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Abstract
Upon stress challenges, proteins/RNAs undergo liquid–liquid phase separation (LLPS) to fine-tune cell physiology and 
metabolism to help cells adapt to adverse environments. The formation of LLPS has been recently linked with intracellular 
pH, and maintaining proper intracellular pH homeostasis is known to be essential for the survival of organisms. However, 
organisms are constantly exposed to diverse stresses, which are accompanied by alterations in the intracellular pH. Aging 
processes and human diseases are also intimately linked with intracellular pH alterations. In this review, we summarize 
stress-, aging-, and cancer-associated pH changes together with the mechanisms by which cells regulate cytosolic pH homeo-
stasis. How critical cell components undergo LLPS in response to pH alterations is also discussed, along with the functional 
roles of intracellular pH fluctuation in the regulation of LLPS. Further studies investigating the interplay of pH with other 
stressors in LLPS regulation and identifying protein responses to different pH levels will provide an in-depth understanding 
of the mechanisms underlying pH-driven LLPS in cell adaptation. Moreover, deciphering aging and disease-associated pH 
changes that influence LLPS condensate formation could lead to a deeper understanding of the functional roles of biomo-
lecular condensates in aging and aging-related diseases.
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Introduction

Liquid–liquid phase separation (LLPS) refers to a demix-
ing transition of an initially homogeneous solution that 
rearranges and separates into two phases that can coexist 
stably in solution: a dense and a dilute phase. During this 
physiochemical process, supersaturated macromolecules are 

separated from the solution to form a dense phase, while 
these supersaturated components in the dilute phase are 
depleted. The macromolecular dense phase has liquid-like 
properties and can exchange molecules rapidly with the 
dilute phase [1]. Studies in recent years have shown that 
LLPS is the driving force for the assembly of nonmembrane 
organelles and other functional biomolecular condensates, 
which can achieve spatiotemporal control of their internal 
complex biochemical reactions without physical barriers [2, 
3].

Currently, the formation mechanisms of the resulting 
condensates formed by LLPS are preliminarily understood 
and are thought to rely on a network of weak and multi-
valent protein–protein interactions. Many proteins exhibit 
LLPS behaviors, and a common feature of such proteins is 
the presence of multivalent binding domains. Among these, 
intrinsically disordered regions (IDRs) are the main driv-
ers that provide multivalent interactions [4]. Studies have 
shown that IDRs are rich in hydrophilic amino acids such as 
asparagine, glycine, proline, serine, arginine, and aspartate, 
whereas they are lacking in hydrophobic amino acids such 
as valine, threonine, leucine, cysteine, isoleucine, histidine, 
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and tryptophan [4, 5]. The enrichment of only a few amino 
acids in these domains results in low complexity that could 
mediate weak interactions. Other proteins that contain oli-
gomerization domains and multiple-folded modular domains 
are also contribute to the multivalent interactions [5]. Fur-
thermore, emerging roles of RNA molecules in the assem-
bly of biomolecular condensates have been revealed. RNAs 
help establish the promiscuous interaction network through 
interactions with the RNA-binding domains of proteins, and 
their intermolecular interactions and self-assembly define 
the compositions of higher-order condensates [6, 7]. Accu-
mulating evidence shows that protein post-translational 
modification (PTM) is another important mechanism that 
achieves cellular control of protein phase separation and 
condensate formation through processes such as phospho-
rylation, acetylation, SUMOylation, ubiquitination, meth-
ylation, and ADP-ribosylation [8, 9]. These modifications 
can alter the weak multivalent interactions by changing the 
charge, structure, hydrophobicity, and other properties of 
proteins, thus affecting phase separation behavior [8, 9]. In 
addition, not only protein PTM but also RNA PTM affects 
condensate dynamics. For instance, N6-methyladenosine 
(m6A) of RNA can modulate condensate formation and 
composition by regulating mRNA distribution into distinct 
condensates or changing the phase separation behaviors of 
its binding partners [10, 11].

There is mounting evidence that LLPS and condensate 
formation are widely present in the cells and play important 
roles in a wide range of physiological processes (Fig. 1), 
including chromatin organization, cytoskeletal assembly, 
signal transduction, transcriptional regulation, protein deg-
radation, cell division and differentiation, and environmental 
response and adaptation [2]. The condensates can transition 
into different material states such as gel- or solid-like states 
[1, 12]. Therefore, maintenance of normal condensate mate-
rial properties can ensure the assembly and disassembly of 
condensates in a tightly controlled manner to fulfill origi-
nal functions, while aberrant phase transition is causatively 
associated with the onset and development of age-related 
neurodegenerative diseases and cancers (Fig. 1) [13]. In 
recent research, the development of methods to study LLPS 
has become an important objective. A series of tools have 
been developed to predict and analyze the phase separa-
tion capabilities of proteins [1]. Fluorescence microscopy 
observation techniques, including fluorescence recovery 
after photobleaching (FRAP) and superresolution imaging, 
can also provide more detailed information on the material 
properties, composition, and dynamics of biomolecular con-
densates. In addition, in vitro reconstitution using purified 
proteins is an accessory method used for studying LLPS [1]. 
These methods can help researchers to further elucidate the 
compositions of biological molecules and related biologi-
cal reactions and explore the factors that drive or influence 

condensate formation, eventually providing new opportuni-
ties for the prevention and treatment of human diseases.

Phase separation of proteins is a multifactor dynamic 
process, and it occurs not only spontaneously under nor-
mal conditions, but also upon stimulation from an array of 
environmental factors, including changes in temperature, 
pH, ATP/energy, macromolecule concentration, and ionic 
strength [14]. These physiological parameters constitute a 
continuous phase boundary, and crossing this boundary by 
changing one or more parameters, such as by raising the 
temperature, depriving nutrients, lowering the pH, or chang-
ing other factors, can cause phase separation and the forma-
tion of condensates, which is an adaptive tuned response of 
cells [15]. Homeostasis of pH is a prerequisite for the normal 
survival of organisms. Many proteins are very sensitive to 
pH alterations, and a very small change in pH can induce 
phase transition of proteins. Phase separation in most pro-
teins is triggered at low pH; while in others, it is induced by 
alkaline pH [16]. In vivo, the mechanism by which pH regu-
lates protein phase separation is not completely clear. Here, 
we review the literature on stress-associated pH fluctuation 
in cells, how cells maintain and regulate cytosolic pH, and 
the effects of pH changes on protein phase separation. The 
mechanisms by which pH can mediate phase separation are 
also discussed. Further research on these topics will not 
only advance our understanding of compartment forma-
tion affected by pH changes but will also provide important 
insight into the relationship between pH and a diverse set of 
human diseases.

