Skip to main content

Advertisement

Log in

Macrophages evoke autophagy of hepatic stellate cells to promote liver fibrosis in NAFLD mice via the PGE2/EP4 pathway

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The pathogenesis of liver fibrosis in nonalcoholic fatty liver disease (NAFLD) remains unclear and the effective treatments have not been explored yet. The activation of hepatic stellate cells (HSCs) is considered as the most critical factor in the progression of liver fibrosis and cirrhosis. Autophagy has recently been identified as a new mechanism to regulate HSC activation. Here, we found that liver macrophages were polarized toward type 2 (M2) during the progression of nonalcoholic steatohepatitis (NASH) and liver fibrosis in both patients and NAFLD mice. Using the methionine–choline-deficient (MCD) diet NAFLD murine model and the in vitro cell culture system, we identified that the M2 macrophages promoted HSC autophagy by secreting prostaglandin E2 (PGE2) and binding its receptor EP4 on the surface of HSCs, which consequently enhanced HSC activation, extracellular matrix deposition, and liver fibrosis. Mechanistically, PGE2/EP4 signals enhanced HSC autophagy through the Erk pathway. A specific PGE2/EP4 antagonist E7046 significantly inhibited M2 macrophage-mediated HSC autophagy and improved liver fibrosis and histopathology in NAFLD mice. Our study provides novel mechanistic insights into the regulation of HSC activation and liver fibrosis. Our findings suggest that the PGE2/EP4 pathway is a promising therapeutic target to prevent NASH progression into cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Eslam M, Sanyal AJ, George J (2020) MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158:1999-2014e1991. https://doi.org/10.1053/j.gastro.2019.11.312

    Article  CAS  PubMed  Google Scholar 

  2. Matteoni CA, Younossi ZM, Gramlich T et al (1999) Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116:1413–1419. https://doi.org/10.1016/s0016-5085(99)70506-8

    Article  CAS  PubMed  Google Scholar 

  3. Huang DQ, El-Serag HB, Loomba R (2021) Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 18:223–238. https://doi.org/10.1038/s41575-020-00381-6

    Article  PubMed  Google Scholar 

  4. Sheka AC, Adeyi O, Thompson J et al (2020) Nonalcoholic steatohepatitis: a review. JAMA 323:1175–1183. https://doi.org/10.1001/jama.2020.2298

    Article  CAS  PubMed  Google Scholar 

  5. Rockey DC, Bell PD, Hill JA (2015) Fibrosis—a common pathway to organ injury and failure. N Engl J Med 372:1138–1149. https://doi.org/10.1056/NEJMra1300575

    Article  CAS  PubMed  Google Scholar 

  6. Higashi T, Friedman SL, Hoshida Y (2017) Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 121:27–42. https://doi.org/10.1016/j.addr.2017.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Widjaja AA, Singh BK, Adami E et al (2019) Inhibiting interleukin 11 signaling reduces hepatocyte death and liver fibrosis, inflammation, and steatosis in mouse models of nonalcoholic steatohepatitis. Gastroenterology 157:777-792e714. https://doi.org/10.1053/j.gastro.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  8. Arab JP, Arrese M, Trauner M (2018) Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 13:321–350. https://doi.org/10.1146/annurev-pathol-020117-043617

    Article  CAS  PubMed  Google Scholar 

  9. Cai X, Li Z, Zhang Q et al (2018) CXCL6-EGFR-induced Kupffer cells secrete TGF-beta1 promoting hepatic stellate cell activation via the SMAD2/BRD4/C-MYC/EZH2 pathway in liver fibrosis. J Cell Mol Med 22:5050–5061. https://doi.org/10.1111/jcmm.13787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pradere JP, Kluwe J, De Minicis S et al (2013) Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58:1461–1473. https://doi.org/10.1002/hep.26429

