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Abstract
Bile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation 
yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; 
however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported 
to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted 
to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A 
small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical 
effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosyn-
thesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth 
the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. 
Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher 
than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against 
in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. 
oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue 
reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids 
lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold 
as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer 
features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor 
promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act 
as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
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AKT  Serine/threonine kinase 1
AMPK  AMP-activated protein 

kinase
AP-1  Activator protein-1
APE1  Apurinic/apyrimidinic endo-

deoxyribonuclease 1
ATG5  Autophagy related 5
BA  Bile acids
Bai  Bile acid inducible operon
Bax  Bcl-2-associated X protein
Bcl-2  B-cell lymphoma 2
BE  Barrett’s esophagus
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Beclin-1/BECN1  Coiled-coil myosin-like 
BCL2-interacting protein

BIRC7/Livin  Baculoviral IAP repeat-con-
taining protein 7

BSEP/ABCB11  ATP-dependent cassette 
transporter

BSH  Bile salt hydrolases
BRCA1  Breast cancer type 1 suscep-

tibility protein
CA  Cholic acid
cAMP  Cyclic adenosine 

monophosphate
CAR/NR1H3  Constitutive androstane 

receptor
CDCA  Chenodeoxycholic acid
CDX1/2  Caudal type homeobox 1/2
C/EBPα  CCAAT/enhancer-binding 

protein alpha
CHRM2/3  Muscarinic receptor 2/3
c-Myc  Myc-related translation/

localization regulatory factor
COX2  Cyclooxygenase-2
CRC   Colorectal carcinoma
CREB  CAMP response element-

binding protein
CSC  Cancer stem cells
CYP  Cytochrome P450
CYP7A1  Cholesterol 7α-hydroxylase
CYP7B1  25-Hydroxycholesterol 

7α-hydroxylase
CYP8B1  Sterol 12α-hydroxylase
CYP27A1  Sterol 27-hydroxylase
CYP3A4  Cytochrome P450 family 3 

subfamily
DC  Deoxycholate
DCA  Deoxycholic acid
Dlc1  Deleted in Liver Cancer 1
DNA-PK  DNA-dependent protein 

kinase
DR5  Death receptor 5
EAC  Oesophageal 

adenocarcinoma
EGF  Epidermal growth factor
EGFR  Epithelial growth factor 

receptor
EMT  Epithelial–mesenchymal 

transition
EPHA2  EPH Receptor A2
ER  Estrogen receptor
ERK  Extracellular signal-regu-

lated kinase
FAK/PTK2  Focal adhesion kinase

FAS  Fas Cell Surface Death 
Receptor

FGF19  Fibroblast growth factor 19
FGF15  Fibroblast growth factor 15
FGFR4  Fibroblast growth factor 

receptor 4
FLK1/KDR  Fetal liver kinase 1/Kinase 

Insert Domain receptor
FXR/ NR1H4  Farnesoid X receptor
FXREs  FXR response elements
GADD153  Growth arrest- and DNA 

damage-inducible gene 153
GBC  Gallbladder cancer
GERD  Gastroesophageal reflux 

disease
GCA   Glycocholic acid
GCDCA  Glycochenodeoxycholic acid
GCDA  Glycochenodeoxycholate 

acid
GCDC  Glycochenodeoxycholate
GDC  Glycodeoxycholate
GDCA  Glycodeoxycholic acid
GLCA  Glycolithocholic acid
GPBAR1/TGR5  G-protein-coupled 

bile acid receptor/
Takeda-G-protein-receptor-5

GUDCA  Glycoursodeoxycholic acid
HCC  Hepatocellular carcinoma
HDCA  Hyodeoxycholic acid
HER2  Human epidermal growth 

factor receptor 2
HNF4α  Hepatocyte nuclear factor-4α
HSC  Hepatic stellate cells
I-BABP  Intestinal BA-binding protein
IGFBP2  Insulin-like growth factor 

binding protein 2
IKKβ/IKBKB  Inhibitor Of Nuclear Fac-

tor Kappa B Kinase Subunit 
Beta

IL1  Interleukin 1
IL6  Interleukin 6
IL8/CXCL8  Interleukin 8
iNOS  Inducible nitric oxide 

synthase
JAK2  Janus kinase 2
JNK  C-Jun N-terminal kinase
JUN  Jun Proto-Oncogene AP-1 

Transcription Factor Subunit
KLF4  Kruppel Like Factor 4
LBD  Ligand-binding domain
LCA  Lithocholic acid
LCT  Lithocholyltaurine
LOD  Limit of detection
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LRH-1/NR5A2  Liver receptor homolog-1
LXRα/β/NR1H3-2  Liver X receptor
mAChR  Muscarinic acetylcholine 

receptor
MAPK/MEK  Mitogen-activated protein 

kinase
MCA  Muricholic acid
MCL1  Induced myeloid leukemia 

cell differentiation protein
MDM2  Mouse double minute 2
MDM4  Double Minute 4
MDR1/ ABCB1  Multidrug resistance protein 

1
MMP2  Matrix metalloproteinase 2
MMP9  Matrix metalloproteinase 9
MRP2/ABCC2  Multidrug resistance-associ-

ated protein 2
MRP3/ABCC3  Multidrug resistance-associ-

ated protein 3
MRP4/ABCC4  Multidrug resistance-associ-

ated protein 4
MSK1/RPS6KA5  Nuclear mitogen- and stress-

activated protein kinase 1
mTOR  Mammalian target of 

rapamycin
mTORC1  Mammalian target of rapa-

mycin complex 1
MUC2  Mucin 2
MUC4  Mucin 4
MUTYH  MutY DNA Glycosylase
MYC  Myc proto-oncogene protein
NB  Neuroblastoma
NDRG2  N-Myc downstream regu-

lated gene 2
ND  Not detected
NF-κB  Nuclear factor κappa-light-

chain-enhancer of activated 
B cells

NOX5  NADPH Oxidase 5
NR  Nuclear receptor
NRF2/NFE2L2  Nuclear factor erythroid 

2-related factor 2
NR4A1/Nur77/TR3/NGFIB  Nuclear receptor subfamily 4 

group A member 1
NSCLC  Non-small cell lung cancer
NTCP/SLC10A1  Sodium/taurocholate cotrans-

porting polypeptide
OATP1A2/SLCO1A2  Solute carrier organic anion 

transporter family member 
1A2

OATP1B/SLCO1B  Solute carrier organic anion 
transporter family

OATP2  Organic anion-transporting 
polypeptide

OCT4/POU5F1  Octamer-binding transcrip-
tion factor

OGG1  8-Oxoguanine DNA 
glycosylase

PGC-1α  Peroxisome proliferator-
activated receptor gamma 
coactivator 1 alpha

PGE2  Prostaglandin E2
PI3K  Phosphatidylinositol 

3-kinase
PKA  Protein kinase A
PKC  Protein kinase C
PLA2  Phospholipase A2
Prx2  Peroxiredoxin II
PXR/ NR1H2  Pregnane X receptor
PTEN  Phosphatase and tensin 

homolog
p38/MAPK14  P38 MAP kinase
Rac1  Rac family small GTPase 1
Raf1  Proto-oncogene, serine/

threonine kinase
RhoA  Ras homolog family member 

A
RNS  Reactive nitrogen species
ROS  Reactive oxygen species
RXR  Retinoid X receptor
S1PR2  Sphingosine-1-phosphate 

receptor 2
SHP/ NR5O2  Small heterodimer partner
SLC10A1/NTCP  Solute carrier family 10
SLC10A2/ASBT  Sodium-dependent bile acid 

transporter
SLC51A/B or OSTα/β  Solute carrier family 

members
SRC-1/NC0A1  Steroid receptor coactivator 

1
Smac  Second mitochondria-

derived activator of caspase
SOCS3  Suppressor of cytokine sign-

aling 3
SphK2  Sphingosine kinase 2
SRC-1/NC0A1  Steroid receptor coactivator 

1
SREBF  Sterol regulatory element-

binding factor
STAT3  Signal transducer and activa-

tor of transcription 3
SULT  Sulfotransferase
TCA   Taurocholic acid
TCDC  Taurochenodeoxycholate
TCDCA  Taurochenodeoxycholic acid
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TDC  Taurodeoxycholate
TDCA  Taurodeoxycholic acid
TERT  Telomerase Reverse 

Transcriptase
TGF-β1  Transforming growth factor 

β-1
TLC  Taurolithocholate
TLCA  Taurolithocholic acid
TLR4  Toll-Like Receptor 4
TSC1  TSC Complex Subunit 1
TUDCA  Tauroursodeoxycholic acid
UCP2  Uncoupling protein-2
UDCA  Ursodeoxycholic acid
UGT   UDP-glucuronosyl-trans-

ferase
UGT2B4  Uridine 5′-diphosphate-glu-

curonosyltransferase 2B4
uPAR/PLAUR   Urokinase-type plasminogen 

activator receptor
VDR/NR1H1  Vitamin D receptor
VEGF  Vascular endothelial growth 

factor
WNT  Wingless-type MMTV inte-

gration site family

Background

Bile acids (BAs) belong to cholesterol-derived sterols. Due 
to the side chain carboxyl group and hydroxylation of their 
steroid ring they are more polar than cholesterol. They have 
an amphipatic character for which they are known as natural 
detergents. Majority of cholesterol is excreted by bile acids 
that are prone to enterohepatic circulation between the gall-
bladder and the liver. Cholesterol absorption in the intestine 
and cholesterol secretion into the bile both require bile salts, 
which are, together with enterohepatic circulation of BAs, 
crucial for balancing the plasma cholesterol level [1].