Diverse stresses induce intracellular pH 
fluctuation

Cytosolic pH is a tightly controlled physiological param-
eter in all cellular systems, as almost all cellular processes 
depend on a constant pH for normal functions [17–21]. 
For instance, in yeast, pH is involved in replicative senes-
cence of mother cells and rejuvenation of nascent daugh-
ter cells [22], and cytoplasmic acidification is critical for 
yeast cells to enter dormancy under stress conditions [23]. 
In plants, intracellular pH changes are components of a 
number of phytohormone signaling pathways, modulat-
ing gene expression and defence [21, 24]. In mammals, 
the maintenance of pH homeostasis is of key importance 
for the proper execution and regulation of neurotrans-
mission [25]. Small changes in cytosolic pH can lead to 
major changes in metabolism, signal transduction, protein 
folding, and protein–lipid interactions [19, 20]. However, 
organisms are often exposed to diverse adverse conditions 
throughout their life cycles, and stress-induced cytosolic 
pH fluctuations are broadly present in the cells; these fluc-
tuations are induced, for example, by osmotic stress, heat 
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shock, and nutrient restriction [26–30]. Aging processes 
and human diseases, including neurodegenerative diseases 
and cancers, are also strongly linked with intracellular pH 
alterations [22, 31, 32]. Table 1 summarizes the stresses 
that can induce pH fluctuation in the cells of mammals, 
plants, and microorganisms. Here, we describe the rela-
tionships between pH changes and certain stresses, such 
as temperature perturbation, starvation, and osmotic chal-
lenges, as well as aging and aging-related diseases, includ-
ing neurodegenerative diseases and cancers.

Temperature perturbation

Proper environmental temperature is a critical factor for cell 
survival. When the temperature becomes harsh, organisms 
must respond rapidly to adapt and thrive. The best-known 
stress response, the heat shock response (HSR), is a con-
served transcriptional program mediated by heat shock fac-
tor 1, which is activated upon heat stress. It upregulates the 
transcription of a set of molecular chaperones to help the 
cell to manage the accumulation of heat-induced aberrantly 

Fig. 1   Liquid–liquid phase separation in mammalian cells and its 
involvement in aging-related neurodegenerative diseases and can-
cers. Under physiological conditions, scaffold biomacromolecules 
undergoing liquid–liquid phase separation (LLPS) can interact with 
and recruit other client molecules to form reversible liquid-like con-
densates, which participate in a wide range of physiological pro-
cesses. During aging, multiple factors, including protein mutation and 
repeated expansions, cellular environmental and metabolic changes, 
damage to protein quality-control systems, and abnormal protein 
localization and post-translational modification, can affect the LLPS 
process and promote aberrant gel-like condensate or pathological pro-
tein aggregate formation, ultimately leading to the onset and progres-
sion of neurodegenerative diseases. Tumorigenesis is also related to 

LLPS. a Mutations in the substrate recognition domain of the tumor 
suppressor SPOP prevent its binding to oncogenic substrates and sub-
sequent condensate formation with ubiquitin ligase complex, causing 
a failure of oncogenic substrate ubiquitination and proteasomal deg-
radation. b Mutation of p53 can accelerate its solid-phase transition 
into amyloid aggregates, which is found in more than 50% of human 
cancers. c Chromosomal translocations lead to aberrant condensate 
formation of transcriptional regulators (TRs) at enhancers and pro-
moters of oncogenes, driving abnormal oncogenic transcriptional pro-
grams. d Mutation or overexpression of signaling receptors alter the 
formation of signaling clusters and activates aberrant signaling cas-
cades, contributing to cancer development
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folded proteins and aggregates [70]. On the one hand, upreg-
ulated chaperones can efficiently refold nonnative proteins 
or promote the degradation of protein aggregates through 
autophagy or the ubiquitin–proteasome system (UPS). On 
the other hand, they can regulate the deposition of certain 
misfolded proteins into specialized cellular locations to 
shield them from degradation and to refold them after stress 
[71]. In addition to HSR, another adaptive mechanism called 
the unfolded protein response induced by endoplasmic retic-
ulum stress is also activated upon heat exposure and helps to 
mitigate the damage caused by heat [72, 73]. Moreover, in 
different research models, ubiquitination-dependent [74–77] 
and autophagy-dependent degradation [78–82] have been 
observed to be induced after heat shock, and the activation 
of these degradation systems is essential for cell survival 
and recovery from thermally induced protein aggregation 
[74, 82].

In addition to the activation of evolutionarily conserved 
systems that contribute to thermotolerance, temperature 
change is often coupled with fluctuations in cytoplasmic pH 
[28, 83]. Some studies have shown that heat shock acidifies 
the cytoplasm. For instance, in yeast, an intracellular pH 
drop can be induced by heat shock [35]. The same heat-asso-
ciated pH changes have also been observed in Drosophila 
melanogaster [28] and rat hepatoma cells [41]. Stress-asso-
ciated acidification is thought to be toxic to cells in some 
cases [29, 84]; whereas in other cases, it might be a cyto-
protective strategy that promotes cellular fitness under stress 
[23, 33, 85]. For example, cytosolic acidification is required 
for HSR induction in translationally inhibited cells under 
heat shock, which allows the cells to adapt to high tempera-
ture by increasing the transcription of quality-control com-
ponents [35, 86]. Furthermore, some stress granule (SG) 
resident proteins, such as DEAD-box RNA helicase Ded1 
[87], poly(A)-binding protein 1 (Pab1) [34], and poly(U)-
binding protein 1 (Pub1) [88] in yeast, and Ras-GTPase-
activating protein SH3-domain-binding protein (G3BP1) 
in mammalian cells [89], have been reported to respond to 
elevated temperatures to undergo LLPS. Likewise, they can 
also respond to low pH that mimics the pH conditions during 
heat stress. Therefore, heat-induced acidification may play a 
key role in protein LLPS following heat exposure and then 
regulate SG dynamics and cell survival under or after stress.

The mechanism by which heat shock acidifies the cyto-
plasm is not fully understood. However, evidence has shown 
that the compositions and structures of the cell membrane 
are very sensitive to changes in temperature. In yeast, heat 
shock increases membrane permeability, resulting in pro-
ton influx and a rapid decrease in intracellular pH [90]. 
Studies have shown that intracellular pH disturbance is the 
triggering mechanism of thermotolerance in yeast [33], 
and changes in plasma membrane compositions contribute 
to the thermotolerance of cells, which may also be related 

to changes in membrane permeability [90]. In turn, heat-
induced proton influx and pH decreases can activate plasma 
membrane ATPase, whose activity is necessary for cell 
survival under heat shock [33, 91]. The plasma membrane 
ATPase pumps intracellular protons out of the cell, partially 
offsetting the internal acidification resulting from the heat-
induced increase in membrane permeability [33]. In mam-
malian cells, heat shock leads to a dramatic loss of plasma 
membrane Na+–K+ ATPase activity, which then results in 
loss of the inwardly directed electrochemical Na+ gradient 
across the membrane [39]. Therefore, it is speculated that 
Na+ gradient-dependent H+ export from the cytoplasm to 
the outside by Na+–K+ ATPase is affected and that the cyto-
plasm is acidified during heat stress.