    Article  CAS  PubMed  Google Scholar 

  11. Li H, Zhou Y, Wang H et al (2020) Crosstalk between liver macrophages and surrounding cells in nonalcoholic steatohepatitis. Front Immunol 11:1169. https://doi.org/10.3389/fimmu.2020.01169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kazankov K, Jorgensen SMD, Thomsen KL et al (2019) The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 16:145–159. https://doi.org/10.1038/s41575-018-0082-x

    Article  CAS  PubMed  Google Scholar 

  13. Parthasarathy G, Revelo X, Malhi H (2020) Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol Commun 4:478–492. https://doi.org/10.1002/hep4.1479

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kisseleva T, Brenner D (2021) Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 18:151–166. https://doi.org/10.1038/s41575-020-00372-7

    Article  PubMed  Google Scholar 

  15. Svegliati-Baroni G, Inagaki Y, Rincon-Sanchez AR et al (2005) Early response of alpha2(I) collagen to acetaldehyde in human hepatic stellate cells is TGF-beta independent. Hepatology 42:343–352. https://doi.org/10.1002/hep.20798

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Meyer C, Muller A et al (2011) IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-beta-independent Smad signaling. J Immunol 187:2814–2823. https://doi.org/10.4049/jimmunol.1003260

    Article  CAS  PubMed  Google Scholar 

  17. Czochra P, Klopcic B, Meyer E et al (2006) Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol 45:419–428. https://doi.org/10.1016/j.jhep.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  18. Sakai K, Jawaid S, Sasaki T et al (2014) Transforming growth factor-beta-independent role of connective tissue growth factor in the development of liver fibrosis. Am J Pathol 184:2611–2617. https://doi.org/10.1016/j.ajpath.2014.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R et al (2012) Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142:938–946. https://doi.org/10.1053/j.gastro.2011.12.044

    Article  PubMed  Google Scholar 

  20. Zhang Z, Zhao S, Yao Z et al (2017) Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol 11:322–334. https://doi.org/10.1016/j.redox.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  21. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14:397–411. https://doi.org/10.1038/nrgastro.2017.38

    Article  CAS  PubMed  Google Scholar 

  22. Thoen LF, Guimaraes EL, Dolle L et al (2011) A role for autophagy during hepatic stellate cell activation. J Hepatol 55:1353–1360. https://doi.org/10.1016/j.jhep.2011.07.010

    Article  CAS  PubMed  Google Scholar 

  23. Lucantoni F, Martinez-Cerezuela A, Gruevska A et al (2021) Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet? J Pathol. https://doi.org/10.1002/path.5678

    Article  PubMed  Google Scholar 

  24. Weiskirchen R, Tacke F (2014) Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr 3:344–363. https://doi.org/10.3978/j.issn.2304-3881.2014.11.03

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dunham RM, Thapa M, Velazquez VM et al (2013) Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. J Immunol 190:2009–2016. https://doi.org/10.4049/jimmunol.1201937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ogawa T, Tateno C, Asahina K et al (2007) Identification of vitamin A-free cells in a stellate cell-enriched fraction of normal rat liver as myofibroblasts. Histochem Cell Biol 127:161–174. https://doi.org/10.1007/s00418-006-0237-7

    Article  CAS  PubMed  Google Scholar 

  27. Ueshima E, Fujimori M, Kodama H et al (2019) Macrophage-secreted TGF-beta1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renal Physiol 317:F52–F64. https://doi.org/10.1152/ajprenal.00260.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spiller KL, Anfang RR, Spiller KJ et al (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488. https://doi.org/10.1016/j.biomaterials.2014.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sprinzl MF, Puschnik A, Schlitter AM et al (2015) Sorafenib inhibits macrophage-induced growth of hepatoma cells by interference with insulin-like growth factor-1 secretion. J Hepatol 62:863–870. https://doi.org/10.1016/j.jhep.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  30. Hsu LW, Huang KT, Nakano T et al (2020) MicroRNA-301a inhibition enhances the immunomodulatory functions of adipose-derived mesenchymal stem cells by induction of macrophage M2 polarization. Int J Immunopathol Pharmacol 34:2058738420966092. https://doi.org/10.1177/2058738420966092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramachandran P, Pellicoro A, Vernon MA et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci USA 109:E3186-3195. https://doi.org/10.1073/pnas.1119964109