BAs are also signaling molecules. They deorphanized the 
farnesoid X nuclear receptor (FXR) which is now known 
as a ligand-inducible transcription factor responsive to BAs 
[2]. It is important to note that BAs are metabolized in a 
similar manner as xenobiotics, contributing to the cross-
talk between the endogenous and xenobiotic metabolism 
in the liver through nuclear receptors Pregnane X receptor 
(PXR), constitutive androstane receptor (CAR) and others 
[3]. While their synthesis takes place exclusively in the liver, 
the homeostasis and excretion involve multiple organs and 
compartments in the body. After discovering their signal-
ing role, BAs have been considered as pro-carcinogenic 
molecules [4–6]. However, recent studies have provided 
evidence that in certain cancers, BAs can have antineo-
plastic features (e.g. breast cancer [7–11]). This novel, 

context-dependent, dualistic finding prompted us to thor-
oughly assess the involvement of BAs in carcinogenesis and 
cancer progression.

Bile acid biosynthesis

The excess of free cholesterol is toxic to cells and needs to be 
excreted, primarily through conversion to more polar BAs. 
The introduction of a hydroxyl group in cholesterol reduces 
the half-life and directs the oxidized molecule to excretion 
[12]. BA synthesis is thus the main cholesterol detoxification 
pathway where multiple cytochrome P450 (CYP) enzymes 
are involved in the classical or alternative pathways (Fig. 1). 
The two major primary BAs in humans are cholic acid (CA) 
and chenodeoxycholic acid (CDCA). They are synthesized 
in the liver and secreted into the gallbladder as glycine or 
taurine conjugates [13]. The BA composition in mice sub-
stantially differs from the humans which has to be taken 
into account when using mouse as a model for BA related 
diseases. The mouse Cyp2c70 metabolizes CDCA to more 
hydrophilic primary muricholic acids (MCAs) [14].

The first enzyme of the classical BA synthesis path-
way is cholesterol 7α-hydroxylase (CYP7A1), leading to 
7α-cholesterol in a rate-limiting reaction step, followed by 
several enzymatic conversions. This enzyme is prone to the 
negative feedback regulation by BAs and FXR [2]. Sterol 
12α-hydroxylase (CYP8B1) lies at the branching point that 
leads to CA. Sterol 27-hydroxylase (CYP27A1) is needed 
for both CA and CDCA. In the alternative pathway, choles-
terol is first metabolized by CYP27A1 to form 27-hydroxy-
cholesterol that is a substrate for 25-hydroxycholesterol 
7α-hydroxylase (CYP7B1) and later other enzymes [15]. 
The alternative pathway leads majorly to CDCA. The ratio 
of CA to CDCA is determined by the expression level of 
CYP8B1, which transforms a di-hydroxylated BA to tri-
hydroxylated BA. The alternative pathway is estimated to 
account for about 10% of cholesterol conversion [16]. Of 
importance, there are major differences in individual BA 
synthesis genes in mouse and in humans which may be due 
also to different biological roles of human and mouse BA 
species (reviewed in [15]).

Bacterial metabolism of bile acids, 
production of secondary bile acids

Hepatocytes secrete BAs to the bile canaliculi. By fus-
ing with each other bile canaliculi form bile ducts, which 
eventually form the hepatic duct that runs to the gallblad-
der. The gallbladder empties to the duodenum upon feed-
ing and, hence, releases BAs to the gastrointestinal tract. 
Primary BAs emulsify dietary fats and activate pancreatic 
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lipases in the small bowel. BAs are then reabsorbed 
through the enterocytes and get to the liver for reuptake 
and reuse through the portal circulation. This circle is 
termed the enterohepatic circulation of BAs. A fraction 
of the reabsorbed BAs enter the systemic circulation (total 

BA concentration in the serum is < 5 µM in a healthy indi-
vidual) and exert hormone-like effects [7, 17–20]. The ref-
erence concentrations of the serum, tissue and fecal bile 
acids are in Tables 1, 2, 3.  

Fig. 1  Scheme of the classical and alternative bile acids in humans. Only enzymes of the CYP family are listed while the pathway involves 
enzymes of other protein families. CA and DCA are conjugated and further metabolized in the intestine
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Table 1  Reference serum bile acid levels

All concentrations are in nM
CA Cholic acid, CDCA Chenodeoxycholic acid, DCA Deoxycholic acid, GCA  Glycocholic acid, GCDCA Glycochenodeoxycholic acid, GDCA 
Glycodeoxycholic acid, GLCA Glycolithocholic acid, GUDCA Glycoursodeoxycholic acid, LCA lithocholic acid, TCA  Taurocholic acid, TCDCA 
Taurochenodeoxycholic acid, TDCA Taurodeoxycholic acid, TLCA Taurolithocholic acid, TUDCA Tauroursodeoxycholic acid, UDCA ursode-
oxycholic acid

Cohort size, 
reference

n = 40
[303]

n = 8
[304]

n = 30
[305]

n = 28
[306]

n = 56 (pooled) 
serum
[7]

Mean  ± SEM Mean  ± SD Mean  ± SEM Mean  ± SEM Mean

Primary bile acids CA 181.5 83.1 440 651 162.05 40.19 153.68 159.64 287
GCA 233.0 56.0 85 55 42.55 13.72 72.86 93.69 301
TCA 179.7 47.0 14 12 2.04 0.63 18.56 29.4 71
CDCA 256.8 56.3 380 410 1160.64 299.60 654.78 660.43 563
GCDCA 771.5 111.9 450 210 975.59 205.81 649.19 648.55 931
TCDCA 120.2 21.8 69 56 7.51 1.74 54.28 69.18 137

Secondary bile acids DCA 386.7 66.0 320 120 593.27 141.09 402.76 350.11 701
GDCA 246.2 42.5 104 44 190.78 44.32 156.39 149.88 415
TDCA 44.9 11.8 21 18 44.06 8.86 24.62 22.68 61
LCA 12.8 1.8 9.74 1.51 94.95 57.21 31
GLCA 16.3 4.1 17 20 25.26 15.82 25
TLCA 23.4 3.6 0,33 0,52 0.46 0.07 22.82 19.29
UDCA 137.6 25.1 43 27 208.35 32.94 130.83 114.96 147
GUDCA 76 40 60.92 9.76 128.04 178.12 330
TUDCA 5.0 1.1 2,7 2,7 1.41 0.30 6.24 5.63

Table 2  Reference fecal bile acid levels

CA Cholic acid, CDCA Chenodeoxycholic acid, DCA Deoxycholic acid, GCA  Glycocholic acid, GCDCA Glycochenodeoxycholic acid, GDCA 
Glycodeoxycholic acid, GLCA Glycolithocholic acid, GUDCA Glycoursodeoxycholic acid, LCA lithocholic acid, TCA  Taurocholic acid, TCDCA 
Taurochenodeoxycholic acid, TDCA Taurodeoxycholic acid, TLCA Taurolithocholic acid, TUDCA Tauroursodeoxycholic acid, UDCA ursode-
oxycholic acid

Cohort size, 
Reference

n = 97
[307]

n = 28
[308]

n = 15
[309]

Mean µg/mg  ± SD Median nmol/g Q1; Q3 Median ng/mg 
of dry feces

Primary bile acids CA 56.16 255.46 20.19 5.03;1304.28 0.23
GCA 199.35 317.56 2.23 1.39;3.55
TCA 4.14 7.82 0.72 0.46;2.11
CDCA 29.65 102.48 57.16 13.76;1639.92 0.23
GCDCA 5.17 2.56;10.51
TCDCA 3.35 10.5 1.41 0.37;3.58

Secondary bile acids DCA 2159.78 1676.03;3094.08 2.6
GDCA 110.41 167.88 2.67 1.44;6.83
TDCA 4.84 12.5 1.75 0.86;6.63
LCA 548.75 336.88 2339.24 1737.09;2782.40 3.1
GLCA 0.18 0.18 0.91 0.41;1.28
TLCA 0.94 4.46 1.03 0.36;2.80
UDCA 17.21 8.76;33.48 0.1
GUDCA 0.81 3.88 0.65 0.38;0.87
TUDCA 0.37 0.07;1.23
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BAs are very powerful surfactants [21]; therefore, bac-
teria, mostly in the large bowel, need to protect themselves 
against being disintegrated by BAs. For example, lipopoly-
saccharides serve as membrane components in Gram-neg-
ative bacteria to passively ward off external toxins or BAs 
[22]. In addition to that, bacteria have a more sophisticated 
enzymatic system to cope with BAs termed BA conversion 
[23].

The hydroxyl groups and the tauryl or glycyl conjugate 
on BAs are crucial elements of the molecular structure of 
BAs for their strong surfactant properties. Therefore, the 
removal, modification or substitution of these molecular ele-
ments diminishes the potentially toxic features of primary 
BAs and renders them largely apolar. The dehydroxylated 
primary BAs are called secondary BAs and the main site 
for converting primary BAs to secondary BAs is the large 
bowel [24]. Secondary BAs can be resorbed to the portal 
circulation and are transported to the liver, where, however, 
hydroxylation and conjugation needs to be restored for 
reuse. The main secondary BAs in humans are lithocholic 
acid (LCA), deoxycholic acid (DCA) and to a lesser extent, 
ursodeoxycholic acid (UDCA) [24, 25].

Bile salt hydrolases (BSHs) are responsible for the decon-
jugation of BAs, namely the removal of glycine or taurine by 
breaking the C24 N-acyl bond. Glycine and taurine can be 

fed into the metabolism of bacteria to be used as an energy 
source [23]. BSH activity is common among the bacteria 
inhabiting the small and the large intestines [23]; both aero-
bic [26] and anaerobic bacteria can deconjugate bile salts 
[27]. Namely, among the Gram-positive bacteria BSH was 
identified in Clostridium [27–30], Enterococcus [27, 31], 
Bifidobacterium [27, 32, 33], Lactobacillus [34, 35], Strep-
tococcus [36], Eubacterium [37] and Listeria, among Gram-
negative bacteria in Bacteroides [30, 38, 39], while among 
archea Methanobrevibacter smithii and Methanosphera 
stadmanae [40].

