.6 atm) was administered. We corroborated that the 
animals receive stable pressure, and we observed the apnea 
and the recovery of breath after the percussion. We also 
monitored the time from the impact until the animals wake 
up and spontaneously right from the supine position to 
the prone position which falls into the range of 4–8 min. 
Sham control animals underwent an identical preparation 
with the exception of the lesion. Immediately following 
response to a paw pinch, anesthesia was restored and the 
skull was sutured. Neomycin was applied on the suture 
and the mice were placed in a heated recovery chamber 
for approximately an hour before being returned to their 
cages. After 24 h or 7d, mice were sacrificed and fresh 
hippocampal and frontal cortex tissue was dissected for 
use in Drop-seq (n = 3/group with one animal per group 
per day; sample size was determined based on previous 
single-cell studies that demonstrated sufficient statistical 
power). All experiments were performed in accordance 
with the United States National Institutes of Health Guide 
for the Care and Use of Laboratory Animals and were 
approved by the University of California at Los Angeles 
Chancellor’s Animal Research Committee.

Tissue dissociation for Drop‑seq

The protocol by Brewer et al. [95] was used to suspend cells 
at a final concentration of 100 cells/μl in 0.01% BSA-PBS 
by digesting freshly dissected hippocampus and frontal cor-
tex tissue with papain (Worthington, Lakewood, NJ, USA). 
Briefly, hippocampi from the ipsilateral side of the brain 
and frontal cortices were rapidly dissected on ice. The hip-
pocampi and cortices were transferred into 4 ml HABG 
(Fisher Scientific, Hampton, NH, USA) and incubated in 
water bath at 30 °C for 8 min. The supernatant was discarded 
and the remaining tissue was incubated with papain (12 mg 
in 6 ml HA-Ca) at 30 °C for 30 min. After incubation, the 
papain solution was removed from the tissue and washed 
with HABG three times. Using a siliconized 9-in Pasteur 
pipette with a fire-polished tip, the solution was triturated 
approximately ten times in 45 s. Next, the cell suspension 
was carefully applied to the top of the prepared OptiPrep 
density gradient (Sigma Aldrich, St. Louis, MO, USA) and 
floated on top of the gradient. The gradient was then cen-
trifuged at 800g for 15 min at 22 °C. We aspirated the top 
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6 ml containing cellular debris. To dilute the gradient mate-
rial, we mixed the desired cell fractions with 5 ml HABG. 
The cell suspension containing the desired cell fractions was 
centrifuged for 3 min at 22 °C at 200g, and the superna-
tant containing the debris was discarded. Finally, the cell 
pellet was loosened by flicking the tube and the cells were 
re-suspended in 1 ml 0.01% BSA (in PBS). This final cell 
suspension solution was passed through a 40-micron strainer 
(Fisher Scientific, Hampton, NH, USA) to discard debris, 
followed by cell counting. Separation of choroid plexus from 
hippocampus is particularly challenging due to the proximity 
of these two regions. Hence, the hippocampus we dissected 
included choroid plexus.

Peripheral blood preparation for Drop‑seq

Retroorbital blood was collected in EDTA-treated collection 
tubes (BD Microtainer MAP Microtube, NJ, USA). Then 
the blood was mixed with ACK Lysing Buffer (Gibco, NY, 
USA) at the ratio of 1:20 for 3–5 min at room temperature 
to lyse red blood cells (RBCs). Leukocytes were separated 
by centrifugation at 300g for 5 min at room temperature. 
The supernatant was removed without touching the pellet. 
The pellet was re-suspended with cold PBS and centrifuged 
at 300g for 5 min at 4 °C. The final pellet was re-suspended 
in 0.01% BSA in PBS and filtered by a 40-micron strainer 
(Fisher Scientific, Hampton, NH, USA).

Drop‑seq single‑cell barcoding and library 
preparation

Barcoded single cells, or STAMPs (single-cell transcrip-
tomes attached to microparticles), and cDNA libraries were 
generated following the drop seq protocol from Macosko 
et al. [13]. and version 3.1 of the online Drop-seq protocol 

