Skip to main content

Advertisement

Log in

Environmental and intrinsic modulations of venous differentiation

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Endothelial cells in veins differ in morphology, function and gene expression from those in arteries and lymphatics. Understanding how venous and arterial identities are induced during development is required to understand how arterio-venous malformations occur, and to improve the outcome of vein grafts in surgery by promoting arterialization of veins. To identify factors that promote venous endothelial cell fate in vivo, we isolated veins from quail embryos, at different developmental stages, that were grafted into the coelom of chick embryos. Endothelial cells migrated out from the grafted vein and their colonization of host veins and/or arteries was quantified. We show that venous fate is promoted by sympathetic vessel innervation at embryonic day 11. Removal of sympathetic innervation decreased vein colonization, while norepinephrine enhanced venous colonization. BMP treatment or inhibition of ERK enhanced venous fate, revealing environmental neurotransmitter and BMP signaling and intrinsic ERK inhibition as actors in venous fate acquisition. We also identify the BMP antagonist Noggin as a potent mediator of venous arterialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Abbreviations

AC:

Adenylate cyclase

ADR:

Adrenoreceptors

ALK:

Activin receptor-like kinase

AVM:

Arterio-venous malformations

BMP:

Bone morphogenetic protein

CAM:

Chorioallantois membrane

CX40:

Connexin 40

DM:

Dorsomorphin

DMH-1:

Dorsomorphin-homolog-1

EC:

Endothelial cells

ERK:

Extracellular signal-regulated kinases

FCS:

Fetal calf serum

HDAC1:

Histone deacetylase 1

HHT:

Hereditary hemorrhagic telangiectasia

6HDOPA:

6-Hydroxydopamine

JV:

Jugular vein

NE:

Norepinephrine

PCV:

Posterior cardinal vein

PE:

Phenylephrine

PKA:

Protein kinase A

QH1:

Quail hemopoietic-1

SOV:

Sodium orthovanadate

VEGF:

Vascular endothelial growth factor

References

  1. Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a006429

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalluri AS, Vellarikkal SK, Edelman ER, Nguyen L, Subramanian A, Ellinor PT, Regev A, Kathiresan S, Gupta RM (2019) Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation 140:147–163

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kalucka J, de Rooij LPMH, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen LA, Veys K et al (2020) Single-cell transcriptome atlas of murine endothelial cells. Cell 180:764–779

    CAS  PubMed  Google Scholar 

  4. Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480

    CAS  PubMed  Google Scholar 

  5. Zarkada G, Howard JP, Xiao X, Park H, Bizou M, Leclerc S, Künzel SE, Boisseau B, Li J, Cagnone G et al (2021) Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 56:2237–2251

    CAS  PubMed  Google Scholar 

  6. Xu C, Hasan SS, Schmidt I, Rocha SF, Pitulescu ME, Bussmann J, Meyen D, Raz E, Adams RH, Siekmann A (2014) Arteries are formed by vein-derived endothelial tip cells. Nat Commun 15:5758. https://doi.org/10.1038/ncomms6758

    Article  CAS  Google Scholar 

  7. Franco CA, Jones ML, Bernabeu MO, Geudens I, Mathivet T, Rosa A, Lopes FM, Lima AP, Ragab A, Collins RT et al (2015) Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol 13:e1002125. https://doi.org/10.1371/journal.pbio.1002125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park H, Furtado J, Poulet M, Chung M, Yun S, Lee S, Sessa WC, Franco CA, Schwartz MA, Eichmann A (2021) Defective flow-migration coupling causes arteriovenous malformations in hereditary hemorrhagic telangiectasia. Circulation 144:805–822

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee HW, Xu Y, He L, Choi W, Gonzalez D, Jin SW, Simons M (2021) Role of venous endothelial cells in developmental and pathologic angiogenesis. Circulation 144:1308–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosa A, Giese W, Meier K, Alt S, Klaus-Bergmann A, Edgar LT, Bartels-Klein E, Collins RT, Szymborska A, Coxam B et al (2022) WASp controls oriented migration of endothelial cells to achieve functional vascular patterning. Development 149:dev200195. https://doi.org/10.1242/dev.200195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu JA, Castranova D, Pham VN, Weinstein BM (2015) Single-cell analysis of endothelial morphogenesis in vivo. Development 142:2951–2961

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rochon ER, Menon PG, Roman BL (2016) Alk1 controls arterial endothelial cell migration in lumenized vessels. Development 143:2593–2602

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Bréant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131:361–375

    PubMed  Google Scholar 

  14. Su T, Stanley G, Sinha R, D’Amato G, Das S, Rhee S, Chang AH, Poduri A, Raftrey B, Dinh TT et al (2018) Single-cell analyses of early progenitor cells that build coronary arteries. Nature 559:356–362

