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Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex 
overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative 
stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single 
pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve 
these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies 
based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected 
from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that 
can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, 
antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates 
(HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases 
such as Parkinson’s disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared 
from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy 
for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and 
regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating 
neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifi-
cally based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
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Abbreviations
BBB  Blood Brain barrier
b-FGF  Basic fibroblast growth factor
BMP  Bone morphogenetic protein
CAT   Catalase
CBS  Cortical brain scratch
CCL3  CC-chemokine ligand 3
CCI  Controlled cortical impact
CD  Cluster of differentiation
CP  Ceruloplasmin
CNS  Central nervous system
CXCL4  C-X-C motif chemokine ligand 4
EGF  Epidermal growth factor
ERK  Extracellular signal-regulated kinase
EV  Extracellular vesicle
FTD  Frontotemporal depression
GF  Growth factor
GMP  Good manufacturing practices
GPx  Glutathione peroxidase
GSK3β  Glycogen synthase kinase 3β
HBV  Hepatitis B virus
HCV  Hepatitis C virus
HGF  Hepatocyte growth factor
HPPL  Human platelet pellet lysate

HPL  Human platelet lysate
HUVEC  Human umbilical vein endothelial cells
ICV  Intracerebroventricular
IGF  Insulin-like growth factor
IGF-BP3  IGF-binding protein 3
IL  Interleukin
IN  Intranasal
LMIC  Low- and middle-income countries
LPS  Lipopolysaccharide
LUHMES  Lund human mesencephalic
MANF  Mesencephalic astrocyte-derived neuro-

trophic factor
M-CSF  Macrophage colony-stimulating factor
MEK  Mitogen-activated protein kinase
MIF  Macrophage migration inhibitory factor
MIP  Macrophage inflammatory protein
MPP +   1-Methyl-4-phenylpyridinium
MPTP  1-Methyl-4-phrnyl-1,2,3,5-tetrahydropyridine
MSC  Mesenchymal stromal cell
MSP  Macrophage-stimulating protein
NSPC  Neural stem/progenitor cell
Nrf2  Nuclear factor-erythroid 2-related factor 2
PC  Platelet concentrate
pEVs  Platelet-extracellular vesicles
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PF4  Platelet factor 4
PDGF  Platelet-derived growth factor
PMCAO  Permanent distal middle cerebral artery 

occlusion
PS  Phosphatidylserine
ROS  Reactive oxygen species
SGD  Subgranular zone
SVZ  Subventricular zone
TIMP  Tissue inhibitor of metalloproteinase
SOD  Superoxide dismutase
TF  Tissue factor
TBI  Traumatic brain injury
TDP-43  TAR DNA-binding protein-43
TNF  Tumor necrosis factor
TXN  Thioredoxin

Background

Neurodegenerative and traumatic diseases affecting the cen-
tral nervous system (CNS) are associated with overlapping 
physiopathological molecular events such as neuroinflam-
mation and oxidative stress, ultimately leading to progres-
sive loss of vulnerable synapses and neuronal populations 
resulting in various clinical features encompassing move-
ment disorders, cognitive functions, and behavioral impair-
ments [1–4]. The most common neurodegenerative diseases 
are Parkinson’s disease and Alzheimer’s disease, as well as 
amyotrophic lateral sclerosis, frontotemporal lobal degenera-
tion, and Huntington’s disease. The latter are proteinopathies 
[5] associated with various selective or overlapping neuro-
pathological/biochemical protein abnormalities involving, 
among others, amyloid peptides, tau, α-synuclein, TAR 
DNA-binding protein (TDP)-43, and huntingtin. Stroke, 
repeated concussions, and traumatic brain injuries (TBIs) 
are another group of neurological pathologies affecting the 
CNS with complex clinical features that involve cascades 
of pathological events that trigger accelerated neurodegen-
eration and eventually develop into persistent cognitive and 
motor impairments.

Despite widespread extensive fundamental and clinical 
research efforts to better understand cellular and molecular 
mechanisms underlying these diseases [6], there is still a 
dramatic lack of effective therapeutic molecules or manage-
ment approaches to reverse, reduce, or even stabilize neu-
ronal degeneration. In the context of neurodegeneration, 
while some considerable efforts have been and are being 
made to develop new treatment approaches, for instance 
immunotherapy and gene silencing, most current thera-
pies are at best focused on symptoms, and treating diseases 
of the CNS remains a therapeutic challenge. Further, it is 
becoming evident that a single pharmacological approach 
is unlikely to provide a complementary set of therapeutic 

actions suitable to resolve these pathologies. New mechanis-
tic biological hypotheses to unveil disease occurrences and 
progression are generating explorative therapeutic strategies 
that aim to retard or stop the progression of neurodegen-
erative processes. These therapeutic options include gene 
therapy, small (s)RNA, DNA, micro (mi)RNA, antagomirs 
(antisense miRNAs), peptide therapy, monoclonal antibod-
ies, autologous or allogeneic mesenchymal stromal cells 
(MSCs), and the MSC secretome containing neurotrophic 
factors and extracellular vesicles [7–11]. These new thera-
pies, if embraced by the biotechnology industry and medical 
community, will however probably require time-consuming 
and demanding efforts for their development, preclinical 
and clinical validation, licensing, and market expansion, 
and due to their costs will be reserved for a minority of 
patients globally.

The situation described above justifies attempts to 
develop, whenever possible, pragmatic alternative therapeu-
tic solutions that are safe, effective, and affordable for most 
patients in low- and middle-income countries (LMIC) and 
industrialized economies. In this regard, interest has turned 
to the recently identified neurorestorative and neuroregener-
ative capability of the complementary combination of physi-
ological neurotrophic factors present in human platelets for 
treating CNS disorders. On one hand, the scientific rationale 
for this application lies in the well-established general con-
tributions of platelets to wound healing [12] and most spe-
cifically to their promotion of neuronal plasticity and CNS 
repair and development [13, 14]. Indeed, platelets contain a 
plethora of neurotrophic and other bioactive factors, as well 
as neurotransmitters able to promote the survival, repair, 
and regeneration of neurons, and maintain healthy brain 
function. On the other hand, the clinical rationale revolves 
around the fact that clinical-grade platelets are already rou-
tinely produced by blood establishments worldwide for ther-
apeutic applications in transfusion medicine, implying an 
existing infrastructure for the collection and supply of source 
materials and the repositioning of the clinical use of human 
platelets for applications in regenerative medicine [15].

In the present review, we aimed to summarize multifac-
eted molecular roles played by platelets in coagulation, tis-
sue repair, and regeneration to explain the benefits of using 
human platelet lysates (HPL) in neuroregenerative medicine 
and cell therapy. As platelet lysates are rich in extracellular 
vesicles (EVs), we also elaborate on their roles and possible 
uses in neuroregenerative medicine. We particularly focus on 
recent evidence-based preclinical data in cellular and animal 
models of stroke, Parkinson’s disease, Alzheimer’s disease, 
TBIs, and amyotrophic lateral sclerosis that provide a sci-
entific rationale to support the further development of neu-
roprotective and neurorestorative biotherapies based on the 
administration of the platelet secretome to the brain. We also 
discuss the clinical, manufacturing, and regulatory pathways 
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for an ethical supply and optimal quality and safety specifi-
cations of HPLs and EV preparations for use as pragmatic 
treatment options for CNS diseases.

Platelets: structure and multifaceted 
regulatory functions

Platelets are derived from megakaryocytes that reside in the 
bone marrow and are continuously released into the blood 
circulation to maintain a count of 150–400 ×  106/mL under 
normal physiological conditions. Platelets exhibit unique 
structural specificities that include (a) the lack of a nucleus, 
(b) a relatively small size (2–4 um) in a quiescent state, (c) 
the presence of multiple membrane surface markers, espe-
cially the GPIb-IX-V complex, GPVI, and GPIIb/IIIa (also 
known as integrin alphaIIb-beta3) that are highly reactive to 
activated coagulation factors, vascular endothelium proteins, 
and immune cells, (d) their contents of multiple granules 
and mitochondria, and (e) the existence of an open canali-
cular system that permits two-way exchanges of molecules, 
including proteins, with the environment [16, 17]. In addi-
tion, platelets exposed to biochemical or physical stresses 
are prone to release various populations of EVs [18, 19].