Starvation

A decrease in cytosolic pH can also be caused by starva-
tion. In yeast cells, numerous studies have shown that 
the cytoplasmic pH decreases from approximately 7.4 to 
approximately 6.0 under starvation conditions [43, 45, 47]. 
Pma1, the plasma membrane-localized P-type H+-ATPase 
in yeast, is involved in pumping protons out of the cells and 
is a primary contributor to the maintenance of cytosolic pH 
stability near neutrality [92, 93]. Importantly, its activation 
requires glucose-regulated phosphorylation [94]. In addition, 
other pumps, such as V-type H+-ATPases (V-ATPases), are 
also responsible for cytosolic pH regulation [95]. They work 
by pumping excess protons into the vacuole to regulate cyto-
solic pH homeostasis; they also maintain effective localiza-
tion of Pma1 at the plasma membrane [95, 96]. Glucose is 
also required for V-ATPase activation because it mediates 
reversible associations between the V1 and V0 domains of 
V-ATPase [43, 97]. Under favorable conditions (with glu-
cose), V-ATPase cooperates with Pma1 to pump protons 
out of the cytoplasm and help cells stabilize cytoplasmic 
pH in an ATP-dependent manner. However, upon glucose 
depletion, a drop in cytoplasmic pH is observed, as starved 
yeast cells lack efficient H+-ATPase assembly and activation 
to support the proton gradient across the membrane [46]. 
Intracellular protons cannot be discharged outside of the 
cell. Instead, they accumulate inside the cell; thus, cytosolic 
pH decreases. The increased concentrations of intracellular 
protons cause the phase transition of the cytoplasm from a 
fluid-like to a solid-like state, and such a dormant or qui-
escent state is a protective strategy for cell survival under 
conditions of starvation [23]. Likewise, evidence suggests 
that nutrient supply is also closely related to cytoplasmic 
pH in Physarum plasmodium. The cycle of intracellular 
pH corresponds to the period of the cell cycle of P. plas-
modium. When P. plasmodium is growing in non-nutrient 
medium, the intracellular pH remains stable and then begins 
to decline gradually, which serves to block normal mitosis. 
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However, upon refeeding of starved P. plasmodium with the 
nutrient medium, intracellular pH can recover to normal val-
ues and the cell cycle resumes [48].

Osmotic stress

In addition to heat shock and starvation, osmotic stress is 
another important environmental factor affecting cell sur-
vival and growth. Organisms including microbes, plants, 
and mammals, are commonly confronted with hyperos-
motic conditions, which trigger a series of actions resulting 
in downregulation of cellular activity and progression of 
disease [98–100]. When osmolarity changes, cells adjust 
their volumes accordingly in response to the changing envi-
ronment. Cells mainly regulate volume changes by control-
ling substance influx and efflux, which is usually manifests 
as cell contraction or expansion, so that cells can return to 
a normal resting state [101–103]. A variety of membrane 
transporters are involved in this complex regulation process. 
For example, in a hypotonic environment, mammalian cells 
initially expand via water uptake and subsequently undergo 
compensatory shrinkage to partially regulate volume reduc-
tion, usually through efflux of KCl and organic osmolytes 
[104, 105]. In contrast, in hypertonic environments, cells 
undergo transient dehydrating contraction by absorbing 
Na+, K+ and CI− and then pumping out Na+ to regulate the 
increase in cell volume [104].

Intracellular osmotic homeostasis is necessary to maintain 
normal cell function and survival, and osmotic dysregulation 
is the basis of many diseases and their complications, includ-
ing cataracts [106], epilepsy [107], inflammation [100, 108], 
and hypernatremia [109]. For instance, in hyperglycemia 
or hypergalactosemia, activated aldose reductase converts 
glucose and lactose to galactose and sorbitol, respectively, 
which accumulate in the lens and cause osmotic swelling, 
leading to diabetic cataracts [106]. In addition, cancer and 
aging processes are also closely related to intracellular 
osmotic regulation. Many studies have shown that ion chan-
nels and ion pumps are beneficial to the development and 
progression of cancer [110]. Given the importance of ion 
channels for osmotic homeostasis and the abnormal expres-
sion of transporters in many cancers [111], it is likely that 
the original homeostasis in cells will be disrupted, creating 
a more favorable internal environment for cancer develop-
ment. Interestingly, Yes-associated protein (YAP), is a tran-
scriptional coactivator that is widely activated in cancer cells 
[112], can sense the tumor microenvironment and modify 
the physicochemical properties of the surrounding environ-
ment by activating transcription, thereby promoting tumor 
development [113]. Moreover, YAP-activated transcription 
is mediated by the LLPS process, which also occurs under 
hypertonic conditions [114]. Aging does not directly cause 
disease, but in this process, the homeostasis of water in the 

human body is often disturbed [115]. Thus, normal osmotic 
regulation is impaired, and this impairment is followed by 
increases in the incidence and severity of diseases, such as 
hypoosmolality and hyperosmolality [116].

Interestingly, a growing body of evidence implicates 
hyperosmotic stress as a factor leading to internal pH alter-
ation. In Listeria monocytogenes, a ubiquitous gram-pos-
itive food-borne pathogen, the initial response to osmotic 
stress caused by sorbitol or NaCl is a decrease in intracel-
lular pH [50]. Hyperosmotic stress also leads to cytosolic 
acidification in Dictyostelium discoideum, which works as 
a novel signal mediator responsible for hyperosmotic stress 
responses [54]. Moreover, another study has indicated that 
hyperosmotic shock elicits a transient increase in Escheri-
chia coli cytoplasmic pH, but the pH returns to normal val-
ues after osmotic adaptation [52]. However, whether and 
how osmotic dysregulation in mammalian cells alters pH 
and whether it is relevant to human diseases remain unclear; 
thus, these aspects require further investigation to advance 
our understanding of pH-related condensate formation and 
diseases.

Taken together, the evidence indicates that diverse envi-
ronmental alterations contribute to intracellular pH fluctua-
tion. Manipulating intracellular pH not only serves to main-
tain the morphology and function of cells to ensure normal 
growth and metabolic activities, but also is associated with 
the preservation of cellular equilibrium in response to sev-
eral environmental factors, which could promote cellular 
fitness.

Aging and neurodegenerative diseases

Aging is usually an irreversible biological process and is 
considered to be a predominant risk factor for many neuro-
degenerative diseases [117]. Nine hallmarks of aging have 
been tentatively identified in different organisms, including 
genomic instability, telomere attrition, epigenetic altera-
tions, loss of proteostasis, deregulated nutrient sensing, 
mitochondrial dysfunction, cellular senescence, stem cell 
exhaustion, and altered intercellular communication. These 
hallmarks can be classified into three layers: primary hall-
marks, antagonistic hallmarks, and integrative hallmarks, 
which co-occur during aging and are usually interconnected 
with each other; defining the exact relationships and causal 
network of these hallmarks may contribute to future studies 
on aging and aging-related diseases [118].