(http://​mccar​rolll​ab.​com/​downl​oad/​905/). Briefly, single-cell 
suspensions at 100 cells/μl, EvaGreen droplet generation oil 
(Bio-Rad, Hercules, CA, USA), and ChemGenes barcoded 
microparticles (ChemGenes, Wilmington, MA, USA) were 
co-flowed through a FlowJEM aquapel-treated Drop-seq 
microfluidic device (FlowJEM, Toronto, Canada) at rec-
ommended flow speeds (oil: 15,000 μl/h, cells: 4000 μl/h, 
and beads 4000 μl/h) to generate STAMPs. The following 
modifications were made to the online published protocol 
to obtain enough cDNA as quantified by a high sensitivity 
BioAnalyzer (Agilent, Santa Clara, CA, USA) to continue 
the protocol: (1) The number of beads in a single PCR tube 
was 4000. (2) The number of PCR cycles was 4 + 11 cycles. 
(3) Multiple PCR tubes were pooled. The libraries were then 
checked on a BioAnalyzer high sensitivity chip (Agilent, 
Santa Clara, CA, USA) for library quality, average size, and 
concentration estimation. The samples were then tagmented 
using the Nextera DNA Library Preparation kit (Illumina, 
San Diego, CA, USA) and multiplex indices were added. 
After another round of PCR, the samples were checked on a 
BioAnalyzer high sensitivity chip for library quality check 
before sequencing. A cell doublet rate of 5.6% was obtained 
by running the microfluidic device without the lysis buffer 
and counting the percentage of cell doublets through three 
separate runs.

Illumina high‑throughput sequencing of Drop‑seq 
libraries

The Drop-seq library molar concentration was quantified 
by Qubit Fluorometric Quantitation (ThermoFisher, Canoga 
Park, CA, USA) and library fragment length was estimated 
using a Bioanalyzer. Sequencing was performed on an Illu-
mina HiSeq 4000 (Illumina, San Diego, CA, USA) instru-
ment using the Drop-seq custom read 1B primer (GCC​TGT​
CCG​CGG​AAG​CAG​TGG​TAT​CAA​CGC​AGA​GTA​C) (IDT, 
Coralville, IA, USA) and PE100 reads were generated. Read 
1 consists of the 12 bp cell barcode, followed by the 8 bp 
UMI, and the last 80 bp on the read are not used. Read 2 
contains the single-cell transcripts.

Drop‑seq data pre‑processing and quality control

Demultiplexed fastq files generated from Drop-seq were 
processed to digital expression gene matrices (DGEs) 
using Drop-seq tools version 1.13 (https://​github.​com/​
broad​insti​tute/​Drop-​seq) and dropEst [16]. The workflow 
is available as modified version of the snakemake-based 
dropSeqPipe (https://​github.​com/​Hoohm/​dropS​eqPipe) 
workflow and is available on github (https://​github.​com/​
darne​son/​dropS​eqPip​eDrop​EST). Briefly, fastq files were 
converted to BAM format and cell and molecular barcodes 
were tagged. Reads corresponding to low quality barcodes 

Fig. 7   RNAscope validation of select DEGs affected by humanin 
identified from scRNAseq. a Gene expression of mt-Cytb, mt-Rnr1 
and mt-Rnr2 across treatments in different cell populations of cortex 
with or without humanin (HN). The differentially expressed genes 
(adjusted p-value < 0.05) are indicated by a star. The color of each 
dot indicates the group which the DEG corresponds to and the size 
of the dot corresponds to the −log10(adjusted p-value). The y-axis is 
the log (fold change) of the gene between TBI and sham control or 
between TBI/Vehicle and TBI/HN cells within a particular cell type 
(indicated on the x-axis). b Validation of gene expression changes of 
mt-Cytb, mt-Rnr1 and mt-Rnr2 in response to TBI with or without 
HN in oligodendrocytes of cortex using RNAscope. Plp1 was used 
as oligodendrocytes marker and was stained in pink. The target DEGs 
mt-Cytb, mt-Rnr1 and mt-Rnr2 were stained in green. The arrows 
indicate the overlap between marker gene and target DEGs. The 
expression of each target DEG determined by scRNAseq is displayed 
as violin plots and Wilcoxon rank-sum test was used to determine sta-
tistical significance between sham control, TBI and TBI/HN groups 
and adjusted p-value was calculated. ****p < 1 × 10−4, ns: p > 0.05
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were removed and any occurrence of the SMART adapter 
sequence or polyA tails found in the reads was trimmed. 
These cleaned reads were converted back to fastq format 
to be aligned to the mouse reference genome mm10 using 
STAR-2.5.0c. After the reads were aligned, the reads 
which overlapped with exons, introns, and intergenic 
regions were tagged using a RefFlat annotation file of 
mm10. To make use of reads aligning to intronic regions, 
which are not considered in Drop-seq tools v1.13, we used 
dropEst to construct digital gene expression matrices from 
the tagged, aligned reads where each row in the matrix is 
the read count of a gene and each column is a unique sin-
gle cell. The count values for each cell were normalized by 
the total number of UMIs in that cell and then multiplied 
by 10,000 and log transformed. Single cells were identi-
fied from background ambient mRNA using thresholds of 
at least 200 genes and a maximum mitochondrial fraction 
of 15%.