The substituents on the gonane core of BAs can be also 
modified, the term “secondary BA” typically stands for 
the removal of 7α or 7β-hydroxyl groups from primary 
BAs. Clostridiales and Eubacteria were shown to play a 
major role in dehydroxylation [23, 41–45], although other 
genre or species were also implicated (e.g. Bacteroidetes, 
Escherichia) [7, 38, 44, 46, 47]. Although BA deconjuga-
tion and dehydroxylation are different processes, they may 
be linked through regulatory circuits [30]. Other reactions 
of BAs involve oxidation, and epimerization that can be 
linked to intestinal Firmicutes (Clostridium, Eubacterium, 
and Ruminococcus), Bacteroides and Escherichia [23, 36, 
37, 41, 42, 44, 45, 48]. Bacterial enzymes involved in sec-
ondary BA production are assembled in the BA inducible 

Table 3  Reference tissue bile acid levels

CA Cholic acid, CDCA Chenodeoxycholic acid, DCA Deoxycholic acid, GCA  Glycocholic acid, GCDCA Glycochenodeoxycholic acid, GDCA 
Glycodeoxycholic acid, GLCA Glycolithocholic acid, GUDCA Glycoursodeoxycholic acid, LCA lithocholic acid, TCA  Taurocholic acid, TCDCA 
Taurochenodeoxycholic acid, TDCA Taurodeoxycholic acid, TLCA Taurolithocholic acid, TUDCA Tauroursodeoxycholic acid, UDCA ursode-
oxycholic acid, ND not detected, LOD limit of detection

Gastric juice (µM) Breast cyst fluid (µM) Adipose tissue (ng/g) Liver tissue 
(nmol/g)

Liver tissue 
(nmol/g)

n = 10
[310]

n = 12
[261]

n = 24
[311]

n = 6
[312]

n = 10
[313]

Mean  ± SEM Min–Max Median Min–Max Mean  ± SEM Mean  ± SEM

Primary bile acids CA 2.38 1.09 3–119 (n = 1, ND) ˂LOD 0–11.4 21.1 13.0 30.4 5.9
GCA 0.74 0.65 7.5 2.6–33.6
TCA 0.87 0.1 12.5 4.9–106.9
CDCA 0.03 0.04 4–305 ˂LOD ˂LOD 31.0 16.0 29.8 5.4
GCDCA 0.55 0.5 15.9 2.2–67.3
TCDCA 0.57 0.08 2.6 1.0–3.5

Secondary bile acids DCA 3.78 0.6 17–160 (n = 1, ND) 9.4 0–60.6 6.2 2.3 2.0 0.7
GDCA 0.39 0.2 14.9 4.8–45.3
TDCA 5.22 0.02 4.2 1.6–6.0
LCA 0.12 0.02 9–23 (n = 6, ND) ˂LOD ˂LOD 1.5 0.2 0.7 0.3
GLCA 0.12 0.007 8.1 2.9–19.0
TLCA 0.86 0.01 ˂LOD ˂LOD
UDCA 0.02 0.02 ˂LOD ˂LOD 2.0 0.8 1.5 0.6
GUDCA 0.24 0.08 2.0 0–15.9
TUDCA 3.58 0.002 0.8 0.3–1.9
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(bai) operon [24]. Collectively, BA transformation renders 
secondary BAs hydrophobic and BAs loose their ability 
to act as detergents or toxins to bacteria. Moreover, these 
changes are vital in fine-tuning the affinity of BAs to BA 
receptors.

Interactions between BAs and gut microbiota are bidi-
rectional. Microbiota can transform primary BAs and, 
hence, modulate the composition of the BA pool [49, 50]. 
Inversely, BAs can influence the composition of the micro-
biome as well [51–56] and facilitate bacterial translocation 
to tissues [57], further underlining that notion BAs act as 
potent drivers of the early intestinal microbiota maturation 
[58]. Oncobiosis (dysbiosis associated with cancers) [59] 
can alter the secondary BA pool that may contribute to 
carcinogenic effects [4, 5, 7, 18]. It is of note that several 
other non-BA bacterial metabolites are known that play 
role in carcinogenesis [60–64].

Bile acid transporters

The enterohepatic circulation of BAs depends on BA trans-
porters in the gastrointestinal system. Almost 90% of BAs 
are involved in circulation due to efficient active transport 
[65]. Different uptake and efflux BAs transporters are pre-
sent in the hepatic and intestinal cells (Fig. 2). After BAs 
are synthesized in the liver they are transported into the bile 
mainly by the ATP-dependent cassette transporter (BSEP) 
[65], but also minor transporters, the multidrug resistance-
associated protein 2 (MRP2, ABCC2) and the multidrug 
resistance protein 1 (MDR1, ABCB1) [65]. From the intes-
tinal lumen, BAs are uptaken into the intestinal cells by 
the major apical sodium-dependent bile acid transporter 
(SLC10A2, ASBT), which transports BAs also across the 
canalicular membrane in cholangiocytes and renal tubule 
apical membrane from glomerular filtrate [66]. BAs are then 
effluxed into the portal circulation by two Solute Carrier 
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Fig. 2  A scheme of enterohepatic and systemic circulation of bile 
acids and the transporters in different human cells. Transporters are 
coloured according to which part of the circulation they belong to. 
Blue are efflux and influx transporters, which transport BAs in por-
tal circulation. Grey are efflux transporters, which contribute to bile 
export into bile and faeces. Green are transporters, which are respon-
sible for BA transport into the systemic circulation. Yellow are trans-
porters involved in the efflux of BAs into urine. ASBT/SLC10A2 

sodium-dependent bile acid transporter, BSEP/ABCB11 ATP-
dependent cassette transporter, MRP2/ABCC2 multidrug resistance-
associated protein 2, MRP3/ABCC3 multidrug resistance-associated 
protein 3, MRP4/ABCC4 multidrug resistance-associated protein 4, 
OATP1A2/SLCO1A2 Solute Carrier Organic Anion Transporter Fam-
ily Member 1A2, OATP1B/SLCO1B Solute Carrier Organic Anion 
Transporter Family, SLC51A/B or OSTα/β Solute Carrier Family 
members, SLC10A2/ASBT sodium-dependent bile acid transporter
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Family members, SLC51A or OSTα and SLC51B or OSTβ. 
The bile acids are then taken back up into hepatocytes by 
the major transporter the solute carrier family 10 (SLC10A1, 
NTCP), [65].

BAs can enter the systemic circulation via export across 
the hepatic sinusoidal membrane by OSTα/OSTβ, the mul-
tidrug resistance-associated protein 3 (MRP3, ABCC3) 
and the multidrug resistance-associated protein 4 (MRP4, 
ABCC4) [67]. The MRP transporters have a role in reducing 
hepatic BA concentration in cholestatic conditions. MRP3 
and MRP4 are also present in cholangiocytes, where they 
efflux BAs to portal circulation and are part of the chole-
hepatic shunt together with ASBT [66]. Several transport-
ers are expressed in the kidney, where they participate in 
BA elimination via urine (Fig. 2) [66, 68, 69]. The Solute 
Carrier Organic Anion Transporter Family, OATP1B1 or 
SLCO1B1 and OATP1B3 or SLCO1B3 contribute to the 
systemic clearance of BAs via liver [70]. Other cells also 
express BA transporters and can, therefore, uptake BAs from 
the systemic circulation [68, 69, 71].

Bile acids as signaling molecules

In addition to their role in digestion, BAs act as signaling 
molecules. BAs can activate membrane receptors (Fig. 3), 
such as G protein-coupled bile acid receptor 1 (GPBAR1, 
also known as TGR5), sphingosine-1-phosphate receptor 
2 (S1PR2), muscarinic receptors (CHRM2 and CHRM3) 
and nuclear receptors (NRs), such as farnesoid X receptor 

(FXR, NR1H4), PXR (NR1H2), vitamin D receptor (VDR, 
NR1H1), CAR (NR1H3) and liver X receptor (LXR, 
NR1H2-3). Each BA can interact with more than one recep-
tor. Receptors are differentially activated by BAs. For exam-
ple, FXR is activated by CDCA > DCA > LCA > CA [72], 
while TGR5 is activated by LCA > DCA > CDCA > CA [73, 
74], respectively. VDR and PXR are mainly activated by 
LCA. BAs mediate immune responses [75], gastrointestinal 
mucosal barrier function, gestation [76], carcinogenesis [11, 
18, 56] and metabolic diseases [20]. The activation of BA 
receptors may lead to the induction of signaling pathways 
involved in the regulation of several physiological functions, 
such as glucose, lipid and energy metabolism, as well as, in 
cancers. Below, we review the mode of action of BA recep-
tors and highlight those receptor-mediated functions that 
have a key role in regulating the behavior of cancer cells.

Cell membrane receptors

G protein‑coupled bile acid receptor 1 (GPBAR1, TGR5)

TGR5 is a member of the G protein-coupled receptor super-
family, highly expressed in the epithelium of the gallbladder 
[77], the intestine [74], the brown adipose tissue and the 
skeletal muscle [20], as well as in the brain [78]. TGR5 
is also expressed in human monocytes/macrophages [73]. 
TGR5 is not expressed by hepatocytes, while Kupffer cells 
and liver sinusoidal cells can express the receptor [79].