In addition to the hallmarks of aging discussed above, 
growing evidence shows that intracellular pH alterations are 
also intimately linked to aging processes and aging-related 
neurodegenerative diseases. In mammals, the intracellular 
pH of central neurons is tightly regulated, and its fluctua-
tions are important for signaling and synaptic plasticity [119, 
120]. Specifically, in cortical neurons, a mild intracellular 
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pH decrease occurs following an excitability increase, and 
this decrease acts as feedback to reduce local bioelectric 
activity and excitability. However, when the intracellular pH 
is outside a certain range and reaches its limits, there may be 
an increased risk of cell death [25, 119, 121, 122]. Impor-
tantly, a decrease in neural pH levels has been observed in a 
number of neurodegenerative disorders [123, 124] and even 
in the normal aging process [32, 125, 126]. Moreover, acute 
neuroinflammation has been observed to provoke intracellu-
lar acidification in the mouse hippocampus [127]. For exam-
ple, in mammalian cortical neurons, intracellular pH is nega-
tively correlated with aging, as evidenced by significantly 
lower pH in hippocampal slices from aged rats than in slices 
from young rats [32, 128]. Likewise, in human neurons, the 
intracellular pH has also been observed to decrease with 
aging [126, 129]. The mechanisms involved in decreased 
intracellular pH may be the disruption and overwhelmed 
of pH regulatory systems through processes including 
aging-related decreases in buffering capacity and disrup-
tion of diverse transmembrane acid/base-transporters [32, 
128–130]. For instance, considering that Na+–H+ exchange 
is the dominant regulatory mechanism for proton extru-
sion in cultured hippocampal neurons, altered H+ homeo-
stasis might be attributable to impaired Na+–H+ exchange 

(Fig. 2), which utilizes the inwardly directed electrochemical 
Na+ gradient generated by Na+–K+ ATPase to export H+ 
[32]. Moreover, limited ATP synthesis during aging might 
also affect ATP-driven ion pumping, including Na+ gradi-
ent generation by Na+–K+ ATPase [131]. The impacts of 
aging-related alterations on pH regulation are controversial. 
A slight decrease in intracellular pH may provide neuropro-
tection [132], while successively greater acidification may 
increase the vulnerability of brain tissue to stressful condi-
tions [125, 133–135].

In addition to cytosolic pH dysregulation, lysosomal/
vacuolar pH dysregulation has also been implicated in aging 
and aging-related neurodegenerative diseases. Evidence is 
now emerging that defective lysosomal function is a major 
factor in the pathogeneses of different types of neurodegen-
erative diseases, specifically, a failure of the maintenance 
of a highly acidic lysosomal/vacuolar pH [136]. There is 
also increasing evidence for aging-related compromise of 
lysosomal function [22]. In yeast, vacuolar pH is a critical 
regulator of mitochondrial function and replicative lifespan. 
Vacuolar acidity declines with aging, and reduced vacuolar 
acidity disrupts pH-dependent amino acid homeostasis in 
the vacuolar lumen, resulting in age-related dysfunction 
of mitochondria and a shortened lifespan [67]. In addition, 

Fig. 2   Aging affects intracellular pH. When cells are young, P-type 
H+-ATPases distributed on the plasma membrane act in concert 
with V-type H+-ATPases localized on the lysosomal/vacuolar mem-
brane to regulate intracellular pH. However, during aging, for exam-
ple, in yeast, P-type H+-ATPase Pma1 accumulates on the plasma 
membrane, and excessive H+ is pumped out of the cell, resulting in 
reduced cytosolic H+ availability for V-type H+-ATPase. This leads 
to a decrease in vacuolar acidity. In other cases, such as in the aged 
rat hippocampus, the Na+–K+ pump and Na+–H+ exchange may be 
impaired; as a result, H+ accumulates in the cytoplasm, and cytosolic 

pH decreases. Moreover, cell buffering capacity is also impaired dur-
ing aging. V-type H+-ATPase is a target of oxidative stress in aging. 
Increased oxidative modification of V-type H+-ATPase might inhibit 
V-type H+-ATPase-mediated vacuolar acidification. Alternatively, 
aging might alter lysosomal/vacuolar acidification by downregulat-
ing V-type H+-ATPase subunit expression, lowering the availability 
of V-type H+-ATPase. The solid lines represent normal ion transport. 
The dashed lines represent impaired ion transport. In the young cell 
cytoplasm, yellow represents cytoplasm with a normal pH. In the 
aged cell cytoplasm, red represents cytoplasm with a decreased pH
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lifespan extension via calorie restriction and methionine 
restriction requires vacuolar acidification [67, 137, 138]. The 
decrease in vacuolar acidification in yeast is due to excess 
accumulation of the major regulator of cytosolic pH, Pma1, 
in mother cells (Fig. 2). Vacuole acidity is thus antagonized 
by reduced cytosolic proton availability [22]. Importantly, 
V-ATPase is implicated in lysosomal acidification. Muta-
tions in V-ATPase or proteins that regulate V-ATPase func-
tion are observed in aging-related neurodegeneration [136]. 
It is conceivable that during aging, oxidative stress might 
impair V-ATPase activity through increased oxidative modi-
fication of V-ATPase (Fig. 2), which is inspired by the obser-
vation that hydrogen peroxide inhibits bovine brain synaptic 
vesicle V-ATPase activity [69]. In fact, increased oxidative 
modification of V-ATPase subunits has been observed in 
aged rat brain tissue [139], and oxidative modification is 
known to impair the activity of certain enzymes [140, 141]. 
Alternatively, aging might alter lysosomal/vacuolar acidifi-
cation via dynamic transcriptional regulation of V-ATPase 
subunits (Fig. 2), a mechanism that is supported by the 
observation of reduced V-ATPase subunit mRNA levels in 
hippocampal neurons in sporadic Alzheimer’s disease (AD) 
[142]. In conclusion, intracellular pH alterations, including 
cytosolic pH changes and lysosomal/vacuolar pH dysregula-
tion, are also striking features that occur during the aging 
process and aging-related diseases onset.

The processes of aging and aging-related neurodegenera-
tive diseases onset are typically accompanied by the forma-
tion of widespread intracellular protein aggregates [143]. 
Many RNA-binding proteins, such as fused in sarcoma 
(FUS), tau, alpha synuclein (α-Syn), and TAR DNA-binding 
protein 43 (TDP-43), are the main components of protein 
inclusions or aggregates in diverse neurodegenerative dis-
eases, including amyotrophic lateral sclerosis (ALS) [144], 
frontotemporal dementia (FTD) [144, 145], Parkinson’s dis-
ease (PD)[146], and AD [147]. Furthermore, these disease-
associated proteins are well known to undergo LLPS, and the 
failure to maintain their liquid-phase homeostasis may serve 
as a trigger of solid protein aggregate formation (Fig. 1) 
[148]. Diverse layers of regulation may affect their transi-
tion from a liquid-like state with physiological function to 
solid pathological aggregates. Therefore, it is reasonable to 
speculate that alterations in the intracellular microenviron-
ment, such as pH changes during aging, provide these phase-
separated neurological disorder-related proteins with the 
opportunity to change their phase separation behaviors and 
increase the risk of aggregation. In fact, evidence has already 
shown that LLPS of α-Syn and its subsequent maturation 
into protein aggregation are pH-mediated [149]. Therefore, 
further investigations on aging-induced pH dysregulation 
will not only advance our understanding of aberrant LLPS 
and compartment formation but will also provide important 
insight into the onset of aging-associated pathologies.