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo W, Garcia-Gonzalez I, Fernández-Chacón M, Casquero-Garcia V, Sanchez-Muñoz MS, Mühleder S, Garcia-Ortega L, Andrade J, Potente M, Benedito R (2020) Arterialization requires the timely suppression of cell growth. Nature 589:437–441

    PubMed  PubMed Central  Google Scholar 

  16. de Vries MR, Simons KH, Jukema JW, Braun J, Quax PHA (2016) Vein graft failure: from pathophysiology to clinical outcomes. Nat Rev Cardiol 13:451–470

    PubMed  Google Scholar 

  17. Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A (2016) Membrane-mediated regulation of vascular identity. Birth Defects Res C Embryo Today 108:65–84

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Isaji T, Hashimoto T, Yamamoto K, Santana JM, Yatsula B, Hu H, Bai H, Jianming G, Kudze T, Nishibe T et al (2017) Improving the outcome of vein grafts: should vascular surgeons turn veins into arteries? Ann Vasc Dis 10:8–16

    PubMed  PubMed Central  Google Scholar 

  19. Chen D, Schwartz MA, Simons M (2021) Developmental perspectives on arterial fate specification. Front Cell Dev Biol 9:691335. https://doi.org/10.3389/fcell.2021.691335

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fernández-Chacón M, García-González I, Mühleder S, Benedito R (2021) Role of Notch in endothelial biology. Angiogenesis 24:237–250

    PubMed  Google Scholar 

  21. Marziano C, Genet G, Hirschi KK (2021) Vascular endothelial cell specification in health and disease. Angiogenesis 24:213–236

    PubMed  PubMed Central  Google Scholar 

  22. Simons M, Eichmann A (2015) Molecular controls of arterial morphogenesis. Circ Res 116:1712–1724

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Raftrey B, Williams I, Rios Coronado PE, Fan X, Chang AH, Zhao M, Roth R, Trimm E, Racelis R, D’Amato G et al (2021) Dach1 extends artery networks and protects against cardiac injury. Circ Res 129:702–716

    CAS  PubMed  Google Scholar 

  24. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104

    CAS  PubMed  Google Scholar 

  25. Kashiwada T, Fukuhara S, Terai K, Tanaka T, Wakayama Y, Ando K, Nakajima H, Fukui H, Yuge S, Saito Y et al (2015) β-catenin-dependent transcription is central to Bmp-mediated formation of venous vessels. Development 142:497–509

    CAS  PubMed  Google Scholar 

  26. Lee HW, Chong DC, Ola R, Dunworth WP, Meadows S, Ka J, Kaartinen VM, Qyang Y, Cleaver O, Bautch VL et al (2017) Alk2/ACVR1 and Alk3/BMPR1A provide essential function for bone morphogenetic protein-induced retinal angiogenesis. Arterioscler Thromb Vasc Biol 37:657–663

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Neal A, Nornes S, Payne S, Wallace MD, Fritzsche M, Louphrasitthiphol P, Wilkinson RN, Chouliaras KM, Liu K, Plant K et al (2019) Venous identity requires BMP signalling through ALK3. Nat Commun 10:453. https://doi.org/10.1038/s41467-019-08315-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tischfield MA, Robson CD, Gilette NM, Chim SM, Sofela FA, DeLisle MM, Gelber A, Barry BJ, MacKinnon S, Dagi LR et al (2017) Cerebral vein malformations result from loss of twist1 expression and bmp signaling from skull progenitor cells and dura. Dev Cell 42:445–461

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wiley DM, Kim JD, Hao J, Hong CC, Bautch VL, Jin SW (2011) Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol 13:687–692

    CAS  Google Scholar 

  30. Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A, Bikfalvi A (2005) Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci USA 102:1643–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Andrey P, Maurin Y (2005) Free-D: an integrated environment for three-dimensional reconstruction from serial sections. J Neurosci Methods 145:233–244

    PubMed  Google Scholar 

  32. Rouwet EV, Tintu AN, Schellings MW, van Bilsen M, Lutgens E, Hofstra L, Slaaf DW, Ramsay G, Le Noble FA (2002) Hypoxia induces aortic hypertrophic growth, left ventricular dysfunction, and sympathetic hyperinnervation of peripheral arteries in the chick embryo. Circulation 105:2791–2796

    CAS  PubMed  Google Scholar 

  33. Ruijtenbeek K, Le Noble FA, Janssen GM, Kessels CG, Fazzi GE, Blanco CE, De Mey JG (2000) Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation 102:2892–2897