The most well-known physiological function of plate-
lets is associated with hemostasis. Platelets serve as vital 
“sentinels” that surveil the integrity of the blood vascula-
ture. These reactions, known as the primary and secondary 
hemostasis, involve platelets and several coagulation factors 
that jointly prevent vascular loss by forming a hemostatic 
platelet–fibrin plug [20–23]. Once the blood vasculature is 
injured, the exposure of the tissue factor (TF) glycoprotein 
from the vascular subendothelium to the vascular surface 
induces a succession of potent biochemical reactions [24]. 
Exposed TF binds to factor (F) VII, leading to its activa-
tion (FVIIa), generation of FIXa and of the prothrombinase 
complex (FXa-FVa), which converts pro-thrombin (FII) into 
thrombin. The small amount of thrombin generated binds 
to and activates platelets through their thrombin receptors 
(protease-activated receptors). Activated platelets expose 
phosphatidylserine, a negatively charged phospholipid 
that binds the tenase complex (FIXa and FVIIIa) and the 
prothrombinase complex [25]. With more FIXa and FXIa 
generated, these biochemical reactions jointly amplify 
the generation of thrombin (thrombin burst), which leads 
to massive conversion of fibrinogen into a fibrin plug that 
entraps platelets. The formation of the fibrin–platelet plug, 
a natural biomaterial, contributes to stopping tissue bleed-
ing and constitutes the first stage of gradual physiological 
events leading to tissue healing and regenerative remodeling 
[15]. The components released through the degranulation of 
activated platelets are instrumental in orchestrating tissue 
repair processes in the damaged tissue microenvironment. 

Platelet factors released into the microenvironment trigger 
chemotaxis, local stem cell proliferation and differentiation 
into dedicated functional cells, and ultimately complete heal-
ing and tissue repair. This is the reason why, in addition to 
being essential for hemostasis, platelets are regarded as very 
instrumental “healing cells” of the body [12, 26].

Numerous studies helped unveil the nature of platelet 
growth-promoting biomolecules that are instrumental in 
tissue healing. Platelets contain 50–80 alpha-granules, with 
sizes ranging 200–500 nm that are an essential reservoir of 
functional factors [17, 27, 28]. Alpha-granules contain coag-
ulation factors, adhesion molecules, immunological mole-
cules, chemokines, cytokines, and growth factors. Platelet 
growth factors include platelet-derived growth factor-AA 
(PDGF-AA), -AB (PDGF-AAB), and -BB (PDGF-BB), 
transforming growth factor (TGF)-β, brain-derived neuro-
trophic factor (BDNF), vascular endothelium growth factor 
(VEGF), epidermal growth factor (EGF), basic fibroblast 
growth factor (bFGF), and hepatocyte growth factor (HGF). 
Other potent intercellular signaling molecules present in 
alpha-granules encompass chemotactic cytokines such as 
CCL5 (RANTES) and C-X-C motif chemokine ligand 4 
(CXCL4 or platelet factor 4 (PF4)). In addition, platelets 
harbor three to eight dense granules, approximately 150 nm 
in size, which are a reservoir of neurotransmitters, includ-
ing serotonin, dopamine, histamine, epinephrine, gamma-
aminobutyric acid, and glutamate, as well as polyphosphate 
and ATP [28]. A striking factor is the presence of numerous 
molecules with neurotrophic activities in the intracellular 
platelet compartment.

Several publications have  commented on the intriguing 
structural similarities existing between platelets and neu-
rons [29–33]. Both cells contain compartments that store a 
comparable set of functional biomolecules, suggesting their 
cross-communication at the interface of the blood circula-
tion and the brain, possibly with the involvement of EVs 
capable of crossing the blood–brain barrier (BBB) [32, 34]. 
Platelet alpha-granules, which contain neurotrophic growth 
factors and cytokines, resemble neuronal large dense-core 
vesicles, whereas platelet dense granules contain serotonin, 
dopamine, epinephrine neurotransmitters and ATP and share 
common biochemical features with the small dense-core 
synaptic vesicles of neurons. In addition, both cell types are 
reactive to an increase in internal calcium ions that triggers 
exocytosis [35].
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Platelet lysates in regenerative medicine 
and cell therapy: medical and logistic 
rationales for translation

Rationale for translational applications

There are strong scientific and pragmatic industrial ration-
ales for the clinical use of platelet derivatives, in particu-
lar platelet proteome preparations made by a lysis process 
of platelets and removal of platelet membrane debris, in 
regenerative medicine and cell therapies. One of the most 
established proofs of concept of the non-toxicity and cell 
growth-promoting value of HPLs relies on its increasing use 
as a xeno-free substitute for fetal bovine serum as a supple-
ment for growth media for propagating human cells [36, 
37]. There is ample evidence that primary MSCs isolated 
from various tissues can be successfully expanded in vitro 
in media supplemented with 5–15% clinical-grade HPLs 
under conditions where the cell doubling time is short 
(therefore cell expansion is faster), the immunophenotype 
is not altered, and expanded cells maintain their capacity 
to differentiate into osteocyte, chondrocyte, and adipocyte 
lineages following criteria established by the International 
Society of Cell and Gene Therapy [36–38]. In addition, no 
sign of teratogenicity has been observed. Recent studies also 
suggested the benefits of HPLs for expanding differentiated 
human cells and immune cells [39], and enhancing the neu-
rotrophic potency of adipose tissue-derived MSCs through 
promotion of axonal outgrowth, suggesting applications 
in nerve tissue engineering [40] and human cell therapies 
[41]. Therefore, multiple studies have unambiguously dem-
onstrated the non-toxicity and functional activities of HPLs 
preparations across a large range of cell types [39].

Preparation of platelet concentrates (PCs)

PCs, the source of HPL, are available at global level, includ-
ing in several LMICs. PCs are routinely produced by blood 
establishments either by centrifugation of whole blood, as 
a by-product of the preparation of erythrocyte concentrates, 
or by dedicated apheresis procedures to obtain in both cases 
a ± five-fold concentrated suspension of platelets in plasma 
or a mixture of plasma and a platelet-additive solution (PAS) 
[42, 43]. Whole blood-derived PCs are isolated from 450 mL 
of whole blood collection that is anticoagulated by a cit-
rate solution containing glucose and adenine cell nutrients 
to preserve erythrocytes. To isolate platelets, the blood is 
kept at 22 ± 2 °C for a few hours before the first centrifuga-
tion. A soft-spin centrifugation procedure (approximately 
1000 × g for 10 min at 22 °C), predominantly used in the 
USA, results in a plasma supernatant rich in platelets or 
platelet-rich plasma (PRP). PCs are then prepared from PRP 

by a second centrifugation at higher g force (approximately, 
3000 × g for 5 min at 22 °C) to pelletize the platelets, fol-
lowed by resuspension in a small plasma volume (50–70 ml) 
[44, 45]. A “hard-spin” centrifugation procedure of whole 
blood (approximately 3000 × g for 5 min at 22 °C), mostly 
used in Europe, leads to the preparation with a platelet-rich 
buffy coat present in-between the erythrocytes (bottom part) 
and cell-depleted plasma (top part) [44, 45]. The buffy coat 
compartment recovered in a satellite bag with 20–30 ml of 
plasma (and/or PAS) is further centrifuged, and the superna-
tant is transferred to a bag for storage. Platelets from four to 
six donors are typically pooled (to reach a volume of about 
200 mL) to prepare a PC unit for transfusion to adults. PCs 
can also be prepared with automated cell separators (apher-
esis) that perform extracorporeal isolation procedures of 
platelets from anticoagulated whole blood by intermittent 
or continuous centrifugation [45, 46]. The procedure allows 
one to obtain 200–300 mL of concentrated platelets sus-
pended in plasma or PAS from a single donor.

PCs are an established licensed cellular blood-derived 
product for transfusion, which is listed as an “essential medi-
cine” by the World Health Organization (WHO) (https:// 
www. who. int/ medic ines/ publi catio ns/ essen tialm edici nes/ 
en/). This WHO listing implies a recommendation to all 
countries to ensure an appropriate and safe supply of PCs 
for domestic healthcare systems. The collection of PCs 
from screened healthy blood donors should be carried out 
by licensed blood-collection establishments applying the 
concept of good manufacturing practices (GMPs) and work-
ing under the supervision of national regulatory authorities. 
The medical devices, and anticoagulant and additive solu-
tions used in PC production should also be licensed. The 
two main methods to prepare PCs (either by the centrifuga-
tion of whole blood donations, or by dedicated apheresis 
technology) deliver PCs of largely equivalent quality. This 
alternative provides flexibility in guaranteeing a sufficient 
supply for all therapeutic applications of PCs. Once PCs can 
no longer be used for transfusion, typically 5–7 days after 
collection, these so called “outdated” preparations suit the 
manufacture of lysates for regenerative medicine and cell 
therapy applications [36, 37, 45]. To summarize, platelet 
preparations can be made available globally from locally 
collected PCs of ensured quality, guaranteeing a minimum 
domestic supply level. Further, PCs complying with the 
strict regulations for transfusion can be used to prepare 
platelet trophic factors for use outside traditional applica-
tions in transfusion medicine. The advantages and limita-
tions of using PC as source material for HPL manufacture 
are summarized in Table 1.

https://www.who.int/medicines/publications/essentialmedicines/en/
https://www.who.int/medicines/publications/essentialmedicines/en/
https://www.who.int/medicines/publications/essentialmedicines/en/
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Selection of PCs to prepare HPLs for neurological 
applications

Numerous studies indicate that allogeneic PCs prepared 
from whole blood donations or by apheresis can be suitable 
for preparing HPLs for cell propagation [37, 47, 48]. Pre-
clinical evaluations in cell and animal models of neurologi-
cal disorders, although preliminary, suggest that both types 
of donation procedures could be equally suitable to prepare 
HPLs for brain administration [49–51]. Further evaluations 
are warranted to delineate any influence of the specifica-
tions of the PC donations on the neuroprotective activity 
of the HPL.