Cancers

In recent years, increasing evidence has linked LLPS and 
condensates to tumorigenesis. A growing number of cancer-
associated proteins have been reported to have the ability to 
undergo LLPS and form biomolecular condensates, such as 
speckle-type POZ protein, which is involved in oncogenic 
substrate degradation [150]; p53-binding protein 1 (53BP1) 
and FET proteins, which are involved in the DNA damage 
response and genomic stability [151, 152]; and EWS-FLI1, 
β-catenin, YAP, and PDZ-binding motif (TAZ), which are 
involved in transcriptional regulation [114, 153–155]. In all 
of the above cases, disrupting functional condensate assem-
bly of tumor suppressors or promoting aberrant condensate 
assembly of oncoproteins contributes to the oncogenic pro-
cess (Fig. 1a–d). In addition, aberrant assembly of other 
membrane-less compartments formed by LLPS, including 
SGs [156, 157], PML bodies [158], paraspeckles [159], 
and amyloid bodies [160], is also associated with cancer. 
The tumor suppressor p53 has been the “star molecule” of 
molecular biology and oncology since its discovery. It acts 
as a transcription factor, activating or inhibiting the tran-
scription of various downstream target genes involved in 
cell cycle regulation, senescence, and apoptosis [161, 162]. 
p53 prevents tumor development through cell cycle arrest, 
DNA repair, and antioxidant protein production to main-
tain genome integrity and limit cell proliferation under 
adverse conditions such as DNA damage, hypoxia, oncogene 
expression, nutrient deprivation, and ribosomal dysfunction 
[162–164]. Moreover, its mutation, which tends to result in 
protein aggregation, is found in more than 50% of human 
cancers [165, 166]. Recent evidence has revealed that the 
p53 core domain can undergo LLPS and then undergo a 
phase transition to the solid-like state. Mutation of p53 can 
accelerate its solid-phase transition into amyloid aggregates 
(Fig. 1b) [167]. Therefore, it is a reasonable assumption that 
differences in the tumor microenvironment compared to the 
microenvironment of normal differentiated cells may trig-
ger certain proteins to undergo LLPS and phase transition 
to solid aggregates, leading to further cancer progression.

As cancer cells grow at an uncontrolled high rate, they 
are usually challenged with an adverse macroenvironment 
characterized by hypoxia and nutrient starvation [168]. 
Apart from this, considerable evidence links cancer directly 
to pH alterations since a higher intracellular pH and a lower 
extracellular pH than those of normal differentiated cells 
are observed in most cancers, regardless of tissue origin 
and cell type [169, 170]. These differences may be attribut-
able to changes in the expression and/or activity of plasma 
membrane ion pumps and transporters, as well as changes 
in metabolic activities [169, 170]. In turn, the increased 
intracellular pH and the decreased extracellular pH also 
synergistically enhance cancer progression. On the one 
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hand, the increased intracellular pH can increase cell prolif-
eration, facilitate apoptosis evasion, and promote cytoskel-
etal remodeling for cell migration. On the other hand, the 
acidified extracellular environment can increase the activi-
ties of acid-activated proteases and promote extracellular 
matrix degradation, thereby accelerating tumor cell invasion 
and dissemination [31]. However, during these processes, 
whether and how pH alterations of cancer cells are related 
to the aberrant phase behavior of cancer-related proteins or 
aberrant formation of membrane-less compartments such 
as SGs, PML bodies, paraspeckles, and amyloid bodies, 
remains unclear and requires further in-depth investiga-
tion. Such research will provide more knowledge about the 
molecular basis of cancer and facilitate the development of 
new therapies.

Cytosolic pH control by metabolism‑based 
and transporter‑based regulation

Since pH control is a critical requirement for growth in all 
organisms, different organisms have adopted a number of 
common strategies to address the challenges of pH main-
tenance in the face of rapid metabolism and extracellular 
environment changes [171–173]. Cells separate metabolites, 
proteins, and biochemical processes in a manner dependent 
on compartmentalized membrane-bound organelles, each 
of which has distinct pH requirements and pH regulation 
mechanisms [172]. More importantly, cellular compartments 
have inherent pH buffering capacities. This buffering is 
achieved by the presence of various intracellular weak acids 
and bases, as well as the ionizable groups of macromol-
ecules such as side chains of amino acids [174]. Moreover, 
cytosolic pH regulation also relies on metabolites produced 
by pH-dependent biological reactions [175]. Organic acids 
such as malate can produce or consume H+ via carboxylation 
and decarboxylation reactions. Therefore, correct synthe-
sis, degradation, and transport of organic acids through the 
cytoplasm to other organelles are thought to be important 
strategies to regulate intracellular pH [176, 177]. In addition, 
the alternative pathways to glycolysis, the cyanide-resistant 
alternative respiration pathway and malate-derived lactic and 
alcoholic fermentation, which are unique to plants, jointly 
regulate pH homeostasis in plants [175]. In mammalian cells 
and fermenting yeast, CO2 produced during metabolism can 
diffuse freely through biological membranes. It can react 
with water to form HCO3

−, which is an effective proton 
buffer and consumes protons to produce carbonic acid when 
the cells are confronted with an acute drop in intracellular 
pH [178, 179].

However, when cells are under long-term stress, the major 
regulatory mechanism to maintain cytosolic pH homeostasis 
is the membrane transport of H+, which involves a large array 

of distinct transport pathways. For example, P-type proton 
pumps are widely distributed on eukaryotic cell membranes, 
and they are the main determinants of proton efflux and cyto-
plasmic pH control in plants and yeast [19, 173]. As mentioned 
above, Pma1 is the most abundant protein in the plasma mem-
brane of yeast and actively coordinates with V-ATPases to 
regulate cytosolic pH [19, 173]. V-ATPases can also acidify 
compartments in an ATP-dependent manner and are distrib-
uted in acidic organelles such as the Golgi apparatus, vacuole/
lysosomes, and endosomes of all eukaryotic cells [180]. In 
yeast cells, V-ATPase activity is indispensable for vacuolar 
acidification during glucose metabolism and homeostasis of 
cytoplasmic pH in the short term. In the long term, V-ATPase 
is very important for the stability of Pma1 localization [95]. 
F-type proton pumps are mainly distributed in the bacterial 
plasma membrane, the mitochondrial membrane, and the plant 
endomembrane. In enterococci, when the cytoplasm is acidi-
fied, the level and activity of F-type H+-ATPase increase syn-
chronously, leading to cytoplasmic alkalization [181]. When 
the pH value is restored to the initial value, the decrease in the 
amount and activity of the enzymes terminates proton extru-
sion. Thus, changes in the amount and activity of enzymes 
seem to be necessary for pH regulation [182].

Moreover, these proton pumps act in concert with a large 
array of other transporters. Increasing evidence indicates 
that a number of ion/H+ exchangers are also important for 
intracellular pH regulation in different organisms, including 
yeast, plants, and mammals [19, 172, 173]. These exchang-
ers couple the transfer of H+ across biological membranes to 
counter-transport of other cations, such as Na+ or K+, to pro-
tect against excess acidification. Furthermore, Na+-coupled 
HCO3

− transporters, which are involved in the uptake of extra-
cellular HCO3

−, have also been reported to play key roles in 
the regulation of cytosolic pH. They contribute to the main-
tenance of CO2–HCO3

− equilibrium, the most important pH 
buffering system [183, 184]. Although the importance of pro-
ton extrusion in pH control has been revealed, acid-importing 
transporters such as Cl−–HCO3

− exchangers, which allow 
HCO3

− efflux, can efficiently prevent overalkalization of the 
cells by working counter to CO2–HCO3

− transporters to enable 
the fine control of cytosolic pH [185].