    CAS  PubMed  Google Scholar 

  34. Le Noble FA, Ruijtenbeek K, Gommers S, de Mey JG, Blanco CE (2000) Contractile and relaxing reactivity in carotid and femoral arteries of chicken embryos. Am J Physiol Heart Circ Physiol 278:1261–1268

    Google Scholar 

  35. Lot TY (1987) The consequences of loss followed by recovery of noradrenergic nerve function on muscarinic receptors in the chick expansor secundariorum muscle. Br J Pharmacol 90:635–639

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Teillet MA, Le Douarin NM (1983) Consequences of neural tube and notochord excision on the development of the peripheral nervous system in the chick embryo. Dev Biol 98:192–211

    CAS  PubMed  Google Scholar 

  37. Pardanaud L, Pibouin-Fragner L, Dubrac A, Mathivet T, English I, Brunet I, Simons M, Eichmann A (2016) Sympathetic innervation promotes arterial fate by enhancing endothelial ERK activity. Circ Res 119:607–620

    CAS  PubMed  Google Scholar 

  38. Monsoro-Burq A, Le Douarin NM (2001) BMP4 plays a key role in left-right patterning in chick embryos by maintaining Sonic Hedgehog asymmetry. Mol Cell 7:789–799

    CAS  PubMed  Google Scholar 

  39. Kamaid A, Neves J, Giráldez F (2010) Id gene regulation and function in the prosensory domains of the chicken inner ear: a link between Bmp signaling and Atoh1. J Neurosci 30:11426–11434

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao W, Dai F, Bonafede A, Schafer S, Jung M, Yusuf F, Gamel AJ, Wang J, Brand-Saberi B (2009) Histone deacetylase inhibitor, trichostatin A, affects gene expression patterns during morphogenesis of chicken limb buds in vivo. Cells Tissues Organs 190:121–134

    CAS  PubMed  Google Scholar 

  41. Ryder JW, Gordon JA (1987) In vivo effect of sodium orthovanadate on pp60c-src kinase. Mol Cell Biol 7:1139–1147

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang C, Lv J, He Q, Wang S, Gao Y, Meng A, Yang X, Liu F (2014) Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence. Nature Commun 5:3431–3444

    Google Scholar 

  43. Moyon D, Pardanaud L, Yuan L, Bréant C, Eichmann A (2001) Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128:3359–3370

    CAS  PubMed  Google Scholar 

  44. Othman-Hassan K, Patel K, Papoutsi M, Rodriguez-Niedenführ M, Christ B, Wilting J (2001) Arterial identity of endothelial cells is controlled by local cues. Dev Biol 237:398–409

    CAS  PubMed  Google Scholar 

  45. Marcelle C, Eichmann A (1992) Molecular cloning of a family of protein kinase genes expressed in the avian embryo. Oncogene 7:2479–2487

    CAS  PubMed  Google Scholar 

  46. Eichmann A, Marcelle C, Bréant C, Le Douarin NM (1993) Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev 42:33–48

    CAS  PubMed  Google Scholar 

  47. Eichmann A, Corbel C, Jaffredo T, Bréant C, Joukov V, Kumar V, Alitalo K, le Douarin NM (1998) Avian VEGF-C: cloning, embryonic expression pattern and stimulation of the differentiation of VEGFR2-expressing endothelial cell precursors. Development 125:743–752

    PubMed  Google Scholar 

  48. Moyon D, Pardanaud L, Yuan L, Bréant C, Eichmann A (2001) Selective expression of angiopoietin 1 and 2 in mesenchymal cells surrounding veins and arteries of the avian embryo. Mech Dev 106:133–136

    CAS  PubMed  Google Scholar 

  49. Bouvrée K, Larrivée B, Lv X, Yuan L, DeLafarge B, Freitas C, Mathivet T, Bréant C, Tessier-Lavigne M, Bikfalvi A, Eichmann A, Pardanaud L (2008) Netrin-1 inhibits sprouting angiogenesis in developing avian embryos. Dev Biol 318:172–183

    PubMed  Google Scholar 

  50. Diehl S, Bruno R, Wilkinson GA, Loose DA, Wilting J, Schweigerer L, Klein R (2005) Altered expression patterns of EphrinB2 and EphB2 in human umbilical vessels and congenital venous malformations. Pediatr Res 57:537–544

    CAS  PubMed  Google Scholar 

  51. Ricard N, Zhang J, Zhuang ZW, Simons M (2019) Isoform-specific roles of ERK1 and ERK2 in arteriogenesis. Cells 9:38–55

    PubMed Central  Google Scholar 

  52. Fish JE, Flores Suarez CP, Boudreau E, Herman AM, Gutierrez MC, Gustafson D, DiStefano PV, Cui M, Chen Z, De Ruiz KB et al (2020) Somatic Gain of KRAS function in the endothelium is sufficient to cause vascular malformations that require MEK but Not PI3K signaling. Circ Res 127:727–743