The quality specifications of PCs for transfusion include 
a minimal platelet count of 2 ×  1011 per unit transfused to 
ensure an enrichment close to fivefold compared to blood. 
The content of white blood should be less than  109 in a PC 
unit of 200–300 mL and is less than  106 when leucofiltration 
is performed. PC collected by apheresis typically has fewer 
white blood cells than those prepared from whole blood 
[44, 45]. As noted above, PC can be suspended in 100% 
plasma or a mixture of 30–40% plasma and 60–70% PAS. 
In addition to lowering the protein content, PAS, a solution 
that contains sodium/potassium chloride, citrate, phosphate, 
and mannitol [52], often used in combination with pathogen 
reduction treatments, affects the composition of HPLs made 
from the whole PC donations, but its impact on neuroprotec-
tion is unknown. By contrast, PAS and pathogen reduction 
do not impact the neuroprotective activity of an HPL made 
from platelets isolated from such PC donations [53]. While 
outdated PC processed 7 or 8 days after collection is suit-
able for preparing one neuroprotective HPL [51, 53], the 
impact of a more extended period is still unknown and would 
require evaluation.

Preparation of platelet lysates

Several methods have been developed for preparing HPL 
from PCs allowing one to obtain a cell-free extract rich in 
platelet proteins [36, 45, 54], as summarized in Fig. 1.

Three freeze–thaw cycles of PC at − 80/ + 37 °C frag-
ment platelet membranes to release platelets’ intracellular 
cargo without apparent alteration of the biological activity 
of the resulting lysate [38, 55, 56]. Sonication, combined or 
not with a freeze–thaw process, is another approach to frag-
ment platelets and release their contents [57]. Activation of 
platelets by the addition of a calcium salt solution counter-
balances the anticoagulant effect of the citrate solution and 
degranulates the platelets. Such “serum conversion”, due 
to the rapid generation of endogenous thrombin and activa-
tion of a blood coagulation cascade, converts fibrinogen into 
fibrin, concomitant activation and degranulation of platelets, 
and release of the contents [58–60]. The resulting protein 
lysates or releasates are further processed by centrifugation 
to remove cell membranes and/or fibrin clots before aseptic 
filtration to ensure bacterial sterility. The protein contents 
of the final preparation are influenced by the specificities of 
the starting PC material, such as a formulation in plasma or 
a plasma/PAS mixture [36] and by the possible pre-isolation 
of platelets prior to lysis [49]. Pooling of PCs from approxi-
mately 50 donors or more proved to be a major contributor 
to product standardization and batch consistency in applica-
tions for in vitro cell expansion [37]. Most platelet protein 
preparations are fully capable of supporting clinical-grade 
expansion of MSCs from various origins [39, 61–63] and 
some were evaluated using in vitro and in vivo models of 
neurological diseases [49, 50, 53, 64–69].

Recognizing that administration of HPL to the brain, 
through intracranial or intranasal administration, is a very 

Table 1  Advantages and limitations of human platelet concentrates as source materials for producing allogeneic platelet lysates for regenerative 
medicine and cell therapies

NRA national regulatory authorities, TTI transfusion-transmitted infection, WHO World Health Organization, LMICs low- and middle-income 
countries, NAT nucleic acid testing, HBV hepatitis B virus, HCV hepatitis C virus

Features Comments

Supply Domestic collection at the global level Whole blood collection rate is steadily increasing especially in LMICs
Produced from whole blood or by apheresis About 20% of the blood collected is used to prepare PCs: possibility 

to expand the supply
“Outdated” units can be used as source material Platelet concentrates can be frozen until processing

Quality Listed as an “essential medicine” by the WHO Stimulation to countries to ensure a safe supply
Licensed medicinal products Qualification of the source material
Blood establishments inspected by NRAs Guarantee of compliance with good manufacturing practices

Pathogen safety Blood donor screening Exclusion of donors with risk factors of TTI
Serological and NAT of viral markers HIV, HBV, and HCV markers are mandatory
Pathogen reduction by photochemical treatment to 

alter nucleic acids
Made possible as platelets are anucleated
Inactivation of most viruses, bacteria and protozoa
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novel therapeutic paradigm, efforts are needed to optimize 
its safety. HPLs dedicated to brain administration have been 
developed and the product characterized [49]. This HPL 
(termed “HPPL” for human platelet pellet lysate) is obtained 
by pelletizing and concentrating platelets from PCs by cen-
trifugation, followed by three freeze—thaw cycles for lysis, 
and by heat treatment at 56 °C for 30 min. Interestingly, heat 
treatment was found to improve the neuroprotective activity 
of HPLs in in vitro Parkinson’s disease models [49], while 
also contributing to depletion of fibrinogen, a neurotoxic 
protein, to a decrease in the in vitro procoagulant/prothrom-
bogenic activity [49, 68], and to an improved tolerability 
in primary cortical neuron culture [53]. HPL batches for 
brain administration will need to be controlled and meet 
the standard specifications of any therapeutic biologicals, 
such as bacterial sterility, low endotoxin content, consist-
ent physicochemical characteristics (pH, osmolality), pro-
tein and growth factor content, low level of proteolytic and 
thrombogenic activity. However, there is still no standard 
defining the specifications of HPLs, and those may depend 
upon the mode of delivery to the brain.

Platelet‑related bioactive molecules and EVs

For a long time regarded as having mostly a hemostatic role, 
platelets’ non-hemostatic functions are now being unveiled 
through proteome analyses. As stated above, platelets are 
characterized by their high contents of native growth fac-
tors, chemokines, cytokines, enzymes, antioxidants, and 
chemicals in their α-granules and dense granules making 
them a natural reservoir of bioactive molecules. Protein 
materials derived from these platelets have been intensively 
characterized by several techniques. To detect concentra-
tions of HPL molecules, techniques such as ELISA, pro-
tein/cytokine-array analysis, multiplex technology, and 
biochemical analysis were initially used. They revealed a 
plethora of factors with variable concentrations depending 
on the blood donors, the number of PCs pooled, the HPL 
production method, etc. [70]. To have a wider and unbiased 
view of the cytokines, chemokines, and soluble adhesion 
molecules contained in HPLs, proteomics approaches were 
employed [71–73]. This intensive characterization of HPL 
contents (Table 2) has led to detection of specific groups of 
active molecules, as detailed below, involved mainly in cel-
lular processes (cell–cell signaling, signal transduction, cell 

Fig. 1  Human platelet lysate preparation methods. They are either 
generated from fresh or expired platelet concentrates collected by 
apheresis or obtained from whole blood donations. Fresh or expired 
platelet concentrates can be lysed by several freeze/thaw steps, by 
platelet activation induced by addition of thrombin or calcium chlo-

ride (CaCl2), by sonication or by solvent/detergent (S/D) treatment. 
In all these methods, the cells debris are depleted by centrifugation 
and discarded after cells lysis and the supernatant recovered and ali-
quoted. HPL human platelet lysate, PBS phosphate buffer saline, PC 
platelet concentrates
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Table 2  Bioactive molecules in human platelet lysate (HPL) with diverse roles in brain repair and neurogenesis

HPL bioactive factors Reported biological effects Experimental model References

Growth factors, 
cytokines

BDNF Supports NSC proliferation, migration, and differentiation Neuronal precursors [75, 76]
Favors synaptic plasticity and facilitates synapse matura-

tion
Neuronal precursors [77, 78]

Supports hippocampal neurogenesis In rodents [79, 80]
EGF Induces NSC proliferation and migration NSC culture [81]

Supports cortical tissue regeneration and motor function 
recovery

In vivo stroke model [82–84]

FGF Promotes proliferation and differentiation of NSCs Cell culture and in vivo [85]
Stimulates neurogenesis Focal ischemia model in rats [82, 86]
Regulates Schwann cell proliferation, axonal growth, and 

remyelination
Nerve injury in mice [87]