Secondary BAs LCA and DCA are the most potent, 
natural ligands for TGR5, but the receptor also responds 
to CDCA and CA [73, 74] and a set of artificial ligands 
[80–84] (Table 4). Ligand binding to the TGR5 receptor 
triggers activation of adenylate cyclase leading to the pro-
duction of cAMP [73, 74, 85] and the downstream activation 
of extracellular signal-regulated kinase 1/2 (ERK1/2), pro-
tein kinase A (PKA), protein kinase B (AKT), mammalian 
target of rapamycin complex 1 (mTORC1) and Rho kinase 
[86–89]. TGR5 activation leads to metabolic changes char-
acterized by energy expenditure and β-oxidation [20, 90]. 
BA-dependent induction of TGR5 has immunomodulating 
effects. Most studies point to TGR5-dependent immunosup-
pression [73, 79, 91–94] partly due to the suppression of the 
Toll-Like Receptor 4—Nuclear factor-κB (TLR4–NF‐κB) 
pathway [91, 93, 94]. In line with that, in a murine model 
of breast cancer, LCA treatment induced the proportions of 
tumor-infiltrating lymphocytes through TGR5 [7].

Sphingosine‑1‑phosphate receptor 2 (S1PR2)

Conjugated BAs activate S1PR2 [95–97] that upregulates the 
expression of sphingosine kinase 2 (SphK2), which in turn 
enhances the level of sphingosine-1-phosphate in the nucleus. 
Elevated nuclear sphingosine-1-phosphate inhibits the function 

Fig. 3  The subcellular localization of bile acid receptors. TGR5 G 
protein-coupled bile acid receptor 1, S1PR2 Sphingosine-1-phosphate 
receptor 2, CHRM2 Muscarinic receptor-2, CHRM3 Muscarinic 
receptor-3, FXR Farnesoid X receptor, PXR Pregnane X receptor, 
CAR  Constitutive androstane receptor, VDR Vitamin D receptor, SHP 
Small heterodimer partner
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of histone deacetylases resulting in the upregulation of genes 
encoding nuclear receptors and enzymes involved in lipid and 
glucose metabolism [98] Similar to TGR5, ligand binding to 
S1PR2 can activate different downstream signaling pathways, 
such as ERK, AKT and/or c-Jun N-terminal kinase (JNK1/2) 
[96, 97, 99, 100]. Glycochenodeoxycholic acid (GCDCA) can 
trigger apoptosis in hepatocytes through activating S1PR2 
[101]. S1PR2 is highly expressed in macrophages [102] and 
has widespread immunological roles [100, 102, 103].

Muscarinic receptors (CHRM2 and CHRM3)

Taurine conjugated BAs can activate muscarinic receptors, 
the cholinergic receptor muscarinic 2 and 3 (CHRM2 and 
CHRM3). CHRMs are overexpressed in colon cancer cells and 
stimulate cell proliferation and invasion [104, 105]. Taurolitho-
cholic acid (TLCA) induces cholangiocarcinoma cell growth 
via muscarinic acetylcholine receptor and EGFR (epithelial 
growth factor receptor)/ERK1/2 signaling [106].

Nuclear receptors

Farnesoid X receptor (FXR, NR1H4)

FXR is a member of the nuclear hormone receptor superfam-
ily. There are two FXR genes, encoding FXRα and FXRβ 
of which only FXRα is expressed, FXRβ is present as a 
non-expressed pseudogene in humans. The FXR receptor 
heterodimerizes with retinoid X receptor (RXR) and binds 
to FXR response elements (FXREs) within the regulatory 
regions of its target genes [107]. BAs are physiological 
ligands for FXR (with decreasing affinity: CDCA, DCA, 
LCA, CA) [72]. FXR is expressed mainly in the liver, intes-
tine, kidney and adrenal glands [107].

FXRα controls BA synthesis, transport and detoxifica-
tion. The activation of FXR receptor by BAs reduces the 
expression of Cyp7a1 and Cyp8b1, key enzymes of BA bio-
synthesis pathway. In the liver, FXRα induces the transcrip-
tion of its target gene encoding small heterodimer partner 

Table 4  Bile acid receptors, 
their ligands and connected 
cancers

CA Cholic acid, CAR  Constititive androstane receptor, CDCA Chenodeoxycholic acid; CHRM2/M3, 
Muscarinic receptor 2 and 3, DCA Deoxycholic acid, FXR Farnesoid X receptor, GCA  Glycocholic acid, 
GCDCA Glycochenodeoxycholic acid, GDCA Glycodeoxycholic acid, HDCA hyodeoxycholic acid, LCA 
Lithocholic acid, LCT Lithocholyltaurine, LXR Liver X receptor, PXR Pregnane X receptor, S1PR2 Sphin-
gosine-1-phosphate receptor 2, SHP Small heterodimer partner, TCA  Taurocholic acid, TCDCA Tauroche-
nodeoxycholic acid, TDCA Taurodeoxycholic acid, TGR5/GPBAR1 G protein- coupled bile acid receptor 1, 
TLCA Taurolithocholic acid, VDR Vitamin D receptor

Receptor Bile acid ligands Connected cancers

GPBAR1 (TGR5) TLCA, LCA, DCA, CDCA, CA Breast cancer
Pancreatic cancer
Gastric cancer
Colon cancer
Oesophageal adenocarcinoma

S1PR2 GCA, TCA, GCDCA, TCDCA, GDCA, TDCA Cholangiocarcinoma
Oesophageal adenocarcinoma

CHRM2, CHRM3 LCT, TLCA Colon cancer
Cholangiocarcinoma

FXR CDCA, DCA, LCA, CA Colon cancer
Hepatocellular carcinoma
Breast cancer
Oesophageal adenocarcinoma

PXR LCA, 3-keto-LCA, CDCA, DCA, CA Colon cancer
Oesophageal adenocarcinoma

CAR LCA Breast cancer
VDR LCA Colon cancer
LXR α/β HDCA Ovarian cancer
SHP DCA Hepatocellular carcinoma

Breast cancer
Gastric cancer
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(SHP, NR5O2), an orphan nuclear hormone receptor (see 
in detail later) that lacks a DNA binding domain and acts as 
a transcriptional repressor [108]. SHP inhibits the expres-
sion of Cyp7a1 through the inhibition of the interaction with 
liver receptor homolog-1 (LRH-1, NR5A2) [109]. In addi-
tion to LRH-1, SHP also prevents the function of hepatocyte 
nuclear factor-4α (HNF4α), a positive regulator of Cyp7a1 
and Cyp8b1 [110]. In the intestine, FXRα induces the 
expression of fibroblast growth factor 19 (FGF19) in humans 
and its mouse homolog fibroblast growth factor 15 (FGF15). 
The secreted growth factor via portal blood reaches the liver 
where it binds to its receptor, fibroblast growth factor recep-
tor 4 (FGFR4) and induces JNK and ERK pathways and 
causes repression of Cyp7a1, thus reducing BA synthesis 
[111]. In addition to Cyp7a1, Cyp8b1 is also repressed by 
FXRα via SHP-dependent mechanism involving HNF4α 
[110].

FXRα is also a key regulator of BA transport by influenc-
ing the expression of BA transporters. FXRα activation sup-
presses BA reuptake to hepatocytes through repressing the 
expression of NTCP via SHP dependent mechanism [112]. 
At the same time, FXRα facilitates the efflux of BAs from 
hepatocytes into bile by enhancing the expression of BSEP 
and into the systemic circulation via OSTα/β transporter 
[113]. FXR also upregulates MRP2, which promotes BA 
secretion into the gallbladder. Finally, FXRα activates the 
expression of intestinal BA-binding protein (I-BABP) in the 
ileum which promotes transport of BAs from enterocytes 
into portal blood [114] whereas limits enterocyte uptake 
of BAs by reducing ASBT expression. FXRα increases the 
expression of enzymes involved in the detoxification of 
BAs, such as cholesterol 25-hydroxylase or cytochrome 
P450 family 3 subfamily A4 (CYP3A4) [115], dehydroe-
piandrosterone-sulfotransferase (SULT) 2a1 [116] and uri-
dine 5′-diphosphate-glucuronosyltransferase 2B4 (UGT2B4) 
[117]. Many studies have reported the relationship between 
FXR and inflammation. NF-kB activation suppressed FXR-
mediated gene expression, indicating that there is a negative 
crosstalk between the FXR and NF-kB signaling [118].

Pregnane X receptor (PXR, NR1I2)

In humans, PXR is mainly expressed in the liver and intes-
tine [119]. Among BAs, the most potent ligand of PXR is 
LCA, and the oxidized, 3-keto form of LCA. PXR acts as 
a xenobiotic sensor and regulates the expression of genes 
involved in the detoxification and metabolism of BAs [120]. 
Upon ligand binding, PXR binds to the promoter of its target 
gene as a heterodimer with RXR. Activation of PXR induces 
the uptake of xenobiotics, their modification by phase I 
enzymes (CYPs, including CYP3A, CYP2B, CYP2C), 
conjugation by phase II enzymes, such as glutathione 
S-transferases, UDP-glucuronosyl-transferases (UGTs) and 

sulfotransferases, and finally elimination by phase III drug 
transporters including MDR1, MRP2 and organic anion-
transporting polypeptide (OATP2) [120]. The activation of 
PXR prevents cholesterol gallstone disease by regulating 
BA biosynthesis and transport [121] and protects the liver 
against LCA-induced toxicity [122–125]. PXR activation 
disrupts the interaction between HNF4α and peroxisome 
proliferator-activated receptor gamma coactivator 1 alpha 
(PGC-1α, PPARGC1A), which is required for the activa-
tion of CYP7A1 gene expression, thus reducing the expres-
sion of CYP7A1 and inhibiting the synthesis of BAs [126]. 
PXR activation is anti-inflammatory [127–129]. PXR acti-
vation facilitates lipogenesis, suppressing β-oxidation and 
ketogenesis and gluconeogenesis [130–132]. Furthermore, 
PXR through HNF4 and PGC-1α modulates the expression 
of CYP7A1 [133].