Identification of cell clusters

The Seurat R package version 3.0.2 (https://​github.​com/​
satij​alab/​seurat) was used to project all sequenced cells 
onto two dimensions using UMAP [17] and Louvain [18] 
clustering was used to assign clusters. For consistent iden-
tification of cell types across different conditions (TBI vs 
sham control) and timepoints (24-h vs 7-day), samples 
were aligned using CCA [96] at the group level (time-
point + condition within a particular tissue). Specifically, 
the top 3000 features for each group were identified using 
variance stabilizing transformation and these were used 
to identify the top 40 CCs across the groups which were 
then used to find integration anchors to align the datasets. 
The integrated data were only used to identify and define 
cell types, all plots which are not explicitly designated 
as CCA and all downstream analyses were done on non-
integrated data to retain the biological effect of timepoint 
and condition which is inherently removed during integra-
tion. Visualization of non-integrated data was achieved 
with UMAP and Louvain clustering. The optimal number 
of PCs used for UMAP and Louvain was determined using 
the Jackstraw permutation approach and a grid search of 
the parameters. Similarly, the density used to assign clus-
ters was identified using a parameter grid search.

Identification of marker genes of individual cell 
clusters

We defined cell cluster-specific marker genes from our 
Drop-seq dataset using the FindConservedMarkers function 
in Seurat across all the samples. Briefly, a Wilcoxon Rank 

Sum Test is run within each set of samples from a particular 
timepoint and condition and a meta p-value across all time-
points and conditions is computed to assess the significance 
of each gene as a marker for a cluster. Within each sample, 
the cells are split into two groups: single cells from the cell 
type of interest and all other single cells. To be considered 
in the analysis, the gene had to be expressed in at least 10% 
of the single cells form one of the groups and there had to 
be at least a 0.25 log fold change in gene expression between 
the groups. This process was conducted within each sample 
separately, and then a meta p-value was assessed from the 
p-values across all samples. Multiple testing was corrected 
using the Bonferroni method on the meta p-values and genes 
with an adjusted p-value < 0.05 were defined as cell-type-
specific marker genes.

Resolving cell identities of the cell clusters

We used two methods to resolve the identities of the cell 
clusters. First, we used known cell-type-specific markers 
curated from literature, single-cell atlases [20, 97–99], 
previous studies in the hippocampus [100, 101], frontal 
cortex [102], and blood [103] to find distinct expression 
patterns in the cell clusters. A cluster showing unique 
expression of a known marker gene can be used to identify 
that cell type. We also used a classification approach lever-
aging the similarities between whole transcriptomes of our 
data publicly available, large annotated single cell datasets 
obtained from the DropVIZ mouse brain atlas [20]. Spe-
cifically, we obtained the single-cell profiles of 113,171 
hippocampus cells and 156,167 frontal cortex cells and 
their curated cell-type labels from DropVIZ. Using the 
TransferData function in Seurat, we projected the PCA 
structure of the relevant reference datasets onto our query 
single-cell data to classify our single cells as the most 
likely cell type from the annotated DropVIZ data.

Confirming absence of batch effect

To quantify the amount of batch effect present between 
samples within the same group (timepoint + condition) in 
our dataset, we leveraged the k-nearest-neighbor batch-
effect test (kBET) [104]. kBET interrogates the batch 
labels in local neighborhoods of the single cells and 
determines if the proportions of the batch labels in these 
neighborhoods differ from the global distribution. Specifi-
cally, a k-nearest neighbor matrix is constructed and 10% 
of the cells are selected to check the label distribution in 
that neighborhood. If the label distribution in the local 
neighborhood is similar to the global label distribution the 
chi-squared test does not reject the null and the batches 

https://github.com/satijalab/seurat
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are considered well mixed. kBET reports the average test 
rejection rate, however, we used the acceptance rate which 
is 1–the rejection rate. In their paper, Büttner et al. noticed 
that kBET produced lower acceptance rates when used 
across an entire dataset compared to considering each cell 
type individually due to variations in cell-type frequencies 
between samples [104], thus we applied kBET to each cell 
type separately. To consider a cell type for testing between 
two samples, we required the presence of at least 15 sin-
gle cells between the two samples. For each cell type, 
we ran kBET 100 times and considered acceptance rates 
of > 0.75 to be indicative of well-mixed batches based on 
the observed acceptance rates of ~ 0.75–0.9 for each cell 
type in an experiment in the kBET paper where PBMCs 
from eight individuals were processed in three batches and 
demultiplexed with demuxlet [105].