GSN Inhibits apoptosis and is neuroprotective in murine stroke Hippocampal neuron culture, in vivo stroke model [88, 89]
HGF Protects dopaminergic neurons, motor neurons, and 

sympathetic neurons
Neuron culture [90, 91]

IGF Promotes NSC growth and differentiation, stimulates adult 
hippocampal neurogenesis, has neuroprotective activity

Neuronal cell culture, in vivo administration [31, 92–95]

LGALS1 Prevents microglial activation and promotes neuroprotec-
tion

Culture of microglia and astrocytes; in mice [96, 97]

Promotes astrocyte maturation but inhibits proliferation In vitro cell culture [98]
MANF Protects rat embryonic nigral dopaminergic neurons Rat model of PD [99]

Is neuroprotective and neurorestorative Rat model of PD [100]
Supports the development and sprouting of dopaminergic 

axonal terminals
In vitro cell culture [99]

Decreases stress and activates the PI3K/Akt/mTOR 
pathway

In vitro cell culture [101]

Activates the PI3K/Akt/GSK3β pathway and Nrf2 nuclear 
translocation

In vitro [102]

Inhibits apoptosis In vitro cell culture [103]
Inhibits autophagic via activation of the AMPK/mTOR 

pathway and ameliorates ROS by maintaining mitochon-
drial function

In vitro cell culture [104]

NENF Promotes neurotrophic activity and neuronal cell prolifera-
tion and stimulates differentiation

Mouse neural precursor cells [105]

Is a novel player in the maintenance of the anxiety 
circuitry

Neudesin-null mice [106]

PDGF Regulates NSC proliferation, migration, differentiation, 
and survival processes, and reduces apoptosis

Cultured NSCs [107, 108]

Protects cells against  MPP+-induced cell death SH-SY5Y cell culture [109]
Has restorative effects Rodent model of PD [110, 111]

PF4 Promotes neuronal differentiation in DBA/2 mice Mouse primary cells and in vivo infusion [112]
TGF-β Triggers differentiation of precursor cells In vitro and in vivo mouse mesencephalic progenitors [113]
VEGF Promotes proliferation and migration of endothelial cells, 

and the formation of new blood vessels in vivo, and 
enhances vascular permeability

In vitro endothelial cell culture [114]

Slows progression of amyotrophic lateral sclerosis in mice 
by stimulating motoneuron functions

Rat model of amyotrophic lateral sclerosis [115, 116]

Protects cultured motoneurons against death in conditions 
of hypoxia, oxidative stress, and serum deprivation

Neuronal cell culture [117, 118]

Exerts protective effects on primary hippocampal neurons 
against glutamate toxicity

In vitro neuronal culture [119]

Chemicals Vit B12 Prevents cognitive decline Clinical trials [120, 121]
Serotonin Modulates neural activity Ex vivo using rat brains [122]

Chemokines RANTES Can be neuroprotective Primary cortical neuron culture, AD and stroke models [123, 124]
Contributes to neuronal synaptic activity and memory 

formation
Primary neuron culture and WT and CCL5-/- mice [125, 126]

Reduces neuronal degeneration and memory dysfunction 
after mTBI

Primary neuron culture, mTBI mouse model [127]

MIF Mediates neuroprotective effects in Parkinson’s disease Mouse model of PD, SH-SY5Y in vitro model of PD [128]
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recognition, the cell cycle, cell component movement, cell 
proliferation processes, etc.), responses to stimuli, cellular 
component organization, biogenesis, etc. [74].

Platelet lysate bioactive molecules

HPLs are particularly rich in growth factors and neurotro-
phins, such as BDNF, TGF-β, PDGF-AA and -BB, insulin-
like growth factor (IGF)-1, EGF, VEGF, bFGF, macrophage-
stimulating protein (MSP), macrophage-colony stimulating 
factor (M-CSF), angiopoietin-1, angiogenin, and IGF-bind-
ing protein 3 (IGF-BP3) detectable by ELISA or multiplex 
analyses [153]. The complex composition was revealed by 
proteomics approaches such as two-dimensional electropho-
resis and liquid chromatography/mass spectroscopy. These 
findings suggest that the current lysis or activation proce-
dures to prepare HPLs, as described above, efficiently extract 
the platelet granule contents. It is however noteworthy that 
the PC sources (donor age and sex) and their mode of prepa-
ration (apheresis, whole blood, with the addition or not of 
PAS, and leuco-filtration or not) may influence HPL protein 

and growth factor (GF) profiles and their functional capaci-
ties [36]. These criteria must be considered during HPL 
production since in several studies, the beneficial effects of 
HPL therapies are likely mediated, at least in part, by GFs 
(Fig. 2) [36, 62].

In addition to GFs, a wide range of chemokines, includ-
ing platelet factor 4 (PF4 or CXCL4), CC-chemokine ligand 
3 (CCL3 or macrophage inflammatory protein (MIP-1α)), 
CCL4 (MIP-1β), CCL5 (RANTES), CXCL1, MCP1/CCL2, 
CXCL2, and chemokine receptor-binding protein (mac-
rophage migration inhibitory factor, MIF) has been identi-
fied in HPLs [153, 154]. Physiologically, secretion of these 
chemokines generally occurs during platelet activation, 
which explains their presence in HPL preparations obtained 
by platelet lysis or thrombin-generation. They play roles at 
the onset of inflammatory reactions by attracting leukocytes 
to infiltrate injured tissues. HPL contents in chemokines are 
commonly quantified by multiplex-based measurements. 
They are generally associated with chemotaxis, wound 
repair, and angiogenesis [153, 155], but are also linked to 
neuroinflammation, which is now considered not only to be a 

Table 2  (continued)

HPL bioactive factors Reported biological effects Experimental model References

Antioxidants CAT Protects against dopaminergic neuronal cell death Mesencephalic neuronal–glial culture, rat stroke model [129, 130]

CP Inhibits lipid peroxidation and ROS CP−/− mouse model [131]

Exerts protective activity against iron-induced oxidative 
damage in Alzheimer’s disease and TBIs

CP −/−, AD, focal cortical contusion injury mouse models [131–133]

GPX Protects mammalian cells against oxidative damage Human cell line cultures [134]

Is protective in Huntington’s disease models (inhibits the 
activity of ROS-producing enzymes)

In vitro cell culture and Drosophila Huntington’s disease 
model

[135]

SOD Inhibits lipid peroxidation, is neuroprotective In vitro primary cultured cortical neurons and rat stroke 
model

[130, 136, 137]

Trx (TXN) Protects against oxidative stress-associated diseases
Modulates microtubule polymerization kinetics in vivo

PC12 cell culture [138, 139]

Is involved in cell–cell communication, transcriptional 
regulation, cell signaling, and DNA synthesis

Focal brain ischemia in rats [140]

Exerts a cytoprotective effect in the nervous system RASMC and raw cell culture [141]

GCLM Is associated with glutathione synthesis In vivo [142, 143]
Interleukins TIMP-1 Regulates neuroinflammation and neuropathic pain In vivo in mice and rats [144–147]

Modulates astrocyte function and myelination In vivo [148, 149]
IL-4 Has anti-inflammatory properties Human monocytes, murine bone marrow-derived mac-

rophage culture
[150]

Platelet-EVs GFs Stimulates angiogenesis and neurogenesis Rat ischemia model [151]
miR-126-3p Exerts anti-inflammatory effects Primary human macrophages [152]

AMPK Adenosine monophosphate-activated protein kinase, AD Alzheimer disease, BDNF brain-derived neurotrophic factor, CAT  catalase, 
CCL5 CC chemokine ligand 5, CP ceruloplasmin, EGF epidermal growth factor, EV extracellular vesicle, FGF fibroblast growth factor, GAL-1 
or LGALS1 galectin 1, gsn gelsolin, GCLM glutamate-cysteine ligase regulatory subunit, GPX glutathione peroxidase, GSK3β glycogen synthase 
kinase 3β, GF growth factor, HGF hepatocyte growth factor, IGF‐1 insulin‐like growth factor‐1, MANF mesencephalic astrocyte-derived neu-
rotrophic factor, MIF macrophage migration inhibitory factor, mTOR mammalian target of rapamycin, mTBI mild traumatic brain injury, MPP 
myelin protein peripheral, NSC neural stem cell, NENF neuron-derived neurotrophic factor or neudesin, Nrf2 nuclear factor erythroid 2-related 
factor, PI3K phosphatidylinositol 3-kinase, PD Parkinson’s disease, PDGF platelet-derived growth factor, ROS reactive oxygen species, SOD 
superoxide dismutase, TIMP-1 tissue inhibitors of metalloproteinases 1, TXN thioredoxin, TGF-β transforming growth factor β, WT wild type
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detrimental factor but also a supportive phenomenon in CNS 
repair as revealed in many studies [156–158]. It was also 
shown that platelet granules contain both proinflammatory 
and anti-inflammatory molecules associated with immunity. 
Thus, as expected, studies have highlighted the presence of 
interleukins in HPL preparations. Interleukin (IL)-1α, IL-1 
receptor antagonist (IL-1Ra), IL-4, cell surface receptors 
(cluster of differentiation 14 (CD14) and CD40L) as well 
as proteases, such as tissue inhibitor of metalloproteinase 
(TIMP)-1, are among the molecules detected. These inter-
leukins are commonly associated with inflammation modu-
lation, but may also act as trophic factors, stimulating the 
migration and differentiation of cells, as well as playing an 
anti-inflammatory role [144, 148, 159].