Constitutive androstane receptor (CAR, NR1I3)

CAR is the closest relative to the PXR and is expressed pri-
marily in the liver. First studies identified that CAR has con-
stitutive transcriptional activity in the absence of its ligand 
[134]. Later, it was reported that the constitutive transcrip-
tional activity of CAR is reversed by androstane metabo-
lites, which are inverse agonists [135]. CAR can be activated 
by direct ligand binding and indirect activation [136]. In 
the absence of ligand binding, CAR forms a heterodimer 
with RXR and transactivates its target genes [137]. CAR 
recruits coactivators in the nucleus, such as steroid receptor 
coactivator 1 (SRC-1, NC0A1) and PGC-1 [138]. Similar 
to PXR, CAR controls the expression of drug-metabolizing 
enzymes and transporters, thereby supporting the detoxi-
fication of xenobiotics [120, 139]. In contrast to PXR, it 
remains unclear whether BAs can function as natural ligands 
for CAR; nevertheless, there are reports underscoring the 
involvement of CAR in BA signaling [11].

Vitamin D receptor (VDR, NR1I1)

In humans, VDR is highly expressed in the kidney, intestine, 
bone as well as in hepatocytes but expressed at low levels in 
other tissues [140–142]. LCA is a potent endogenous VDR 
ligand [143, 144]; hence, VDR can act as an intestinal BA 
sensor. VDR activation induces expression of CYP3A that 
metabolizes LCA [143, 145]. In addition, VDR induces the 
expression of SULT2A1, MRP3 and ASBT to stimulate BA 
sulfonation, excretion and transport [146–148]. The acti-
vated VDR plays a role in the inhibition of BA synthesis via 
suppression of CYP7A1, thus protecting liver cells during 
cholestasis [140].

VDR can function as a nuclear receptor and a membrane-
bounded receptor. Upon ligand binding, VDR translocates 
into the nucleus, where it binds to DNA response elements 
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as a heterodimer with RXR to mediate gene transcription. 
Plasma membrane-associated VDR receptor activates 
several signaling cascades to inhibit CYP7A1 transcrip-
tion [142, 149]. It has been shown that the activation of 
membrane VDR signaling by LCA in the liver activates 
MEK1/2ERK1/2 pathway, which stimulates nuclear VDR/
RXRα heterodimer recruitment of corepressors to inhibit 
CYP7A1 gene transcription [150]. In biliary epithelial 
cells, bile salts (CDCA, UDCA) stimulate the expression of 
cathelicidin, an antimicrobial peptide, via VDR and FXR to 
control innate immunity [151]. The possible role of VDR in 
regulating immunity and the role of VDR in different cancer 
cells and diseases is reviewed in detail elsewhere [152].

Liver X receptor (LXR, NR1H2‑3)

LXRs are activated by naturally occurring cholesterol metab-
olites such as oxysterols and bind to DNA as heterodimers 
with the RXR [153]. LXRα (NR1H3) and LXRβ (NR1H2) 
share a high structural homology [154]. LXRβ is ubiqui-
tously expressed, while LXRα is primarily expressed in 
the liver, the adipose tissue, the intestine and macrophages. 
Upon ligand activation LXRs regulate gene expression via 
binding to LXR response elements in the promoter regions 
of the target genes. LXRα promotes the conversion of cho-
lesterol into BAs through the induction of CYP7A1 expres-
sion in the liver. LXRs enhance the efflux of cholesterol 
from cells [155] and have an anti-inflammatory response in 
the adipose tissue and macrophages [156]. Hyodeoxycholic 
acid (HDCA), a naturally occurring secondary BA generated 
by bacterial C-6 hydroxylation of LCA, is a weak LXRα 
agonist [157].

Small heterodimer partner (SHP, NR5O2)

SHP is a unique nuclear receptor that contains a ligand-bind-
ing domain but lacks the conserved DNA-binding domain. 
SHP acts as a transcriptional corepressor regulating differ-
ent metabolic processes, including lipid, glucose, energy 
homeostasis and BA synthesis via interaction with multi-
ple transcription factors and nuclear receptors (reviewed in 
[158]). BAs or FGF19 signaling enhances posttranslational 
modifications of SHP, which modulates the regulatory func-
tion of SHP protein [159, 160]. SHP acts as an inhibitory 
regulator in Hedgehog/Gli signaling pathway [161].

Effects of bile acids in cancers

The role of BAs was implicated in a wide variety of neopla-
sias (Fig. 4, Tables 5, 6, 7). When assessing the effects of 
BAs, one has to keep in mind that the concentrations applied 
in the experiments need to correspond to the reference 

concentrations in serum or the compartment in question 
(e.g. parts of the gastrointestinal tract). However, several 
reports are using substantially higher concentrations than the 
reference. These studies need to be considered as ones using 
“therapeutic” concentrations. In the forthcoming chapters, 
we will review those neoplasias where BAs were implicated 
in pathogenesis.

Oesophageal carcinoma

The development of Barrett’s esophagus (BE) and its pro-
gression to oesophageal adenocarcinoma (EAC) are linked 
to gastroesophageal reflux disease (GERD). Conjugated 
BAs, mainly taurocholic acid (TCA) and glycocholic acid 
(GCA) are the main BA constituents in GERD refluxate 
[162]. Conjugated BA levels in the refluxate from patients 
with advanced BE or EAC are significantly higher than from 
patients with benign BE [163]. Conjugated BAs, as TCA or 
taurodeoxycholic acid (TDCA), promote EAC progression 
[164, 165] (Table 7). Unconjugated BAs, including DCA and 
CDCA, induce oxidative stress, DNA damage and inflam-
mation contributing to EAC carcinogenesis, while UDCA 
protects against DCA-induced injury (Tables 5 and 7).

Apparently, numerous BA receptors as TGR5, S1PR2, 
FXR and VDR are activated in EAC cells in response to BAs 
in the refluxate [164–167]. In good agreement with that, the 
inhibition of the FXR receptor suppresses tumor cell via-
bility in vitro and reduced tumor formation in nude mouse 
xenografts [168]. Furthermore, TGR5 is highly expressed 
in the EAC and precancerous lesions and is associated with 
worse overall survival [169] suggesting that these observa-
tions can be translated to the human situation.

Acidic bile acids bring about oxidative stress, TDCA can 
induce NADPH Oxidase 5 (NOX5) through TGR5 [164]. 
Furthermore, bile acids can induce inflammation through 
FXR activation [170] and the EGFR–STAT3 (signal trans-
ducer and activator of transcription 3)—Apurinic/Apyrimi-
dinic Endodeoxyribonuclease 1 (APE1) pathway [171]. 
Acidic bile salts can also induce epithelial–mesenchymal 
transition (EMT) through vascular endothelial growth fac-
tor (VEGF) signaling in Barrett's cells [172]. Interestingly, 
the activation of the EGFR-DNA-PKs (DNA-dependent pro-
tein kinase) pathway by insulin-like growth factor binding 
protein 2 (IGFBP2) protects EAC cells against acidic bile 
salt-induced DNA damage [173].

Gastric cancer

Carcinogenesis in gastric cancer is a sequential process 
that includes chronic superficial gastritis, intestinal meta-
plasia  (IM), atrophic gastritis, intramucosal carcinoma, 
dysplasia and invasive neoplasia [174]. IM is considered a 
risk factor for gastric tumorigenesis. The concentrations of 
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BAs in gastric juice positively correlate with the degree of 
intestinal metaplasia [175] and BAs serve a critical multi-
pronged role in the induction of intestinal metaplasia. BAs 
can enhance caudal-related homeobox family 2 (CDX2) and 
mucin 2 (MUC2) expression via FXR/NF-κB signaling [176, 
177] and cyclooxygenase-2 (COX-2) expression via induc-
tion of SHP [178], all promoting gastric intestinal meta-
plasia. Acidic bile salts can induce telomerase activity in a 
c-Myc-dependent fashion [179, 180], while DCA can induce 
the metaplastic phenotype of gastric cancer cells [181] (see 
Tables 6 and 7). TGR5 is a key factor in BA-induced gastric 
metaplasia via HNF4α [181], EGFR and mitogen-activated 
protein kinase (MAPK) [182] activation and promotes EMT 
in gastric carcinoma cells [183]. TGR5 is overexpressed in 
gastrointestinal adenocarcinomas, and moderate to strong 
TGR5 staining is associated with decreased patient sur-
vival [184]. Nevertheless, there anticarcinogenic effects of 
bile acids in gastric cancer, as UDCA (Table 5) or DCA 

in supraphysiological concentrations [185, 186] or 23(S)-
mCDCA [187].