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zeng XY, Xie H, Yuan J et al (2019) M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol Ther 20:956–966. https://doi.org/10.1080/15384047.2018.1564567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang C, Zeisberg M, Mosterman B et al (2003) Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology 124:147–159. https://doi.org/10.1053/gast.2003.50012

    Article  CAS  PubMed  Google Scholar 

  34. DeLeve LD (2015) Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 61:1740–1746. https://doi.org/10.1002/hep.27376

    Article  CAS  PubMed  Google Scholar 

  35. Romero F, Shah D, Duong M et al (2015) A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis. Am J Respir Cell Mol Biol 53:74–86. https://doi.org/10.1165/rcmb.2014-0343OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng X, Yang Q, Wang Y et al (2020) CSF-1R inhibition attenuates ischemia-induced renal injury and fibrosis by reducing Ly6C(+) M2-like macrophage infiltration. Int Immunopharmacol 88:106854. https://doi.org/10.1016/j.intimp.2020.106854

    Article  CAS  PubMed  Google Scholar 

  37. Wang YY, Jiang H, Pan J et al (2017) Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol 28:2053–2067. https://doi.org/10.1681/ASN.2016050573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang H, Xuefeng Y, Shandong W, Jianhua X (2020) COX-2 in liver fibrosis. Clin Chim Acta 506:196–203. https://doi.org/10.1016/j.cca.2020.03.024

    Article  CAS  PubMed  Google Scholar 

  39. Yu J, Ip E, Dela Pena A et al (2006) COX-2 induction in mice with experimental nutritional steatohepatitis: role as pro-inflammatory mediator. Hepatology 43:826–836. https://doi.org/10.1002/hep.21108

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Wang Y, Wang Q et al (2012) Hepatic stellate cells produce vascular endothelial growth factor via phospho-p44/42 mitogen-activated protein kinase/cyclooxygenase-2 pathway. Mol Cell Biochem 359:217–223. https://doi.org/10.1007/s11010-011-1016-x

    Article  CAS  PubMed  Google Scholar 

  41. Planaguma A, Claria J, Miquel R et al (2005) The selective cyclooxygenase-2 inhibitor SC-236 reduces liver fibrosis by mechanisms involving non-parenchymal cell apoptosis and PPARgamma activation. FASEB J 19:1120–1122. https://doi.org/10.1096/fj.04-2753fje

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura K, Kageyama S, Ito T et al (2019) Antibiotic pretreatment alleviates liver transplant damage in mice and humans. J Clin Invest 129:3420–3434. https://doi.org/10.1172/JCI127550

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gonzalez-Rodriguez A, Mayoral R, Agra N et al (2014) Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 5:e1179. https://doi.org/10.1038/cddis.2014.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Domingo-Gonzalez R, Martinez-Colon GJ, Smith AJ et al (2016) Inhibition of neutrophil extracellular trap formation after stem cell transplant by prostaglandin E2. Am J Respir Crit Care Med 193:186–197. https://doi.org/10.1164/rccm.201501-0161OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinez-Colon GJ, Taylor QM, Wilke CA et al (2018) Elevated prostaglandin E2 post-bone marrow transplant mediates interleukin-1beta-related lung injury. Mucosal Immunol 11:319–332. https://doi.org/10.1038/mi.2017.51

    Article  CAS  PubMed  Google Scholar 

  46. Woodward DF, Jones RL, Narumiya S (2011) International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 63:471–538. https://doi.org/10.1124/pr.110.003517