Further, HPLs are enriched in various antioxidants such 
as glutathione peroxidase (GPx), glutathione S-transferase, 
catalase (CAT), ceruloplasmin (CP), superoxide dismutase 
(SOD), and thioredoxin (TXN) [51]. Glutathione and 
TXN are defined as thiol antioxidants. Glutathione can be 
a cofactor for many detoxifying enzymes, carries amino 
acids across plasma membranes, directly scavenges OH 
radicals and dioxygen, and produces vitamins, leading to 
its protective impacts against oxidative stress [160]. TXN 
has oxidoreductase activity, and its plasmatic level increases 
in diseases associated with oxidative/nitrosative stress and 
inflammation [161]. SOD and CAT are considered enzy-
matic antioxidants which strongly protect against oxidative 
stress. Other biochemical analyses have been used to further 
characterize the chemical contents of HPLs, allowing the 
identification of albumin, total cholesterol, triglycerides, 
vitamin B12, calcium, iron, and sodium [153]. Further, and 
quite importantly, HPLs contain a serotonin neurotransmit-
ter, which is involved in diverse functions including vascular 
tone, hemostasis, immune response, bone remodeling, and 
energy metabolism. It is not synthesized by platelets but 
can accumulate in the blood [162] and be stored in dense 
granules.

Platelet‑derived EVs

Most cells, including platelets, can release EVs [163, 164]. 
Although published information is still scarce, it is increas-
ingly evident that HPLs contain, in addition to proteins, 
peptides and other biomolecules, a plethora of EVs. “EV” 
is an umbrella term defining a heterogeneous population of 
cell-derived nanosized vesicles delimited by a lipid bilayer 
[165]. EVs are typically classified into exosomes when 
they originate from the endosomal compartment of cells, 
microvesicles, or microparticles when their formation results 
from a budding of the cellular plasma membrane [166].

The interest in EVs lies in the fact that they are now 
widely thought to play important physiological and patho-
logical roles in cell-to-cell communications as a cargo of 

biomolecules. EV's functions are orchestrated by (a) the “tar-
geting” receptors or integrins present on their membrane and 
(b) the content of potent biomolecules, both of which repre-
sent a biological signature from the parent cells. EV cargoes 
include trophic factors/proteins, lipids, messenger (m)RNA, 
and miRNA that can be delivered to distant cellular recipi-
ents. EVs, especially those derived from MSCs, are even 
seen as potential stand-alone therapeutic products or drug-
delivery vehicles in various fields of regenerative medicine 
and disease treatment [167–171]. In addition, EVs, either 
native or loaded with drugs, are generating much interest for 
applications in treating disorders of the CNS, such as Par-
kinson’s disease [172], gliomas [172], Batten disease [173], 
Alzheimer’s disease [174], hypoxia-ischemic injury [175], 
and lipopolysaccharide (LPS)-induced microglial prolifera-
tion [176]. The scientific rationale supporting the use of EVs 
in the treatment of CNS disorders includes (a) a lower risk 
of immunogenicity and tumorigenicity compared to MSCs 
[177, 178], (b) their safety and biocompatibility compared 
to synthetic nanocarriers [179], and (c) a demonstrated 
capacity to encapsulate natural and synthetic therapeutic 
molecules, long circulating half-lives to overcome tissue 
barriers [180], and an ability to cross the BBB [177, 181]. 
For instance, blood-derived exosomes loaded with dopa-
mine were able to cross the BBB, reach the striatum and 
the substantia nigra, exert a more potent functional effect, 
and be less toxic than free dopamine in an animal model of 
Parkinson’s disease [182]. Similarly, the intravenous admin-
istration of macrophage-derived EVs led to BBB penetration 
and delivery of BDNF in an animal model, including under a 
state of brain inflammation, suggesting therapeutic potential 
for treating CNS diseases [183]. Zebrafish studies demon-
strated the ability of brain endothelial cell-derived exosomes 
to deliver anticancer drugs across the BBB, supporting their 
potential use in treating brain cancer [184]. EVs are also 
attracting a lot of interest due to the possibility that they can 
be delivered by intranasal (IN) administration [177, 185, 
186]. For instance, the IN administration of monocyte- and 
macrophage-derived EVs that are loaded with the CAT anti-
oxidant led to neuroprotective effects in an in vivo Parkin-
son’s disease model [187]. All these findings justify recent 
attempts to better understand the possible presence as well 
as roles, either beneficial or detrimental, played by platelet 
EVs in HPLs [163].

Several elements support the presence of a substantial 
number of EVs in at least some HPLs. PCs for transfusion, 
which are used to produce HPLs, were found to contain 
numerous EVs [188–191]. Those originate from the col-
lected blood itself or can be additionally released by plate-
lets over the 5–7-day storage period in a liquid state after 
blood collection [191]. Indeed, platelets and megakaryocytes 
contribute close to 50% of the EV pool present in the blood 
circulation [192], representing an apparent concentration 
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of up to  109/µL of plasma [193, 194]. However, accurate 
quantitation of EVs in PCs (pEVs) and HPLs remains highly 
dependent on the quantitative technique used and the capac-
ity to discriminate from chylomicrons, low-density lipo-
protein, and high-density lipoprotein. Using cryo-electron 
microscopy, pEV concentrations were conservatively deter-
mined to be close to 11,500/µL of plasma [193]. Platelet 
activation by various agonists and shear stress generated 
during collection, handling, and storage can lead to platelet 
degranulation and concomitant EV release [195–197].

PCs used for transfusion or as raw material to prepare 
HPLs are thus likely to contain a high proportion of EVs 

derived from megakaryocytes and platelets [19, 168]. In 
addition, the freeze–thaw process and calcium chloride-
induced platelet lysis or degranulation to prepare the HPLs 
are likely to lead to further pEV generation. The popula-
tion of EVs in HPL preparations depends upon the mode 
of collection of the PCs and of the production of the HPL. 
pEVs express various clusters of differentiation on their sur-
face such as CD31, CD41, CD42, CD61, CD62, and CD63. 
Phosphatidylserine (PS), a procoagulant active phospho-
lipid, may also be expressed on the surface of pEVs [198]. 
The presence of PS-expressing pEVs in HPLs may vary, 
suggesting an impact of the mode of production [68]. Some 

Fig. 2  Summary of the neuroprotective and neurorestorative activities 
of human platelet lysate reported in animal models of neurodegen-
erative diseases and CNS injuries. HPL are produced from platelets. 
In the animal models of Alzheimer and Parkinson’s diseases, amyo-
trophic lateral sclerosis, stroke, and traumatic brain injury human 

platelet lysates are delivered either by intranasal, intracerebroven-
tricular administration, or by topical deposition at the desired region. 
The main effect of the HPL is their ability to stimulate neurogenesis 
and their neuroprotective activity. HPL human platelet lysate, NSC 
neural stem cell, ROS reactive oxygen species
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pEVs have binding sites for coagulation factors, such as 
activated factor V and factor VIII, and thrombin [199], and 
a surface that is 50–100-fold more procoagulant than that 
of activated platelets [199], which may represent a poten-
tial safety concern for brain administration. The possibility 
of pEVs exerting proinflammatory actions exists as they may 
contain cytokines such as IL-1, IL-6, and tumor necrosis fac-
tor (TNF)-α [200]. However, other studies suggested their 
capacity to inhibit cytokine release by macrophages [201] 
and plasmacytoid dendritic cells [202], and stimulation of 
monocyte aggregation by monocytes and neutrophil extra-
cellular trap formation [203, 204], differ among pEV popula-
tions. Possible roles played by pEVs in the neuroprotective 
and neurorestorative functions and anti-ageing capacity of 
platelet lysates may be associated with their contents of neu-
rotrophic GFs such as PDGF and BDNF, anti-inflammatory 
and antioxidative biomolecules, neurotransmitters, non-
coding RNAs (mRNAs and miRNAs) [205, 206], and mito-
chondria, at least for some subsets [18, 19, 164, 188]. pEV 
lipid components promote the capacity of human umbilical 
vein endothelial cells (HUVECs) to proliferate, migrate, and 
form tubes and promote in vivo revascularization follow-
ing chronic ischemia [207]. Proangiogenic effects of pEVs 
were also associated with their contents of VEGF, bFGF, 
and PDGF [208]. This suggests that the pro- and anti-inflam-
matory effects and other biological functions of pEVs are 
intimately linked to their nature, supporting future in-depth 
studies of the type of EVs present in HPLs as efficacy and 
safety factors.