Hepatocellular carcinoma (HCC)

Several studies have shown that more hydrophobic BAs as 
LCA, DCA and CDCA, are the main promoters of liver can-
cer and can contribute to the development of HCC (see in 
Table 7) [188–192]. Nevertheless, CDCA (> 100 µM) [193, 
194], UDCA and Tauroursodeoxycholic acid (TUDCA) 
inhibit HCC cell growth and induce apoptosis [195–199] 
(see in Tables 5 and 6). Deregulation of BA homeostasis 
marked by the expression of hepatic BA transporters (BSEP, 
OSTα/β, MRP2, MDR2-3, NTCP) is diminished leading to 
increased hepatic BA sequestration and inflammation and 
reduced FXR signaling [200–203] in liver cirrhosis and non-
alcoholic steatohepatitis that are risk factors for the develop-
ment of HCC. In good agreement with that, metabolomics 
identified long-term elevated serum BAs in HCC patients 

Fig. 4  Different roles of bile 
acids and bile acids receptors 
in a wide variety of cancers. 
Some BAs have opposite 
effects, which depend on the 
cell line, BA concentration and 
other treatment conditions. The 
crossed circle symbol marks the 
tumor suppressor effects and the 
arrow marks the tumor promoter 
effects. CA Cholic acid, CAR  
Constititive androstane receptor, 
CDCA Chenodeoxycholic acid, 
CHRM2/M3 Muscarinic recep-
tor 2 and 3, DC Deoxycholate, 
DCA Deoxycholic acid, FXR 
Farnesoid X receptor, GCDA 
Glycochenodeoxycholate acid, 
GCDC Glycochenodeoxycho-
late, GDC Glycodeoxycholate, 
GDCA Glycodeoxycholic 
acid, GLCA Glycolithocholic 
acid, GUDCA Glycoursode-
oxycholic acid, LCA Litho-
cholic acid, PXR Pregnane X 
receptor, S1PR2 Sphingosine-
1-phosphate receptor 2, SHP 
Small heterodimer partner, 
TCA  Taurocholic acid, TCDC 
Taurochenodeoxycholate, 
TCDCA Taurochenodeoxycholic 
acid, TDC Taurodeoxycholate, 
TDCA Taurodeoxycholic acid, 
TGR5/GPBAR1 G protein- 
coupled bile acid receptor 1, 
TLC Taurolithocholate, TLCA 
Taurolithocholic acid, TUDCA 
Tauroursodeoxycholic acid, 
UDCA Ursodeoxycholic acid, 
VDR Vitamin D receptor
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Table 5  Tumor suppressive effects of UDCA, TUDCA and GUDCA in cancers

Cancer type Cell models Concentration Effects Ref

Glioblastoma A172, LN229 400–800 µM UDCA inhibits cell viability, induces ROS 
production and endoplasmic reticulum 
stress, synergizes with proteasome inhibitor 
Bortezomib

[314]

Neuroblastoma SH-SY5Y 100 µM TUDCA protects against mitochondrial 
damage, cell death and ROS generation via 
mitophagy

[315]

Pancreatic cancer HPAC, Capan1 0.2 mM UDCA reduces intracellular ROS level and 
Prx2 expression, as well as suppresses EMT 
and stem cell formation

[227]

Prostate cancer DU145 0–200 µg/ml UDCA inhibits cell growth and induces apop-
tosis via extrinsic and intrinsic pathways

[274]

Melanoma M14, A375 0–300 µg/ml UDCA inhibits cell proliferation and induces 
apoptosis via ROS-triggered mitochondrial-
associated pathway

[316]

Hepatocellular carcinoma (HCC) Huh-BAT, HepG2 750 µM UDCA has a synergistic effect on the antitu-
mor activity of sorafenib in HCC cells via 
activation of ERK and dephosphorylation 
of STAT3

[195]

HepG2, BEL7402 0.1–1 mM UDCA inhibits proliferation and induces 
apoptosis of HCC cell lines by blocking cell 
cycle and regulating the expression of Bax/
Bcl-2 genes. UDCA suppresses growth of 
BEL7402 cells in vivo

[196]
[317]

HepG2 0.25–1 mM UDCA induces apoptosis via regulating of 
Bax to Bcl-2 ratio, the expressions of Smac 
and Livin, and caspase-3 expression and 
activity

[197]

Huh-Bat, SNU761, SNU475 200 µM UDCA suppresses cell growth and induces 
DLC1 tumor suppressor protein expression 
by inhibiting proteasomal DLC1 degrada-
tion in an ubiquitin-independent manner

[198]

HepG2, SK-Hep1, SNU-423, Hep3B 100 µM UDCA switches oxaliplatin-induced necrosis 
to apoptosis via inhibition of ROS produc-
tion and activation of the p53-caspase 8 
pathway

[199]

Oral Squamous Carcinoma HSC-3 100–400 µg/ml UDCA induces apoptosis via caspase activa-
tion

[318]

Leukemia T leukemia cell line (Jurkat cell) 100 µg/ml TUDCA and UDCA induce a delay in cell 
cycle progression

[319]

Gastric cancer MKN-74 200 µM UDCA suppresses chenodeoxycholic acid-
induced PGE2 production and tumor 
invasiveness without affecting the COX-2 
expression

[320]

SNU601, SNU638 0.25–1 mM UDCA induces apoptosis, which is mediated 
by lipid raft-dependent death receptor 5 
(DR5) expression and activation

[321]

SNU601 0.6–1 mM UDCA induces apoptosis via MEK(MAPK)/
ERK pathway. DCA-mediated ERK activa-
tion exerts an antiapoptotic activity in this 
cell line

[322]

SNU601 0.5–1 mM UDCA induces apoptosis via CD95/Fas death 
receptor, downregulates ATG5 level and 
prevents autophagic pathway

[323]
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[204] and children (< 5 years of age) with bile salt export 
pump deficiency developed HCC [205].

FXR activity is a major inhibitor of HCC carcinogenesis. 
Whole-body FXR-deficient mice spontaneously develop 
liver tumors [206, 207] in which the activation of the Wnt/β-
catenin signaling pathway and oxidative stress were identi-
fied as the major drivers [208–210]. Nevertheless, liver-spe-
cific FXR deficiency in mice does not induce spontaneous 
liver tumorigenesis, but may only serve as a tumor initiator 
[211]. Due to their amphipathic nature, BAs can disrupt the 

plasma membrane and activate protein kinase C (PKC) and 
phospholipase A2 (PLA2) inducing the p38-MAPK-p53-
NFκB pathway [212, 213]. Inflammation can suppress FXR 
activity that contributes to bile acid accumulation and car-
cinogenesis [185, 193, 194, 214].

Interestingly, senescence-associated secretory pheno-
type has crucial role in promoting obesity-associated HCC 
development in mice. Administration of high-fat diet to 
mice induces alterations in the gut microbiota and increases 
the levels of DCA. Increased DCA level promotes SASP 

Table 5  (continued)

Cancer type Cell models Concentration Effects Ref

Oesophageal cancer /
Barett’s esophagus

BAR-T, BAR-10 T 125–250 µM UDCA increases antioxidant expression and 
prevents DCA-induced DNA damage and 
NF-κB activation

[324]

SKGT-4, OE33 300 µM UDCA inhibits DCA-induced NF-κB, AP-1 
activation and COX-2 upregulation

[325]

BE CP-A 0.1–0.2 mM GUDCA has cytoprotective role by inhibiting 
oxidative stress

[326]

Colon cancer HCT116 500 µM UDCA inhibits DCA-induced apoptosis via 
modulation of EGFR/Raf-1/ERK signaling

[246]

HCT116 500 µM UDCA suppresses DCA-induced apoptosis 
by stimulating AKT-dependent survival 
signaling

[327]

HCT116 500 µM UDCA protects colon cancer cells from 
apoptosis induced by DCA by inhibiting 
apoptosome formation independently of 
the survival signals mediated by the PI3K, 
MAPK, or cAMP pathways

[328]

HCT116 400 µM UDCA inhibits cell proliferation by suppress-
ing the expression of c-Myc protein and cell 
cycle regulatory molecules

[329]

HT29, HCT116 0.2 mM UDCA inhibits cell proliferation by regulat-
ing ROS production, induces activation of 
ERK1/2, and inhibits formation of colon 
cancer stem-like cell

[244]

HCT116 300 µM UDCA inhibits interleukin β1 and blocks 
DCA-induced NF-κB and AP-1 activation

[330]

HT-29 250 µM UDCA suppresses cell growth, which is 
enhanced in the presence of caveolin; 
UDCA promotes endocytosis and degrada-
tion of EGFR receptor

[331]

HCT116, COLO 205 50 µg/ml TUDCA suppresses NF-κB signaling and 
ameliorates colitis-associated tumorigenesis

[332]

Cholangiocarcinoma Mz-ChA-1 0.2–200 µM TUDCA inhibits cell growth via a signal-
transduction pathway involving MAPK 
p42/44 and PKCα

[333]

AKT AKT Serine/Threonine Kinase 1, AP-1 activator protein-1, ATG5 Autophagy Related 5, BIRC7/Livin baculoviral IAP repeat-containing 
protein 7, Bax Bcl-2-associated X protein, Bcl-2 B-cell lymphoma 2, cAMP Cyclic adenosine monophosphate, c-Myc Myc-Related transla-
tion/localization regulatory factor, COX2 cyclooxygenase-2, DCA Deoxycholic acid, Dlc1 Deleted in Liver Cancer 1, DR5 death receptor 5, 
EGFR epithelial growth factor receptor, EMT epithelial–mesenchymal transition, ERK extracellular signal-regulated kinase, FAS/CD95 Fas 
Cell Surface Death Receptor, GUDCA Glycoursodeoxycholic acid, HCC hepatocellular carcinoma, MAPK mitogen-activated protein kinase, 
NF-κB nuclear factor κappa-light-chain-enhancer of activated B cells, PGE2 prostaglandin E2, PI3K Phosphatidylinositol 3-kinase, PKCα pro-
tein kinase C α, Prx2 peroxiredoxin II, RAF1 Raf-1 Proto-Oncogene, Serine/Threonine Kinase, ROS reactive oxygen species, Smac second 
mitochondria-derived activator of caspase, STAT3 signal transducer and activator of transcription 3, TUDCA Tauroursodeoxycholic acid, UDCA 
Ursodeoxycholic acid
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Table 6  Antitumor effects of bile acids other than UDCA in cancers

Cancer types Cell lines Concentration of bile acids Effects of bile acids Refs.