Quantitative assessment of global transcriptome 
shifts: Euclidean distance

For each cell type, we generate two representative cells, one 
for the sham control group and the other for mTBI condi-
tion by calculating the average gene expression of each gene 
for each group within that cell type. We then calculate the 
Euclidean distance in gene expression between these repre-
sentative cells as a metric to quantify the effect of TBI on 
each cell type. We found that the top 1–20 highly expressed 
genes contributed the vast majority of the signal to this met-
ric when considering normalized expression values. To give 
genes more equal weight, we transformed the expression of 
each gene to a z-score for each cell in the given cell type. To 
circumvent noise arising from lowly expressed genes, we 
only considered the top 1000 most highly expressed genes in 
each cell type. To determine if the observed Euclidean dis-
tance between sham control and mTBI cells within each cell 
type is significantly larger than that of random cells, we esti-
mated a null distribution by calculating the Euclidean dis-
tance between randomly sampled cells of the given cell type. 
This permutation approach is repeated for a total of 1000 
times to generate the null distribution, which is compared 
to the Euclidean distance generated from the true TBI and 
sham control groups to determine an empirical p-value. To 
correct for multiple testing across all the cell types tested, we 
applied a Bonferroni correction to retrieve adjusted p-values.

Quantitative assessment of global transcriptome 
shifts: machine learning classifier

For each cell type, a SVM classifier was trained using the 
‘caret’ library to predict sham control and TBI labels using 
the top 1000 most highly expressed genes for that cell type, 
given there were at least 10 single cells per group. The model 

was trained 1000 times randomly sampling 70% of the data 
to train on with tenfold cross validation and 3 repeats and 
tested on the other 30% of the data which was not seen dur-
ing the training. The resulting classification accuracies at 
correctly predicting sham control and TBI labels for held 
out cells across 1000 permutations were used to generate 
the box plots.

Quantitative assessment of global transcriptome 
shifts: subsample cells

For each cell type, if there were more than 100 cells per 
condition then they were randomly subsampled to 100 cells. 
DEGs were then calculated using a Wilcoxon Rank Sum Test 
(see below) across 1000 permutations and a meta p-value 
was derived using ‘minimump’ from the ‘metap’ package on 
the Bonferroni corrected p-values to get a stable estimate of 
the number of significant DEGs for each cell type.

Ligand–receptor cell–cell communication

To infer cell–cell communication, we used the CellPhoneDB 
[29] ligand–receptor-based method. CellPhoneDB has 
curated 2486 interactions in the categories of protein–protein 
interactions, secreted and membrane proteins, and protein 
complexes. Based on their curated repository, CellPhoneDB 
predicts enriched receptor–ligand interactions between two 
cell types based on the expression of a receptor by one cell 
type and the corresponding ligand by another cell type. 
Only receptors and ligands which are expressed above 10% 
in cell-type clusters are considered. To obtain a p-value for 
the interaction a null distribution is obtained by permut-
ing the cluster labels of all cells and comparing the mean 
expression of the ligand and receptor from the cell types to 
the null distribution.

Identification of DEGs between sham control 
and TBI

Within each identified cell type, sham control and TBI sam-
ples are compared for differential gene expression using a 
Wilcoxon Rank Sum Test. To be considered in the analysis, 
the gene had to be expressed in at least 10% of the single 
cells from one of the two groups for that cell type and there 
had to be at least a 0.25 log fold change in gene expres-
sion between the groups. We corrected for multiple test-
ing using Bonferroni correction and genes with an adjusted 
p-value < 0.05 were used in downstream pathway enrichment 
analyses (unless explicitly noted that a p-value of 0.01 was 
used instead to retrieve suggestive pathways). Enrichment of 
pathways from KEGG, Reactome, BIOCARTA, GO Molec-
ular Functions, and GO Biological Processes was assessed 
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with Fisher’s exact test, followed by multiple testing correc-
tion with the Benjamini–Hochberg method.