Expected neuroprotective outcomes of platelet 
lysate bioactive molecules

The various bioactive molecules contained in HPLs and 
pEVs therefore have strong potential for neuroregenerative 
applications. Trophic factors present in HPLs were individu-
ally described several years ago as crucial signaling mol-
ecules that have specific functions in essential biological 
processes related to the CNS [209, 210]. For instance, using 
an in vitro model of neuronal cell cultures, Kim et al. [211], 
Pietz et al. [212]. and Nikkhah et al.[213] demonstrated the 
ability of BDNF and PDGF to protect neuronal cells against 
apoptotic cell death. Other factors, including EGF [214], 
VEGF [215] mesencephalic astrocyte-derived neurotrophic 
factor (MANF) [216], and IGF-1, were also demonstrated 
to improve neuronal survival or provide neuroprotection, in 
addition, to stem cell proliferation and differentiation into 
neurons. In vitro and in vivo experiments particularly eluci-
dated the key functions of GFs and neurotrophins on neural 
stem cell development into neurospheres and neural differ-
entiation. Neurotrophic factors, such as VEGF, EGF, FGF-
2, PDGF, BDNF, PF-4, TGF-ß, IGF-1, connective tissue 
growth factor, and bone morphogenetic protein (BMP)-2, -4, 

and -6, are all involved in neurogenesis and neuroepithelial 
cell proliferation, differentiation, migration, and survival 
[14, 217]. Activation of the TrkB- and p75NTR signaling 
pathways [218, 219], known as cell surface receptors of 
several of these neurotrophins, is also involved in these pro-
cesses, in both physiological and pathological conditions 
[82, 220–222]. In a developmental setting, these factors also 
control the formation of synapses [223]. Other investigations 
showed that platelet EVs enhanced neural stem cell growth 
and differentiation [224]. In keeping with these observations, 
platelet trophic factors might have a significant impact on 
neurogenesis, occurring mainly in adults, in the subgranular 
zone of the hippocampal dentate gyrus and subventricular 
zone (SVZ) of lateral ventricles [225–229]. In physiologi-
cal conditions, there are experimental in vivo arguments 
that the platelet proteome might impact brain neurogenesis. 
Indeed, large numbers of blood proteins were recently found 
to physiologically cross the BBB [230]. In agreement, the 
blood of young mice promoted the formation of new neu-
rons in the adult brain [231–233]. Other experiments sup-
ported the concept that in vivo activation of platelets, prone 
to release growth-promoting factors, improves neurogenesis 
in physiological conditions, presumably in part through PF4 
(CXCL4), an abundant factor in platelet proteomes [234]. 
Another example is the chemokine CCL5, which is also 
abundant in platelets and recently demonstrated to promote 
glucose aerobic metabolism and positively impact hip-
pocampal synaptic plasticity and cognition [125]. A more 
extensive view of the effects of natural molecules found in 
platelet lysates that are prone to exert CNS effects is dis-
played in Table 2.

Platelet lysates for brain administration: 
preclinical evidence

The above-mentioned generic potential of individual com-
ponents of HPL regarding neuronal fates shows that platelet 
lysates may combine several properties and potentially exerts 
synergistic beneficial impacts in many neurological condi-
tions. By its ability to modulate several important processes 
such as inflammation, neuronal death, oxidative stress, and 
angiogenesis, presumably occurring at different stages in 
many disorders, HPLs likely represent a reliable source of 
human trophic factors with high clinical potential. In keep-
ing with this idea, the potential of HPL has been revealed 
though various experimental and recent preclinical studies, 
in several different pathophysiological contexts (Table 3).

Stroke

The first studies to investigate the neuroprotective and 
neurorestorative activity of HPLs have been conducted in 
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stroke models. In an experimental model of focal ischemia 
induced by permanent distal middle cerebral artery occlu-
sion (PMCAO), Hayon et al. tested the effect of direct HPL 
administration into the lateral ventricle, delivered just after 
ischemic injury [69]. They followed the functional outcomes 
of animals for 90 days and found a beneficial effect of HPL 
on the neurological severity score after only 1 week which 
was maintained over time. Histologically, such a benefit was 
associated by a reduced infarct volume along with enhanced 
angiogenesis and neurogenesis, presumably through Akt 
and extracellular signal-regulated kinase (ERK)-dependent 
mechanisms. Another study was performed by Zhang et al. 
using rats with focal ischemic stroke followed by local or 
systemic delivery (intrafemorally vein injection) of HPL 
[237]. As found by Hayon et  al., a local HPL infusion 
reduced neurological deficits and infarct volumes compared 
to control treatment. Interestingly, systemic delivery also 
provided a benefit, albeit smaller [237]. Finally, pEVs have 
also been investigated in rat PMCAO and were found to 
promote angiogenesis and neurogenesis leading to improved 
behavioral outcomes [151], suggesting that HPL's effects 
are, at least in part, mediated by pEVs.

Alzheimer’s disease

Anitua et al. evaluated a specific type of HPL in Alzhei-
mer’s disease animal model. In their study, the group pre-
pared an HPL called “PRGF” [plasma rich in growth factor), 
Endoret)] from healthy young male donors’ whole blood 
[65]. The HPL was administrated by intranasal delivery (IN) 
three times per week for 4 weeks to male double-transgenic 
APP/PS1 mice. Behavioral tests investigating anxiety and 
memory were performed. As expected, APP/PS1 mice 
exhibited memory impairments, which were reversed in the 
HPL-treated group. This beneficial impact of HPL was also 
observed in terms of anxiety. Behavioral improvement was 
correlated with reduced β-amyloid (Aβ) deposition and brain 
levels of Aβ40 and Aβ42 but also tau hyperphosphorylation, 
though glycogen synthase kinase 3β (GSK3β) inhibition, all 
logically converging towards the enhanced expressions of 
synaptic markers (synaptophysin, synapsin, and postsynap-
tic density protein (PSD)-95). Interestingly, that study par-
ticularly suggested that HPL prevented astrocytic reactivity 
by Aβ and even Aβ degradation by those glial cells, using 
cultured astrocytes [65]. Later work by the same group [66] 
confirmed the in vitro ability of this HPL preparation to 
reduce Aβ-induced neurotoxicity of primary neurons but 
also provided interesting data showing the ability of HPL 
to increase proliferation and differentiation of neural stem 
cells in the subgranular zone (SGZ). These encouraging pre-
liminary results in Alzheimer’s disease models need to be 
refined using curative paradigms, opening to Tau models and 

humanized knock-in and human induced pluripotent stem 
cell (hiPSC) models.

Parkinson’s disease

HPLs have been investigated as a novel biotherapy for Par-
kinson’s disease using both in vitro and in vivo models and 
various mode of administration, including IN and intracer-
ebroventricular (ICV). In 2017, Chou et al. [49] and Gouel 
et al. [64] reported the in vitro neuroprotective activity of a 
concentrated and heat-treated HPL with low protein contents 
and depleted of plasma proteins, using Lund human mes-
encephalic (LUHMES) cells subjected to either neurotoxin 
1-methyl-4-phenylpyridinium (MPP +) or erastin. The lat-
ter has been used as a model of ferroptosis [238, 239], an 
iron-dependent cell death involving lipid peroxidation [240] 
and reported to be one of the cell death pathways linked 
to Parkinson’s disease pathological development [240]. In 
those studies, the authors revealed that at up to 20% (v/v), 
this HPL was not toxic and that pretreatment with 5% HPL 
significantly alleviated ROS production and cell death pro-
moted by both inducers through Akt and mitogen-activated 
protein kinase (MEK)-dependent signaling pathways [64]. 
Similar results were reported using LUHMES cells as 
well as primary neurons treated by an HPL prepared from 
licensed human PCs subjected to pathogen-reduction treat-
ment using psoralen/UVA irradiation (Intercept) [53]. These 
data notably highlighted that this photochemical treatment 
of the PC raw materials used to prepare the HPL did not 
alter HPL neuroprotective activity. It is noteworthy that the 
precise mechanisms underlying the anti-ferroptosis action of 
HPL remain to be elucidated. It may likely be related to the 
presence of antioxidants such as SOD or glutathione. Impor-
tantly, beneficial effects of HPL were also demonstrated in 
an in vivo model of Parkinson’s disease generated follow-
ing 1-methyl-4-phenyl-1,2,3,5-tetrahydropyridine (MPTP) 
intoxication [49]. The data particularly demonstrated that 
IN delivery of HPL, initiated 2 days before an MPTP injec-
tion led to a significant reduction of dopaminergic neuron 
degeneration as attested by enhanced tyrosine hydroxylase 
staining in both the substantia nigra and striatum [49]. These 
effects were suggested to notably arise from reduced anti-
inflammatory activity of HPL since both cytochrome oxi-
dase subunit 2 (COX-2) and Iba-1 levels were found to be 
reduced. That study however lacked behavioral investiga-
tions. Interestingly, Anitua et al. examining the effects of 
preventive IN administration of PRGF-Endoret (also used in 
the APP/PS1 model, see above), in the MPTP mouse model 
[67], reported similar improvement, including anti-inflam-
matory potential at the motor level. Strikingly, this work also 
demonstrated that HPL delivered after lesion onset by MPTP 
was also able to provide partial protection of dopaminergic 
neurons and alleviate motor alterations [67]. It is notable 
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that in both Chou et al. and Anitua et al.'s studies, it was 
demonstrated that HPL neuroactive molecules readily reach 
the brain following IN administration. Overall, these data 
support HPL as a safe product able to provide neuroprotec-
tion and stimulate tissue regeneration in Parkinson’s disease 
models. From a clinical perspective, the potential of HPLs 
delivered after lesion occurrence needs to be further dem-
onstrated as well as in additional chronic models, including 
non-human primates.