In summary, cells exhibit a complicated pH regulation net-
work dependent on the interplay among multiple transporters 
that import or export proton equivalents and metabolism-based 
regulatory mechanisms, and this network can accurately regu-
late and maintain cytosolic pH. More details can be found in 
recent reviews [19, 171–173].
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pH‑dependent phase separation condensate 
formation induced by stress

As discussed above, many types of stress cause a decrease 
in cytoplasmic pH, and these stress conditions are known 
to induce phase separation of proteins to form conden-
sates. Here, we summarize the proteins that are known to 
form phase separation condensates in response to pH stress 
together with other stresses in which phase separations are 
mainly affected by pH alterations, such as heat shock and 
starvation (Table 2).

Many biomolecules undergo LLPS to form liquid-like 
condensates that mediate diverse cellular functions [222, 
223]. For example, autophagosome formation is a pro-
cess that is precisely regulated by protein phase separa-
tion. Atg1 complex formation is a prerequisite for preau-
tophagosomal structure (PAS) assembly and autophagy 
initiation [202]. Recent research suggests that the PAS is 
a liquid-like condensate formed by phase separation of 
the Atg1 complex, which is critical for further dynamic 
recruitment of other proteins or factors during autophago-
some formation. Notably, this process occurs under low 
pH and starvation conditions [200–202]. TORC1 is a 
modulator of PAS organization that targets Atg1 complex 
assembly by regulating the phosphorylation/dephospho-
rylation of Atg13, a component of the Atg1 complex [202, 
224]. Its activity is also modulated by phase-separated 
compartments such as SGs. Under stressful conditions, 
including heat, starvation, and osmotic stress, TORC1 is 
recruited into SGs; as a result, TORC1 signaling is inhib-
ited [225–227]. For example, in yeast, TORC1 is parti-
tioned into heat shock-induced SGs, which then prevents 
an increase in the frequency of heat-induced DNA muta-
tions [225]. Under osmotic stress, TORC1 in mammalian 
cells is similarly sequestered into SGs, thereby blocking its 
signal transduction to downstream effectors [227].

SGs are also dynamic membrane-less organelles, the 
formation of which is driven by LLPS [228, 229]. It has 
been reported that many proteins in SGs exhibit phase 
separation behavior under stress-associated pH changes. 
Pab1, is an RNA-binding protein consisting of a short 
N-terminal sequence, four RNA recognition motifs 
(RRMs), a proline-rich low-complexity region (LCR) and 
a C-terminal peptide-binding domain. It plays a key role 
in controlling the polyadenylation, stability, and transla-
tion of mRNA in yeast cells [34, 190]. Pub1 is similar 
to Pab1 in that it is an RNA-binding protein with three 
RRMs and one LCR [191]. Both Pub1 and Pab1 are core 
components of SGs and are prone to phase separation 
when temperature increases, pH decreases, or nutrients 
are lacking to help cells survive during stress [34, 88, 
189]. In addition, G3BP1 is a central node and molecular 

switch in SG assembly. Its phase separation also occurs in 
an RNA-dependent manner under low pH and heat shock 
[89, 203]. Moreover, members of the Asp–Glu–Ala–Asp 
(DEAD)-box ATPase (DDX)3 family are widely present 
in both eukaryotes and prokaryotes [192, 194], and stud-
ies have suggested that many proteins in the DDX family 
undergo LLPS in vivo or in vitro, including Ded1, Dbp1, 
and Dbp2 in yeast; DDX3X, DDX4, and DDX6 in humans; 
and DeaD, SrmB, and RhlE in E. coli [192, 193]. Ded1p, 
an ATP-dependent DEAD-box RNA helicase in yeast, is 
an indispensable translation initiation factor and a compo-
nent of SGs [188]. It can parse the secondary structure of 
mRNA 5′ untranslated regions for ribosomal scanning and 
recognition of the initiation codon [186, 187]. Studies have 
shown that Ded1p undergoes phase separation and forms 
condensates at elevated temperatures, or at lower tempera-
tures when the pH is adjusted to that of the heat-stressed 
cytosol (heat-shocked cells experience a decrease in cyto-
solic pH). When in condensate form, Ded1p is translation-
ally inactivated, which leads to a switch in translation from 
housekeeping transcripts to stress-responsive transcripts 
[87]. Therefore, heat shock-induced and temperature-asso-
ciated pH change-induced Ded1p condensation in SGs is 
an adaptive response to survive heat shock. It promotes an 
evolutionarily conserved heat shock response that selec-
tively translates housekeeping or heat shock transcripts 
[87]. Similarly, another DDX family member in yeast, 
Dhh1, is responsible for the assembly and disassembly 
of RNA-containing membrane-less organelles. Dhh1 also 
exhibits enhanced phase separation at low pH, which mim-
ics the pH conditions during glucose starvation [192].

Moreover, evidence indicates that in changed growth 
conditions, enzyme activities can be acutely regulated 
through the formation of phase separation-induced enzyme 
condensates, which restrict or promote specific biochemi-
cal reactions in membrane-less organelles, suggesting the 
importance of phase separation in regulating the metabo-
lism of cells [47, 195]. For instance, glutamine synthetase 
(Gln1) is an indispensable metabolic enzyme that catalyzes 
the synthesis of glutamate and ammonium into glutamine, 
a process that requires ATP. Gln1 forms filaments during a 
state of advanced cellular starvation, and filament formation 
leads to enzymatic inactivation [197]. Further evidence dem-
onstrates that starvation-induced cytosolic acidification is 
the trigger for Gln1 condensate formation, and many meta-
bolic enzymes follow this principle to help cells endure and 
recover from severe starvation conditions [47].