    Article  CAS  PubMed  Google Scholar 

  47. Li XF, Chen DP, Ouyang FZ et al (2015) Increased autophagy sustains the survival and pro-tumourigenic effects of neutrophils in human hepatocellular carcinoma. J Hepatol 62:131–139. https://doi.org/10.1016/j.jhep.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  48. Jiang GM, Tan Y, Wang H et al (2019) The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer 18:17. https://doi.org/10.1186/s12943-019-0944-z

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ugland H, Naderi S, Brech A et al (2011) cAMP induces autophagy via a novel pathway involving ERK, cyclin E and Beclin 1. Autophagy 7:1199–1211. https://doi.org/10.4161/auto.7.10.16649

    Article  CAS  PubMed  Google Scholar 

  50. Gong C, Bauvy C, Tonelli G et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32:2261–2272. https://doi.org/10.1038/onc.2012.252

    Article  CAS  PubMed  Google Scholar 

  51. Albu DI, Wang Z, Huang KC et al (2017) EP4 Antagonism by E7046 diminishes myeloid immunosuppression and synergizes with Treg-reducing IL-2-Diphtheria toxin fusion protein in restoring anti-tumor immunity. Oncoimmunology 6:e1338239. https://doi.org/10.1080/2162402X.2017.1338239

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hong DS, Parikh A, Shapiro GI et al (2020) First-in-human phase I study of immunomodulatory E7046, an antagonist of PGE2-receptor E-type 4 (EP4), in patients with advanced cancers. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000222

    Article  PubMed  PubMed Central  Google Scholar 

  53. Flores-Contreras L, Sandoval-Rodriguez AS, Mena-Enriquez MG et al (2014) Treatment with pirfenidone for two years decreases fibrosis, cytokine levels and enhances CB2 gene expression in patients with chronic hepatitis C. BMC Gastroenterol 14:131. https://doi.org/10.1186/1471-230X-14-131

    Article  PubMed  PubMed Central  Google Scholar 

  54. Younossi ZM, Ratziu V, Loomba R et al (2019) Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394:2184–2196. https://doi.org/10.1016/S0140-6736(19)33041-7

    Article  CAS  PubMed  Google Scholar 

  55. Neuschwander-Tetri BA, Loomba R, Sanyal AJ et al (2015) Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385:956–965. https://doi.org/10.1016/S0140-6736(14)61933-4

    Article  CAS  PubMed  Google Scholar 

  56. Brunt EM, Kleiner DE, Wilson LA et al (2011) Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53:810–820. https://doi.org/10.1002/hep.24127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Prof. Xiangying Kong from Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences for providing laboratory equipment, technical assistance and critically reading the manuscript and discussions.

Funding

This work was funded by grants from the National Natural Science Foundation of China (81600454, 81671940, 81871586 and 81770577), Beijing Municipal Excellent Talents Foundation (2018000021223ZK27) and Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX201828).

Author information

Authors and Affiliations

Authors

Contributions

LZ, YC and JY designed the research; WM, RL, SD, LL, YZ, QQ, YZ, YY and YH conducted the research; MH and PL provided critical advice; LZ, WM, YC and RL analyzed the data; LZ, WM and YC wrote the paper; XZ provided clinical pathological resources. MH and WX provided essential materials.

Corresponding authors

Correspondence to Wen Xie, Jie Yan or Liuluan Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing of interest.

Ethics approval and consent to participate

The study on human patients was approved by the Ethics Committee of the Beijing Ditan Hospital, Capital Medical University (approval number: 2018-047-01). All the individuals involved in the study have signed the written informed consent. The study on animals was conducted according to the 1998 XXVIII Hungarian law about animal protection and welfare.

Consent for publication

All authors read and approved the final paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Supplementary file2 (PDF 1611 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Mai, W., Li, R. et al. Macrophages evoke autophagy of hepatic stellate cells to promote liver fibrosis in NAFLD mice via the PGE2/EP4 pathway. Cell. Mol. Life Sci. 79, 303 (2022). https://doi.org/10.1007/s00018-022-04319-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04319-w

Keywords

Navigation