Traumatic brain injury (TBI)

TBI is another pathology in need of a pluripotent and mul-
tifaceted therapeutic strategy to ensure an immediate anti-
inflammatory effect, neuroprotection, and neuro-restoration 
through enhanced angiogenesis and neurogenesis, remode-
ling of the neuro-vasculature, and reconstruction of neuronal 
cell networks [241]. Interestingly, Kazanis et al. reported in 
an experimental model of focal TBI that an accumulation 
of activated platelets surrounding the injury site correlated 
with a significant reduction in neuronal death, suggesting 
the presumable involvement of the platelet proteome in the 
repair process [217]. Using in vitro neural stem/progenitor 
cell (NSPC) culture, those authors confirmed the ability of 
HPL to enhance cell survival and protection against apop-
tosis. In agreement with such a protective ability of HPL, 
we recently evaluated the protective ability of HPL using an 
in vitro and two in vivo models of TBI. In vitro, we used a 
SH-SY5Y neuroblastoma model stimulated or not with HPL 
and found that the latter stimulation readily supported the 
maturation and neurite outgrowth of cells under a scratch 
lesion procedure [50]. Importantly, we also reported the 
benefits afforded by platelet lysate in a model of mild TBI 
resulting from a concussion and in an “in-house” developed 
model of penetrating TBI (cortical brain scratch or “CBS”). 
Animals were treated with one topical application of HPL to 
the wounded area followed by daily IN administration over 
6 days. At the behavioral level, motor and memory functions 
were found to have improved by HPL in both models. At 
the molecular level, explaining behavioral motor improve-
ments, HPL alleviated cortical neuroinflammation, oxida-
tive stress, and synaptic loss. Interestingly, a non-hypothesis 
driven proteomic evaluation highlighted the involvement of 
some biological pathways such as the Wnt signaling path-
way, nuclear factor-erythroid 2-related factor 2 (Nrf2), and 
fatty acid biosynthesis in the synergistic neuroprotective 
activity of the platelet preparations. These findings therefore 
correlate with the above-mentioned physiological roles of 
platelets and indicate the clinical relevance of platelet lysates 
in TBIs. Those studies also suggest that, in case of severe 
injury with brain access, HPL could be administered topi-
cally followed by continuous therapy by IN administration. 
Recent data indicate that in the mild TBI concussion model, 

IN administration of this HPL over three days is sufficient to 
counter-balance cortical inflammation [242]. The frequency 
and duration of IN administration to reach optimal recovery 
remain undefined, and further experimental exploration is 
needed.

Amyotrophic lateral sclerosis

The potential to use HPL trophic factors as a biotherapy 
against amyotrophic lateral sclerosis progression has been 
proposed [243], following encouraging results in an in vitro 
cell culture model by Gouel et al. using NSC-34, a mouse 
motor neuron-like cell line [64]. In that work, cells were 
intoxicated with staurosporine or menadione 1 h after HPL 
stimulation. In neurotoxic conditions, cell viability was 
found to be significantly higher with HPL treatment, an 
effect associated with the Akt pathway, known to be involved 
in cell growth, survival, proliferation, apoptosis, metabo-
lism, and angiogenesis [64]. Another heat-treated HPL and 
its various fractions separated based on their molecular 
mass were confirmed to exert Akt-dependent anti-apoptotic 
and anti-ferroptotic actions in neuronal cell cultures [236]. 
The fraction with an apparent molecular mass below 3 kDa 
exerted a GPX4-dependent anti-ferroptotic action suggesting 
that it has a protective role that may complement those asso-
ciated to the higher molecular mass neurotrophins present 
in the unfractionated HPL. Most importantly, the intracer-
ebroventricular delivery of the HPL, and the IN administra-
tion of the fraction containing < 3 kDa molecules increased 
the lifespan of  SOD1G86R mice used as model of ALS [236]. 
These encouraging data might be of crucial importance con-
sidering the rapid clinical deterioration of affected patients 
and the lack of effective treatments for ALS.

Expected quality and safety requirements 
for clinical translation: regulatory 
perspectives

Looking at current preclinical data, considerations should be 
given to the feasibility of bringing HPLs to the stage of clini-
cal trials in neurological disorders. In that regard, developing 
safe and standardized HPLs for brain administration will 
necessitate a unique set of quality and safety requirements 
that can be somewhat more demanding than those needed for 
clinical-grade cell expansion and “low key” clinical applica-
tions in regenerative medicine.

Manufacturing process

The manufacturing process of clinical-grade platelet prepa-
rations is facilitated by the fact that PC units, used as start-
ing materials, are regarded as medicines in many countries 



Can the administration of platelet lysates to the brain help treat neurological disorders?  

1 3

Page 17 of 25 379

worldwide. PCs used to prepare HPLs should be collected 
from healthy blood donors screened by blood establishments 
following international requirements. In a context of the pro-
duction of platelet preparations for brain administration, this 
is important as several neurodegenerative pathologies, such 
as Alzheimer’s disease, Parkinson’s disease, amyotrophic 
lateral sclerosis, and Huntington’s disease, may be linked to 
platelet dysfunctions [32].

To achieve an optimal standardization and consistency 
in the composition of HPLs, however, pooling of dona-
tions from at least 50 donors appears to be required based 
on experience generated in the production of HPL prepara-
tions for human cell propagation [36, 37]. Pooling, however, 
increases the statistical risk of the presence of infectious 
agents, most particularly viruses. Even though viral safety 
profiles of PC donations are currently very high, all infec-
tious risks cannot be completely excluded by the measures 
in place in blood establishments for selecting and screening 
blood donors, or viral testing of donations. A low risk of 
window-phase donations for human immunodeficiency virus 
(HIV), hepatitis B virus (HBV), and HCV exists. Besides, 
some blood-borne viruses, like HAV, parvovirus B19, Den-
gue virus, Zika virus, West Nile virus, as well as unknown or 
emerging viruses, potentially including severe acute respira-
tory syndrome coronavirus-2 [SARS-CoV-2, also known as 
coronavirus disease 2019 (COVID-19)], are not routinely 
tested for in blood donors in most jurisdictions. Among 
those, several viruses, especially flaviviruses, are known to 
affect the brain and induce encephalitis [244–246]. In addi-
tion, the use of HPL-based therapeutic products in neuro-
protection must also consider any theoretical risks of prion 
diseases and other transmissible spongiform encephalopa-
thies [247]. In recent years, Alzheimer’s disease, Parkinson’s 
disease and many brain proteinopathies have been also con-
sidered as prion-like disorders [248]. Experimental models 
have explored protein seeding and spreading in prion-like 
disorders. Moreover, there are few evidences that seeds of 
prion-like proteins inoculate in the periphery may lead to 
brain diseases in different animal models [249–251]. Finally, 
there are several studies indicating that blood-derived mate-
rials and tissues from patients with different proteinopathies 
may contain prion-like proteins [252–254]. Altogether, such 
findings have highlighted new potential biological risks for 
blood-derived materials such as HPL that should be taken 
into consideration for translational developments.