In addition to the above-mentioned findings, there are 
other proteins for which LLPS is directly or indirectly 
affected by pH changes, increasing cell fitness or inducing 
diseases. For instance, Sup35 is a translation termination 
factor in budding yeast [198]. It can form condensates upon 
energy depletion or at a low pH. This pH-dependent phase 
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separation of Sup35 can serve as a means for Sup35 to res-
cue itself from stress-induced damage and promote recovery 
of the yeast cell from stress [44]. The nucleocapsid protein 
(N) of the severe acute respiratory syndrome coronavirus 
(SARS-CoV-2) is a multivalent RNA-binding protein that 
is essential for viral RNA replication and virion packag-
ing [206]. The N protein can partition into SGs and inter-
act with G3BP1/2 to block the assembly of SGs through 
RNA-dependent liquid phase separation and thus disrupt 
the immune response of host cells [204]. Notably, phase 
separation of the N protein occurs under physiological con-
ditions and is enhanced at low pH [205]. α-Syn is an IDP 
for which aggregation into amyloid-like fibrils is associated 
with PD pathology [207, 208]. One study found that α-Syn 
initially undergoes phase separation and becomes rigid over 
time and eventually transforms into solid-like aggregates. 
Low pH can promote α-Syn LLPS and further increase the 
maturation and nucleation of α-Syn aggregates, which is 
relevant to PD pathogenesis [149]. Additionally, pathologi-
cal inclusions of the microtubule-associated protein Tau 
have been reported to accumulate in patients with several 
neurodegenerative diseases [210–212]. Evidence indicates 
that the microtubule-binding repeats of the Tau protein have 
a strong propensity for liquid demixing, which occurs over 
a wide range of pH values. The phase separation of these 
four repeats at different pH values wound concentrate the 
most aggregation-prone Tau residues and further promote 
amyloid formation [16]. Interestingly, in addition to natu-
ral proteins, artificially constructed polypeptides can also 
undergo phase separation. Elastin-like polypeptides (ELPs) 
are recombinant protein polymers composed of pentapeptide 
(Val–Pro–Gly–Xaa–Gly)L repeat units, which are recurring 
motifs in tropoelastin in a wide range of species. ELPs are 
often used as new biomaterials for drug delivery and tis-
sue engineering [218–221]. One study found that ELPs can 
exhibit reversible phase separation triggered by a wide range 
of pH values, and this pH responsiveness is controlled by 
the type and number of ionizable residues and the molecular 
weight of the ELPs. This property of specific pH-controlled 
ELP phase separation can be applied in drug delivery sys-
tems for local cancer therapy, as various tumors types usu-
ally have different pH values than healthy tissues [217].

Finally, as we discussed above, many cancer-associated 
proteins have been reported to undergo LLPS and to be 
involved in biomolecular condensate formation. 53BP1 is a 
binding partner of p53 [230] that can directly regulate p53 
and affect p53 target gene expression [231]. It is also one of 
the main regulators of the DNA damage response, loss of 
which has been associated with apoptosis and cancer cell 
proliferation [232]. Studies have found that 53BP1 under-
goes LLPS at DNA damage sites, forming DNA repair con-
densates that recruit and stabilize p53 [151]. If the expres-
sion of 53BP1 is changed or LLPS behavior is affected, the a  Eff
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disruption of condensate formation leads to destabilization 
of p53 and reduced induction of its target genes as well as 
cell cycle arrest [151]. Interestingly, it has been reported 
that 53BP1 can respond to low pH to form 53BP1 droplets 
[151]; thus, further studies on the relationships of pH regu-
lation and 53BP1 LLPS will help enhance our understand-
ing of tumorigenesis. However, besides 53BP1, research on 
the relationships between cancer-associated proteins and 
pH dysregulation are limited. Considering that the physi-
ochemical properties and microenvironment of cancer cells 
are different from those of normal cells [168], two impor-
tant research topics in the future are whether these proteins 
undergo pH-regulated LLPS and how pH-regulated LLPS 
is relevant to tumorigenesis. In addition, research on how 
microenvironmental changes in cancer cells affect the 
dynamics of intracellular membrane-less organelles such as 
SGs, PML bodies, paraspeckles, and amyloid bodies, whose 
aberrant assembly is associated with cancer, is also needed. 
Such research will provide further evidence regarding the 
links among pH, LLPS, and cancer.

Mechanisms underlying pH‑mediated phase 
separation

pH changes mediate protein–protein/RNA 
interactions

Some proteins or their specific domains possess the ability 
to sense stresses directly and thus undergo phase separation 

in response to these stresses [34, 88]. It is known that LLPS 
is driven by multivalent weak macromolecular interactions 
(protein–protein, protein–RNA, and RNA–RNA interac-
tions), disruption or alteration of which would affect pro-
tein phase separation behaviors [5, 233]. Therefore, pH 
changes can influence intramolecular or intermolecular pro-
tein–protein/RNA interactions by changing the net charges 
of components, thereby driving LLPS (Fig. 3). For example, 
G3BP1 is a multidomain protein composed of two folded 
domains and two IDRs. Under nonstress conditions, its 
central negatively charged, glutamate-rich IDR can interact 
with the C-terminal positively charged RG-rich region to 
allow G3BP1 to fold into a compact state. This compact 
state is an autoinhibitory conformation that disrupts G3BP1 
phase separation. However, at a low pH, protonation of the 
clustered glutamates changes the net charge of the acidic 
IDR and disrupts its stable electrostatic interactions with 
the RG-rich region, allowing G3BP1 to expand from its 
original tightly self-inhibited state and release the RG-rich 
region. G3BP1 can then further facilitate intermolecular 
protein–RNA/protein interactions to drive LLPS, which is 
consistent with the observation that heterotypic interactions 
among G3BP1 and RNA molecules drive SG assembly [89, 
203]. In addition, a low pH can directly trigger Pub1 assem-
bly, and this pH-dependent assembly formation is sensitive 
to salt concentrations, suggesting that electrostatic interac-
tions promote Pub1 assembly. Self-interactions among the 
RRM domains are the main drivers for Pub1 phase sepa-
ration, and acidic pH may change the charge distribution 
in the RRM domains, thereby mediating the electrostatic 

Fig. 3   Roles of pH in biomolecular condensate formation. Under 
nonstress conditions, proteins and RNAs are dispersed in the cyto-
plasm. When cells are exposed to stresses such as starvation, heat 
shock, or acid stress, the intracellular pH changes, and this change 
is accompanied by the formation of protein- and RNA-containing 
biomolecular liquid-like condensates. During this process, pH plays 

multiple functional roles in triggering liquid–liquid phase separation 
(LLPS)-driven condensate formation; for example, it affects protein–
protein/RNA interactions, alters protein solubility, or acts as a mes-
senger to transmit stress signals. pH changes can also enhance phase 
separation, which may gradually mature and result in transformation 
into an irreversible gel-/solid-like state
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interactions [88]. Moreover, the pH range that can induce 
artificially recombinant ELP phase separation is related to 
the pKa. This suggests to a certain extent that pH can affect 
protein–solution or protein–protein interactions by changing 
the number of ionizable residues of proteins, thus trigger-
ing phase separation [217]. Likewise, phase separation of 
Pab1 at low pH is also an electrostatically mediated process 
[34]; thus, the principle of pH-dependent protein condensate 
formation mediated by electrostatic interactions may be gen-
eralizable to many proteins.