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, RezaiJahromi B, Khyzha N, DiStefano PV, Suutarinen S, Kiehl TR et al (2018) Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med 378:250–261

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ricard N, Bailly S, Guignabert C, Simons M (2021) The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol 18:565–580

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pontes-Quero S, Fernández-Chacón M, Luo W, Lunella FF, Casquero-Garcia V, Garcia-Gonzalez I, Hermoso A, Rocha SF, Bansal M, Benedito R (2019) High mitogenic stimulation arrests angiogenesis. Nat Commun 10:2016–2032

    PubMed  PubMed Central  Google Scholar 

  56. Mouillesseaux KP, Wiley DS, Saunders LM, Wylie LA, Kushner EJ, Chong DC, Citrin KM, Barber AT, Park Y, Kim JD et al (2016) Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat Commun 7:13247–13259

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Snodgrass RO, Chico TJA, Arthur HM (2021) Hereditary haemorrhagic telangiectasia, an inherited vascular disorder in need of improved evidence-based pharmaceutical interventions. Genes 12:174. https://doi.org/10.3390/genes12020174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Subileau M, Merdzhanova G, Ciais D, Collin-Faure V, Feige JJ, Bailly S, Vittet D (2019) Bone morphogenetic protein 9 regulates early lymphatic-specified endothelial cell expansion during mouse embryonic stem cell differentiation. Stem Cell Reports 12:98–111

    CAS  PubMed  Google Scholar 

  59. Bier E, De Robertis EM (2015) Embryo development. BMP gradients: a paradigm for morphogen-mediated developmental patterning. Science. https://doi.org/10.1126/science.aaa5838

    Article  PubMed  PubMed Central  Google Scholar 

  60. Choi W, Lee HW, Pak B, Han O, Kim M, Jin SW (2021) Transcriptomic analysis identifies novel targets for individual bone morphogenetic protein type 1 receptors in endothelial cells. FASEB J 35:e21386. https://doi.org/10.1096/fj.202002071R

    Article  CAS  PubMed  Google Scholar 

  61. Pardanaud L, Altmann C, Kitos P, Dieterlen-Lièvre F, Buck C (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Institut national de la santé et de la recherche médicale (Inserm) and the European Research Council grant agreement No. 834161.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding authors

Correspondence to Anne Eichmann or Luc Pardanaud.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Ethical approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2022_4470_MOESM1_ESM.psd

Supplementary file1 Figure S1 Transverse sections at the truncal level of an E4 chick host, 2 days after the graft of a quail E8 JV. Triple staining using the QH1 antibody (blue), an anti-CX40 antibody that recognizes arteries (green) and the Sambucus nigra lectin that stains all avian vessels (red). The CX40 + /Sambucus + aortae (Ao) appear orange while cardinal vein (CV) and umbilical vein (UV) are only Sambucus + . A) The arrow indicates a quail EC (blue-green) that reaches the aortic endothelium. The arrowhead shows a QH1 + EC counted as an arterial EC because a ventral aortic branch is present close to this cell on a consecutive section. B) The arrow points to a grafted quail QH1 + /Sambucus + EC (purple) participating to the UV endothelium. Arrowheads indicate QH1 + ECs close to chick veins and counted as venous ECs because a venous branch is present close to these cells on a consecutive section. Blue QH1 + cells that were not counted are present near the graft (G). M: mesonephros. (PSD 26261 kb)

18_2022_4470_MOESM2_ESM.psd

Supplementary file2 Figure S2 Number of emigrating QH1 + ECs from untreated E8 JVs and E8 JV treated by PE and BHT933, each dot corresponds to one JV sample. By comparison with E8 JVs, Mann–Whitney or Unpaired 2-tailed nonparametric t tests. Error bars: SEM, n: number of grafts. (PSD 1495 kb)

18_2022_4470_MOESM3_ESM.psd

Supplementary file3 Figure S3 Quantification of BMP effects (high doses) on host venous colonization by QH1 + ECs from E8 JVs, each dot corresponds to one JV sample.*P < 0.05, by comparison with E8 JVs, Mann–Whitney or Unpaired 2-tailed nonparametric t tests. Error bars: SEM, n: number of grafts. The blue numbers correspond to the total number of cells counted in each condition. (PSD 2610 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pibouin-Fragner, L., Eichmann, A. & Pardanaud, L. Environmental and intrinsic modulations of venous differentiation. Cell. Mol. Life Sci. 79, 491 (2022). https://doi.org/10.1007/s00018-022-04470-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04470-4

Keywords

Navigation