The vast experience gained in the last three decades in 
ensuring the safety of pooled blood products can serve to 
guarantee that HPLs for brain administration can meet the 
most stringent safety criteria. Indeed, in addition to collect-
ing platelets from healthy donors with no known risk factors 
and viral testing, PCs can be individually subjected to path-
ogen-reduction treatments by photo(chemical) inactivation, 
such as sporalen/ultraviolet A (UVA) and riboflavin/UVC 

[255–257], or short-wave UV light [258]. Such treatments 
are already licensed for PCs used for transfusion or under 
clinical evaluation. Lack of toxicity and maintenance of neu-
roprotective activity in neuronal cell models of one HPL 
made from psoralen/UVA-treated PCs were demonstrated 
[50, 53], as were the lack of toxicity or other negative effects 
on MSCs [259]. Additional measures and viral-reduction 
treatments of HPLs for brain administration can be consid-
ered based on experiences gained from the plasma fractiona-
tion and cell therapy industries. Such measures include test-
ing the starting HPL pool to confirm the absence of nucleic 
acids of relevant viruses such as HIV, HBV, HCV, HAV, par-
vovirus B19 [260, 261], or emerging viruses as needed, and 
possible implementation of dedicated virus-inactivation or 
removal steps, such as solvent/detergent, gamma-irradiation, 
e-beam, or nanofiltration, as recently described for pooled 
HPLs used for ex vivo human cell propagation [39]. The 
above-mentioned findings related to prion transmission also 
highlight the importance of ensuring the health status of the 
blood donors, one cornerstone of transfusion safety. This 
also stresses the possible relevance of implementing prion 
removal procedures during HPL manufacture. Nanofiltra-
tion on filters of 35 nm, and preferably 20 or 15 nm, which 
efficiently removes viruses, has also been found in various 
experimental studies to remove prion infectivity from blood 
products [262–265]. Another pillar of the virus safety of 
HPLs is, as for any blood products, the need for a solid trace-
ability system, ensured through auditing and inspections, so 
that immediate protective actions can be taken both ways 
when unexpected events are identified at the donor or patient 
sides [37].

Quality and safety criteria

The specific quality and safety criteria of HPLs for brain 
administration remain to be determined following further 
preclinical evaluations in animal models and eventual safety 
studies in humans. As for any parenteral products for human 
clinical use, bacterial sterility, and the absence of endotoxins 
(which can generate neuroinflammation) below a strict level 
for each batch need to be ensured. Each batch should meet 
specified limits for osmolality, pH, total protein content, and 
the presence of insoluble materials, as well as any potentially 
toxic chemicals used during the process of production to 
control their removal below acceptable levels.

Compared to applications to tissues like joints, muscles, 
and skin, administration to the brain, regardless of whether 
it is ICV, topical, or IN, is expected to require an HPL with 
a specific set of quality requirements, at least at the stage of 
process validation, with regard to the total protein content 
and removal of potentially toxic blood–brain proteins. As 
an example, one particular HPL was developed using a pro-
cess that removed the plasma compartment to specifically 
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decrease the bulk of unnecessary proteins and avoid a risk 
of protein overload in the cerebrospinal fluid [49]; this also 
avoids the presence of plasma-borne fibrinogen and coagu-
lation factors, thereby limiting possible risks of neurotoxic 
fibrin deposition following ICV administration [266]. In 
addition, this preparation was subjected to heat treatment 
at 56 °C for 30 min that was shown to lower the risk of 
thrombin generation, and proteolytic and thrombogenic 
activities without altering its neuroprotective capacity [49, 
68]. Dedicated inactivation or removal treatment effective 
against neurotoxic viruses, such as HCV, dengue, and Zika 
viruses, are particularly relevant.

Platelet lysates for brain administration: 
pending questions

Several questions will need to be addressed and resolved to 
translate a platelet lysate biotherapy into clinical practices.

One issue refers to the mode of administration to allow 
controlled delivery of the treatment into the brain. The 
above-mentioned preclinical studies in rodents indicate that 
platelet lysates can be administered directly to the brain by 
intracranial [69], intranasal [49, 51, 66, 67], topical [51] 
and/or intracerebroventricular [236] routes. These delivery 
modes intend to bypass, at least partially, the BBB to provide 
better targeting and control of the doses reaching the CNS. 
Direct brain delivery also avoids potential side effects asso-
ciated with systemic administration. Intracranial or intracer-
ebroventricular administrations are the best options currently 
available to ensure precise control of the dose of product 
administered to the brain. However, this mode of delivery 
is invasive and requests the implantation of a device allow-
ing continuous or intermittent delivery [267]. Such proce-
dure would be possibly attractive to patients with the most 
advanced cases or short pejorative outcomes, e.g., patients 
with amyotrophic lateral sclerosis or advanced stages of Alz-
heimer’s or Parkinson’s diseases, pending associated surgery 
remains possible. In addition of intracerebral delivery, an 
alternative non-invasive intranasal route of administration, 
assuming effective delivery procedures can be developed for 
human use [268], would be highly attractive for early-stage 
treatment of patients with moderate symptoms associated 
with neurodegenerative disorders or mild trauma. To our 
knowledge, the intravenous delivery of HPL has not been 
reported in animal models, potentially for three reasons: 
(a) high potential of immunological reactions of immuno-
competent animals receiving a mixture of human proteins, 
thereby limiting the extent of scientific information from 
preclinical work; (b) risks of systemic uncontrolled adverse 
reactions; and (c) limited permeability of the BBB to intra-
venously administered active substances.

Defining the optimal dose and frequency of administra-
tion of HPL, depending upon pathologies and their severity, 
will require further preclinical studies and may warrant stud-
ies using non-human primates for optimal predictive assess-
ment of what could occur in humans. With that regard, the 
ability to correlate the impact of administered doses with 
objective parameters based on brain imaging as a diagnostic 
biomarker, or blood biochemistry as biological biomarker 
will be valuable for treatment modalities.

There is little information on the possible risks linked 
to the long-term administration of platelet lysates into the 
brain by either direct or intra-nasal infusions. Even though 
no side effects are reported in animal models, even over 
close to 3 months of delivery [236], the complexity of the 
platelet lysate does not exclude the eventual occurrence of 
side effects. For instance, the presence of pro-coagulation 
and pro-inflammation molecules could eventually counter-
balance the beneficial neuronal effects, leading to a detri-
mental impact on the health status of patients and worsening 
their neurological disorders. The potential presence of pro-
teinopathy seeds might also warrant being evaluated. These 
potential risks re-emphasize the importance of developing 
HPLs with a specific set of quality requirements along the 
whole chain of production for optimal biochemical safety 
for brain administration.

The potential for host immune reactions against donors’ 
antigens when using non-autologous platelet lysates may 
not be excluded. However, based on the long-term clinical 
experience acquired with the use of allogeneic plasma and 
plasma protein products for transfusion, this risk appears 
reasonably unlikely provided the human platelet lysates pro-
tein solution is depleted of the antigen-bearing blood cell 
membranes by filtrations.

Conclusion and perspectives

There are objective scientific, medical, and industrial ration-
ales supporting the evaluation of dedicated blood-derived 
HPL for treating neurological diseases affecting the CNS 
[32–34, 243]. Collected human PCs represent a valuable 
raw material for producing HPLs. Out of 117 million blood 
donations collected each year in the world [269, 270], only 
about 20% are currently used to isolate PCs for transfusions, 
indicating that excess source material is virtually available 
to produce HPLs for brain administration.

As HPLs dedicated to brain administration are a new 
therapeutic concept aiming at repositioning the traditional 
use of platelets for transfusion, a regulatory framework will 
need to be developed which considers mechanisms of action, 
dosing, modes of administration, and severity of the dis-
eases. Communication with regulatory authorities will be 
needed particularly regarding criteria influencing the safety 
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and efficacy considering the inherent complex biochemical 
compositions of HPL preparations, as is already the case of 
numerous therapeutic blood products. As for other blood-
derived medicines, control and monitoring of the manufac-
turing process are key quality factors that should be scruti-
nized by regulatory authorities [167].

HPLs are attracting interest as a novel therapeutic 
approach in neuroprotective and neurorestorative medicine. 
Due to their origin from platelets, and not from recombi-
nant engineering technologies, and due to the complexity 
of their proteomes, HPLs can trigger multiple molecular 
processes instrumental to neuroprotection and restoration. 
It will therefore be crucial to further unveil the biological 
functions triggered by HPL treatment and delineate impacts 
associated with source platelet materials and any process 
variations. Quality and safety requirements can be deline-
ated for process and product validations by refined analytical 
tools (including proteomics) and cellular models relevant 
to the treatment of specific brain disorders. In conclusion, 
there are rational reasons to encourage further studies on 
the capacity of platelet extracts to exert beneficial effects in 
treating diseases of the CNS. This is further supported by the 
fact that PCs represent a source material available locally at 
the global level including in most LMIC, ensuring a domes-
tic supply to treat global neurological disorders.
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