Breast cancer MCF7, MDA-MB-231 LCA (50–200 µM) LCA induces TGR5 expression and 
exhibits anti-proliferative and 
pro-apoptotic effects. LCA inhibits 
lipogenesis and reduces ERα expres-
sion in MCF7 cells

[10]

MCF7, 4T1 LCA (0.3 µM) LCA inhibits cell proliferation, EMT 
transition, VEGF production and 
induces antitumor immune response 
and elicits changes in metabolism 
through TGR5 receptor

[7]

MCF7, 4T1 LCA (0.3 µM) LCA induces NRF2/NFE2L2 depend-
ent oxidative/nitrosative stress via 
TGR5/CAR receptors

[11]

MCF7 CDCA (50 µM) CDCA activates FXR receptor and 
inhibites Tamoxifen-resistant breast 
cancer cells proliferation and EGF-
induced growth through downregula-
tion of HER2 expression

[268]

MCF7, MDA-MB-231 CDCA (30 µM) CDCA induces cell death via activa-
tion of FXR

[334]

Colon cancer / Colorectal carcinoma Caco-2, HT29C19A LCA (20 µM) LCA activates VDR to block inflam-
matory signals in colon cells

[335]

HCT116 LCA (150–400 µM) LCA activates p53 and promotes 
apoptosis by its bindig to MDM4 
and MDM2, key negative regulators 
of p53

[336]

HCT116 DCA, CDCA (500 µM) DCA and CDCA induce apoptosis [337]
HCT116 DCA (200–250 µM) DCA induces apoptosis via AP-1 and 

C/EBP mediated GADD153 expres-
sion

[338]

HCT116 DCA (0.05–0.3 mM) DCA in physiologically relevant dose 
inhibits cell growth and induces 
apoptosis

[242]

Gallbladder cancer (GBC) NOZ, GBC-SD, EGH1 DCA (50–200 µM) DCA functions as a tumor suppressive 
factor in GBC by interfering with 
miR-92b-3p maturation

[339]

Gastric cancer SGC7901 DCA (0.1–0.3 mM) DCA induces apoptosis via the 
mitochondrial-dependent pathway

[186]

BGC-823 DCA (0.3 mM) DCA inhibits the growth of gastric 
cancer cells via p53 mediated 
pathway

[185]

SNU-216, MKN45 DCA (200 µM) DCA induces MUC2 expression and 
inhibits tumor invasion and migra-
tion

[340]

Hepatocellular carcinoma (HCC) HEPG2, L02 CDCA (10–50 µM) CDCA reduces the expression of 
inflammation mediators, inhibits 
STAT3 phophorylation and increases 
expression of SOCS3 via FXR

[193]

HepG2, Huh7,
mouse hepatoma Hepa 1–6

CDCA (50–100 µM) CDCA induces tumor suppressor 
N-Myc downstream regulated gene 
2 (NDRG2) expression through FXR 
receptor

[194]

Neuroblastoma (NB) SK-n-MCIXC, BE(2)-
m17, SK-n-SH, Lan-1

LCA (100 µM) LCA selectively kills the NB cell lines 
while sparing normal neuronal cells. 
LCA triggers intrinsic and extrinsic 
pathways of apoptosis

[8]
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phenotype in hepatic stellate cells (HSCs), which in turn 
secretes various tumor-promoting factors in the liver, thus 
facilitating HCC development in mice exposed to chemical 
carcinogen [6]. SHP has a pleiotropic role in HCC, regulates 
cell proliferation [215], apoptosis [216], epigenetic changes 
[217] and inflammation [200, 218], which are associated 
with the antitumor role of SHP in the development of liver 
cancer.

Pancreatic adenocarcinoma

BAs are involved in the induction and development of pan-
creatic adenocarcinoma at multiple stages. Gallstone for-
mation can block bile flow and, therefore, can induce and 
sustain pancreatitis [219], a risk factor for pancreatic adeno-
carcinoma [220–222]. In fact, several BA species showed 
a drastic increase in pancreatic adenocarcinoma patients 
[223]. Treatment of pre-malignant pancreas ductal cells with 
bile induced carcinogenic transformation [224, 225]. In pan-
creatic adenocarcinoma cells BAs decrease susceptibility to 
apoptosis, boost cell cycle progression, the expression of 
inflammatory mediators and cellular movement, and, in high 
concentrations, may perturb biomembranes (Table 7) [220, 

226]. UDCA, similar to its previously discussed beneficial 
properties, prevents EMT in pancreatic adenocarcinoma cell 
lines and, therefore, has antineoplastic properties (Table 5) 
[227].

Colorectal carcinoma (CRC)

The western diet has tumor promoting activity associated 
with elevated concentrations of colonic BA (mainly LCA 
and DCA) and increased fecal BA levels, as detected in sam-
ples from CRC patients [228]. In animals, a high-fat diet 
stimulates bile discharge and results in elevated BA levels 
in the colon [229]. Moreover, cholecystectomy, through 
prolonging BA exposure of the intestinal mucosa, has been 
suggested as a risk factor for the development of CRC [230].

BAs induce genetic instability marked by genomic insta-
bility and DNA damage via oxidative stress, defects in 
mitotic checkpoints, cell cycle arrest, improper chromosome 
alignment and multipolar division [231, 232]. Genomic 
instability caused by BAs is coupled with apoptosis resist-
ance due to the degradation of p53 and the inhibition of cas-
pase-3 activity [233]. Furthermore, secondary BAs perturb 
cell membranes and modulate signaling cascades [234, 235]. 

Table 6  (continued)

Cancer types Cell lines Concentration of bile acids Effects of bile acids Refs.

Ovarian cancer OVCAR3 CDCA, DCA (10 µM) CDCA and DCA upregulate BRCA1 
and downregulate ER1 gene 
expression, which are important 
implications for disease penetrance 
and chemoprevention strategies in 
carriers of BRCA1 mutations

[281]

A2780 CDCA, DCA (200–400 mM) CDCA and DCA have significant 
cytotoxic activity via induction of 
apoptosis

[279]

Prostate cancer LNCaP, PC-3 LCA (25–75 µM) LCA inhibits the proliferation of can-
cer cells and induces apoptosis

[273]

PC-3, DU145 LCA (3–50 µM) LCA decreases cell viability, induces 
apoptosis as well as induces endo-
plasmic reticulum stress, autophagy 
and mitochondrial dysfunction

[9]

LNCaP, DU145 CDCA (50 µM) Activation of FXR by CDCA inhibits 
cell proliferation and lipid accumula-
tion via SREBF pathway

[270]

LNCaP CDCA (5 µM) FXR activation by CDCA inhibits cell 
growth via upregulation of PTEN

[271]

AP-1 activator protein-1, BRCA1 breast cancer type 1 susceptibility protein, CA Cholic acid, CAR  constitutive androstane receptor, CDCA Che-
nodeoxycholic acid, C/EBP CCAAT/enhancer-binding protein beta, DCA Deoxycholic acid, EGF epidermal growth factor, EMT epithelial–mes-
enchymal transition, ER estrogen receptor, FXR Farnesoid X receptor, GADD153 growth arrest- and DNA damage-inducible gene 153, GBC 
Gallbladder cancer, GCDC Glycochenodeoxycholate, GDC Glycodeoxycholate, HER2 human epidermal growth factor receptor 2, LCA Litho-
cholic acid, MDM2 Mouse double minute 2, MDM4 Double Minute 4, MUC2 mucin 2, NB Neuroblastoma, NDRG2 N-Myc downstream regu-
lated gene 2, NRF2 nuclear factor erythroid 2-related factor 2, NFE2L2 PTEN, phosphatase and tensin homolog, SOCS3 suppressor of cytokine 
signaling 3, SREBF sterol regulatory element-binding factor, STAT3 signal transducer and activator of transcription 3, TCA  Taurocholic acid, 
TCDC Taurochenodeoxycholate, TDC Taurodeoxycholate, TGR5 G protein-coupled bile acid receptor 1, VEGF vascular endothelial growth fac-
tor, VDR vitamin D receptor
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These all lead to colonic cell hyperproliferation, survival and 
invasion [236, 237].

The disruptive effect of BAs on colon epithelium evokes 
a compensatory cell renewal mechanism by inducing colonic 
epithelial cells to become cancer stem cells (CSCs) through 
β-catenin signaling (Table 7) [238]. In the CRC rodent 
model, both LCA and DCA have tumor promoter role on 
colonic crypt cells in the early stages of colon carcinogen-
esis [239]; however, it is important to note that BAs are 
suggested as tumor promoters, but not as mutagenic agents, 
since they can not induce tumor formation without a carcino-
gen/mutagen or a genetic alteration [240, 241]. It should be 
noted that DCA in low concentrations (0.05–0.3 mM) inhibit 
colonic cell proliferation via cell cycle block and apoptosis 
pathways (Table 6) [242].

UDCA can reduce the concentration of toxic BA in stool 
and blood [243] and has shown to protect against CRC by 
inhibiting CSC and CRC cell formation and proliferation 
[244, 245], oncogenic signaling pathways [246], as well 
as, inducing tumor surveillance [247] (Table 5). Moreover, 
UDCA can reduces CRC recurrence [248], as well as the 
risk to develop CRC in patients with pre-cancerous condi-
tions, as colitis [249] or primary biliary cirrhosis [250].

Sustained inflammation was implicated in the pathogen-
esis of colorectal cancer due to barrier breach, and bacte-
rial translocation leading to inflammation and neoplastic 
transformation of colonic epithelial cells [251–253]. TGR5 
activation by UDCA and LCA may also exert anti-inflam-
matory responses through TLR4 activation or by reducing 
pro-inflammatory cytokine production in the colon that can 
decrease the frequency of developing CRC [254]. BAs can 
change the gut microbial community [255, 256], suggesting 
that BAs may also interfere with bacterial translocation.

Breast cancer

The BAs in the breast are of gut origin [257, 258]. Hepatic 
production of BA is reduced in breast cancer patients as 
marked by decreasing levels of serum and fecal BAs [7, 
259]. Furthermore, bacterial conversion of BAs to secondary 
BAs is also suppressed, which is the most dominant in in situ 
and stage I patients [7]. The serum bile acid composition of 
breast cancer and benign breast disease patients is differ-
ent; specifically, breast cancer patients had higher serum 
chenodeoxycholic acid levels and lower dihydroxy tauro-
conjugated BA (Tdi-1) and sulfated dihydroxy glyco-conju-
gated bile acids (Gdi-S-1) [260]. Total fecal bile acid levels 
are lower in breast cancer patients as compared to controls 
[259]. LCA concentrations in the breast can be higher than 
the serum levels [261] (Table 6). Reports showed increased 
DCA levels in the serum [262] and the breast cyst fluid [263] 
of breast cancer patients.