Association of DEGs with human GWAS genes 
of neurological disorders

Full human GWAS summary statistics of four neurological 
diseases (MS, epilepsy, Alzheimer’s and PD) were down-
loaded from the human GWAS catalog on 8-30-2019. To 
detect the association of cell-type DEGs from TBI with 
human GWAS genes we used MSEA in the Mergeomics 
package [106]. Briefly, each GWAS set was first trimmed to 
remove highly correlated SNPs using the Marker Depend-
ency Filtering function with a LD50 threshold determined 
using the Hapmap linkage disequilibrium file for the CEU 
population. For each GWAS, SNPs were mapped to genes 
using relevant (hippocampus, frontal cortex, and blood) 
tissue-specific eQTL files from GTEx v8. Once mapped to 
genes, disease association p-values for the corresponding 
marker were tested for enrichment in the cell-type DEGs 
gene sets with a chi-squared-like test statistic followed by 
FDR estimation.

Humanin treatment

[Gly14]-Humanin (humanin, Sigma Chemical Co., St. Louis, 
MO, USA) dissolved in saline vehicle (154 mM NaCl) was 
injected i.p. twice at 1 and 6 h after FPI in the treatment 
group (n = 6 mice) at 40 µg/1 kg body weight. 1 µg/100 µl 
HNG was injected for the mice of average weight of 25 g. 
Control FPI mice (n = 6) received vehicle (saline). The regi-
men was determined based on a previous study of treatment 
of ischemia with humanin [107].

Behavioral tests for humanin treatment 
experiments

Mice from the sham control, TBI, and humanin treatment 
groups were trained on the Barnes maze 4 days prior to 
injury to facilitate learning and tested 7 days after injury to 
assess memory retention. For learning, animals were trained 
with two trials per day for 4 consecutive days, and memory 
retention was assessed 7 days after the last learning trial. The 
maze was manufactured from acrylic plastic to form a disk 
1.5 cm thick and 120 cm in diameter, with 40 evenly spaced 
5 cm holes at its edges. The disk was brightly illuminated 
(900 lumens) by four overhead halogen lamps to provide an 
aversive stimulus to search for a dark escape chamber hid-
den underneath a hole positioned around the perimeter of 
a disk. All trials were recorded simultaneously by a video 
camera installed directly overhead at the center of the maze. 
A trial was started by placing the animal in the center of the 
maze covered under a cylindrical start chamber; after a 10 s 

delay, the start chamber was raised. A training session ended 
after the animal had entered the escape chamber or when a 
pre-determined time (5 min) had elapsed, whichever came 
first. All surfaces were routinely cleaned before and after 
each trial to eliminate possible olfactory cues from preced-
ing animals.

Identification of genes and pathways reversed 
by humanin treatment

To identify genes reversed by humanin treatment, DEGs 
were identified for cell type between humanin-treated ani-
mals and TBI animals using a Wilcoxon Rank Sum test (as 
described above). Genes that were significantly differen-
tially expressed between humanin vs TBI samples and TBI 
vs sham control samples with opposite fold change direction 
were considered to be reversed by the humanin treatment. 
Pathway enrichment analysis was conducted on these cell-
type DEG gene sets (as described above) to identify path-
ways reversed by humanin treatment.

Validation of gene expression using RNAscope

RNAscope Multiplex in situ hybridization (Advanced Cell 
Diagnostics, Newark, CA, USA) was conducted to evalu-
ate the gene expression as described before [14]. Briefly, 
the 10 µm brain section was mounted onto gelatin-coated 
histological slides. The slides were fixed in pre-chilled 4% 
PFA for 15 min at 4 °C. The section was dehydrated in a 
series of ethanol followed by treatment of hydrogen peroxide 
for 10 min and protease IV for 30 min. The probes for the 
target gene and cell marker gene were mixed and applied to 
the slides with a 2-h incubation at 40 °C. The slides were 
incubated with preamplifiers, amplifiers, and dyes specific to 
probe channel. Finally, the sections were counterstained with 
DAPI and mounted with ProLong Gold Antifade mountant 
(Invitrogen, Carlsbad, CA, USA). The following probes were 
used: Mm-mt-Cytb (Cat. No. 517301); Mm-mt-Rnr1 (Cat. 
No. 834661); Mm-mt-Rnr2 (Cat. No. 590781); Mm-Plp1-C2 
(Cat. No. 428181-C2).
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