Notably, pH changes not only initiate protein LLPS by 
facilitating intramolecular or intermolecular interactions 
but also enhance phase separation and its further maturation 
into a gel state or a pathological solid state (Fig. 3). Phase 
separation of α-Syn is mediated by an interplay of electro-
static interactions in the unstructured N-terminal domain 
and hydrophobic interactions in the central NAC domain, 
while the charge distribution in these domains is strongly 
dependent on the pH value. A lower pH serves to change 
the net charges and hydrophobicity of different domains as 
well as the interactions between these domains, leading to 
significant structural reorganization. Thus, pH-mediated 
diverse changes in α-Syn accelerate the maturation of phase 
separation and subsequent protein aggregation [149, 209]. 
Similarly, a reduction in pH can enhance the intramolecular 
interactions of the phase-separated SARS-CoV-2 N protein 
and lead to irregularly shaped assemblies with less liquid-
ity, in vitro [205]. Indeed, phase separation proteins that 
contain flexible LCDs are highly prone to forming patho-
genic aggregates. This could explain, to some extent, why 
hundreds of proteins are highly prone to forming aggregates 
during aging. During aging or chronic pH stress, these phase 
separation proteins can transition into irreversible aggre-
gates, which could then lead to persistent condensate for-
mation, such as persistent SG formation, even after the stress 
subsides. Persistent condensates typically exhibit solid-like 
properties; and as a consequence, other pathological changes 
and neurodegenerative disorders occur [233].

pH changes affect protein solubility

In addition to engaging in the promiscuous interactions that 
function in phase separation, macromolecules must reach 
a critical concentration threshold to start LLPS. Evidence 
indicates that not all LCRs and IDRs function as autono-
mous modules that drive phase separation; instead, they 
function as modifier sequences, regulating the solubility 
of phase-separating proteins and the material properties of 
condensates [234]. Long-term evolutionary pressure has 
tuned the solubility of Pub1 to be very close to the criti-
cal threshold for phase separation. This not only endows 
Pub1 with a solubility that is conducive to growth but also 
enables Pub1 to quickly sense and respond to stress. In fact, 

changes in pH can affect the solubility of Pub1 and lead to 
the formation of stress-responsive Pub1 condensates [88]. 
Changes in pH appear to be able to decrease the solubili-
ties of many proteins. In yeast, a decrease in pH results in a 
phase transition of cytoplasm from a fluid-like to a solid-like 
state, which might be caused by decreased solubilities of a 
series of proteins and subsequent formation of intracellu-
lar solid-like assemblies, such as SGs [23, 235]. Moreover, 
the relationship between pH and protein isoelectric point is 
closely related to solubility. The closer the pH value is to the 
isoelectric point of the protein, the lower its solubility, and 
the more likely it is that phase separation occurs [236, 237]. 
This could explain to a certain degree why the microtubule-
binding repeats of Tau are most prone to phase separation 
when the pH is close to the isoelectric point but less prone 
to demixing when the protein solubility is increased in 
response to pH that is substantially higher or lower than the 
isoelectric point [16]. Therefore, it is believed that one of the 
mechanisms by which pH triggers protein phase separation 
is the alteration of protein solubility (Fig. 3).

pH changes act as messengers to transmit stress 
signals

In the face of adverse conditions, intracellular pH might act 
as a messenger to signal changes in the environment, trig-
gering phase separation of proteins to promote cell fitness. 
Upon heat shock, cells can integrate signals of different 
temperatures and temperature-induced pH changes into a 
unified response to provide a trigger for phase separation. 
For example, Pab1 undergoes LLPS autonomously through 
temperature-dependent structural changes under conditions 
of stressful temperatures [34].

However, how does a cell sense other stresses, such as 
starvation, to trigger LLPS to help cells survive diverse 
adverse conditions? Previous studies have indicated that pro-
teins and protein-associated condensates that undergo LLPS 
under starvation conditions, such as Pub1, Gln1, Dhh1, and 
PAS, can also respond to low pH [47, 88, 192, 200, 201]. 
Considering that cytosolic pH is rapidly and reversibly reg-
ulated by glucose metabolism, the stress information per-
ceived by these proteins is most likely transmitted through 
pH. Evidence has shown that cytosolic pH is a second mes-
senger for glucose to mediate activation of the PKA pathway 
through V-ATPase [43]. Therefore, a change in pH might 
be an extremely sensitive readout of other changes in the 
environment, especially starvation, to induce protein LLPS 
and cellular adaptive responses (Fig. 3).

In this way, pH is capable of playing diverse functional 
roles in the regulation of LLPS, including by affecting pro-
tein–protein/RNA interactions, altering protein solubility, 
and acting as a messenger to transmit stress signals.
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Conclusion and perspective

From viruses to prokaryotes and eukaryotes, the forma-
tion of macromolecular condensates by phase separation 
is emerging as a principle means for cells to regulate cel-
lular functions and adapt to environmental changes. Cells 
encounter a variety of stresses, some of which can cause 
cytoplasmic pH fluctuations. In this review, we have sum-
marized the relationships between pH changes and certain 
stresses, such as heat shock, nutrient stress, and osmotic 
stress, and described which proteins or physiological 
processes can respond to stress-associated pH changes 
through phase separation. We have also highlighted the 
diverse ways by which pH fluctuation can influence protein 
phase separation. For example, pH can act as a signal to 
transmit stress information, mediate protein–protein/RNA 
interactions, and affect protein solubility, thereby regulat-
ing protein/RNA phase separation.

Despite the research progress concerning the relation-
ships between stress-associated pH changes and phase 
separation discussed in this review, further in-depth inves-
tigations are still needed. It is worth noting that pH might 
not be the sole determinant of stress-induced phase separa-
tion and condensate formation. For stresses such as heat 
shock, changes in both intracellular temperature and pH 
are involved, which can lead them to differences in protein 
phase separation behavior and condensate material proper-
ties [88]. The interplay of pH, temperature, ion strength, 
RNA concentration, protein concentration and other fac-
tors forms a sophisticated network that dynamically affects 
the phase behavior of proteins. However, some questions 
remain. How does pH interact with other factors in this 
process? What are the differences and similarities in the 
roles of pH among the different stress-induced phase sepa-
ration processes? Preliminary evidence suggests that the 
properties of different condensate materials formed by dif-
ferent groups of proteins can be used by cells to build a 
hierarchical stress-adaptive system that is fine-tuned to dif-
ferent conditions [88]. In other words, when encountering 
different types of stresses or the same stress with different 
intensity or duration, a cell can regulate the activities of 
multiple proteins to achieve specific biological functions 
by concentrating specific cellular components in the con-
densates (or excluding them from the condensates) for a 
favorable period of time. The cells can then determine 
when to restart growth. In this way, control of conden-
sates can be used by the cells as a method to promote 
adaptation to stress. Therefore, revealing the differences 
and similarities among the various roles of pH in address-
ing different types of stress will provide insights into the 
mechanisms underlying the protein separation involved in 
cellular adaptation. Moreover, pH values might be changed 

considerably by different stresses, and a given protein 
might display different phase separation behaviors under 
different pH values. Therefore, the identification of pro-
teins that respond to different pH values or have behavior 
changes that accompany pH changes may provide vital 
clues for investigation of the machineries involved in the 
influences of pH on cellular functions.

Finally, intracellular pH changes and phase separation 
condensate formation are linked to aging, aging-related 
neurodegenerative diseases, and cancers. It would be 
interesting to further investigate how aging-induced pH 
changes affect protein phase separation. Importantly, inno-
vative drug delivery strategies could be developed for spe-
cific local cancer therapy by exploiting the altered intracel-
lular and extracellular pH in tumors. Attempts to modulate 
pH and SG formation could also spur the development of 
innovative approaches for cancer therapy.
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