LCA is an inhibitor of breast cancer cell proliferation 
(Table 6) [7, 258, 264]. However, the reports on DCA and 
UDCA are contradictory [7, 258, 262–264] in physiological 
concentrations, LCA tunes cancer cell metabolism towards a 
more oxidative state (through AMP-activated protein kinase 
(AMPK), PGC-1β and NRF1/NFE2L1) and induces mild 
oxidative stress through reducing NRF2 (nuclear factor 
erythroid 2-related factor 2, NFE2L2) expression and induc-
ing Inducible nitric oxide synthase (iNOS) that reverts EMT, 
reduces VEGF expression, induces antitumor immunity and 
changes to cancer metabolism that culminates in reduced 
metastasis formation [7, 11]. In supraphysiological concen-
trations (> 1 µM) LCA inhibits fatty acid biosynthesis [10] 
and induces cell death [8–10, 265, 266]. LCA does not exert 
antiproliferative effects in its tissue reference concentrations 
on non-transformed primary fibroblasts [7]. LCA exerts its 
antineoplastic effects through the TGR5 [7] (Table 6).

CDCA in supraphysiological concentrations induces 
MDRs through FXR [265] and modulates estrogen and pro-
gesterone receptor-mediated gene transcription [267]. Fur-
thermore, CDCA inhibits tamoxifen-resistant breast cancer 
cell proliferation through the activation of the FXR receptor 
[268] (Table 6). In contrast to that, a report by Journe and 
colleagues [269] showed that FXR activation has a positive 
correlation with estrogen receptor expression and luminal 
characteristics, as well as supported cancer cell proliferation.

Prostate cancer

Among the BAs LCA, UDCA and CDCA exerted antipro-
liferative effects in prostate cancer. Activation of FXR by 
CDCA inhibits proliferation of prostate cancer cells, reduces 
lipid anabolism via inhibiting Sterol Regulatory Element 
Binding Transcription Factor 1 (SREBF1) [270] and induces 
the expression of the tumor suppressor phosphatase and ten-
sin homolog (PTEN) [271] (Table 6). Interestingly, FXR 
signaling also controls androgen metabolism in prostate 
cancer cells, its activation reduces the expression of UDP-
glucuronosyltransferase (UGT) 2B15 and UGT2B17 within 
cells and causes a reduction of androgen glucuronidation 
[272]. Similar to CDCA, LCA has antiproliferative effects in 
prostate cancer and induces apoptosis, endoplasmic reticu-
lum stress, autophagy and mitochondrial dysfunction [9, 
273] (see Table 6). UDCA induces death receptor-mediated 
apoptosis in human prostate cancer cells [274] (Table 5).

Ovarian cancer

In the serum of ovarian cancer patients, 3b-hydroxy-5-cho-
lenoic acid, GUDCA, DCA and TCDCA levels decreased 
[275, 276]; importantly, taurochenodeoxycholic acid levels 
decreased in early-stage epithelial ovarian cancer [276]. 
Zhou and colleagues have shown that sulfolithocholylglycine 



 T. Režen et al.

1 3

243 Page 26 of 39

and TCA showed changes in the serum of ovarian cancer 
patients [277]. Changes to the BA pool are so characteristic 
that Guan and colleagues suggested [278] a set of 12 BAs, 
including glycolithocholic acid, to be used as markers to 
separate healthy controls from ovarian cancer patients.

The available studies assessed the effects of BAs at supra-
physiological concentrations. These concentrations of BAs 
are cytotoxic and induce apoptosis likely due to changes 
to membrane damage [279, 280] that is unlikely at physi-
ological concentrations of BAs [7]. DCA can modulate the 
expression of breast cancer type 1 susceptibility protein 
(BRCA1) and the estrogen receptor and, through these, can 
control drug sensitivity of ovarian cancer cells (Table 6) 
[281]. Furthermore, cholylglycinate interferes with the 
transport of cisplatin [282] and TCDC sensitizes ovarian 
carcinoma cells to doxorubicin and Mitomycin [280].

LXR [283–285], PXR [286], VDR [287–296] or CAR 
[297, 298] activation was shown to exert protective features 
against ovarian cancer, similar to BA-elicited effects sug-
gesting that BAs may have a more profound role in protect-
ing against ovarian cancer. These protective effects involved 
the suppression of proliferation [283, 284, 286], invasion 
[291], EMT [288], de novo fatty acid biosynthesis [295], 
the proportions of the cancer stem cell population [289], and 
the improvement of the efficacy of chemotherapy [285, 297, 
298] culminating in better patient survival [292, 293]. Con-
flicting with these observation on report provided evidence 
that under certain conditions PXR may support proliferation 
[299]. BAs can influence the expression and the activity of 
multiple PARP enzymes [300]; therefore, it is likely that 
BAs could modulate the efficacy of PARP inhibition that 
is a novel modality in the chemotherapy of ovarian cancer.

Conclusions

Primary and secondary BAs are long-standing players in 
carcinogenesis. Although these molecules were considered 
as initiators of neoplasias, recent advances have shown that 
the pro- or anticarcinogenic activity of BAs varies among 
neoplasias [301], most probably due to differences in the 
expression of BA receptors, transporters and cell-specific 
differences in the outcome of receptor activation. Key path-
ways activated in neoplasias by BAs are regulated by nuclear 
receptors, FXR, CAR, SHP, PXR, LXR and VDR and other 
membrane receptors such as S1PR2, TGR5, CHRM2 and 
CHRM3. They activate numerous downstream signaling 
pathways such as EGFR, STAT3, MAPK, HNF4α, NF-κB, 
TLR4, SOCS3 and β-catenin just to name some. Further-
more, BAs regulate all aspects of tumor development and 
progression, the EMT, invasion, metabolism, apoptosis, pro-
liferation, senescence, immune environment and response to 
chemotherapy.

The effect of BAs on neoplasias also depends on the con-
centrations used in the studies. While in certain models BAs 
in low concentration have anti-cancer effects, in superphysi-
ological concentrations BAs have pro-cancer effects. This 
phenomenon is related to their amphipathic structure and 
the activation of additional off-target pathways not tiggered 
at physiological concentration. At high concentrations, BAs 
may perturb membranes and activate signaling pathways 
that sense disturbance of membranes, such as PLA2 and 
PKC. At high concentrations, they are also toxic and acti-
vate the detoxifying pathways, which regulate the activity 
of transporters of steroid hormones and chemotherapeutics. 
Therefore, we would urge the community to carry out stud-
ies where the concentrations of BAs correspond to the refer-
ence concentrations established for the tissue or, as a proxy, 
to the serum reference concentrations. As a continuation of 
that, in the case of UDCA the therapeutic serum concentra-
tions can also be used as a guide. These data are summarized 
in Table 1. Such studies would be invaluable to understand 
the (patho)physiological roles of BAs and would give a good 
frame for the therapeutic applicability.

Along the same lines, it is apparent that BAs can be con-
sidered as possible treatment options in certain cancers. 
Foremost, UDCA, that is a therapeutically available drug, 
has beneficial effects in multiple neoplasias (e.g. [227, 248, 
302], Table 5) pointing towards the possibility for repurpos-
ing UDCA. The picture for other BAs is hazier due to fre-
quent contradictions making it hard to outline applicability. 
However, before the application of BAs in neoplasias we 
would need to decipher the cross-talk between BAs and drug 
metabolism, the effect on drug efficacy and drug availability, 
and discover the possible adverse effects of BAs, that is cur-
rently largely missing. Moreover, it is tempting to consider 
the manipulation of the intestinal microbiome to affect the 
levels of selected secondary bile acids in humans. Finally, 
the modulators of BA receptors should be considered as 
therapeutic options as well. Given the emerging evidence on 
the potential anti-cancer effects of BAs, further studies are 
vital in order to develop novel therapeutic strategies using 
BAs.

Search strategy and selection criteria

References to this review were identified through the prior 
knowledge of the authors that was complemented by system-
atic search of PubMed by using the combinations “Prostate 
cancer AND (bile acid)”, “Gastric cancer AND (bile acid)”, 
“Hepatocellular carcinoma AND (bile acid)”, “Oesophageal 
cancer AND (bile acid)”, “(bile acid) receptors AND can-
cer”, “(bile acid) receptors AND prostate cancer”, “(bile 
acid) receptors AND gastric cancer”, “(bile acid) recep-
tors AND hepatocellular carcinoma”, “(bile acid) receptors 
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AND oesophageal cancer”, "(bile acid) AND ABC AND 
transporter", "(bile acid) AND SLC AND transporter", 
"(bile acid) AND SLCO AND transporter", "(bile acid) 
AND transport AND review", “Farnesoid X receptor (FXR) 
AND the cancer types assessed in the study”, “Pregnane 
X receptor (PXR) AND the cancer types assessed in the 
study”, “Constitutive androstane receptor (CAR) AND the 
cancer types assessed in the study”, “Vitamin D receptor 
(VDR) AND the cancer types assessed in the study” “Liver 
X receptor (LXR) AND the cancer types assessed in the 
study”, “Small heterodimer partner (SHP) AND the can-
cer types assessed in the study”. Articles published in Eng-
lish were included with no restriction on publication date. 
All references were checked at Pub Peer, two papers were 
flagged ([215] and [156]), but when reviewing the reports 
we decided that the issues raised do not impact on the main 
message and kept the references.
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