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Abstract
Förster resonance energy transfer (FRET) is a widespread technology used to analyze and quantify protein interactions in 
multiple settings. While FRET is traditionally measured by microscopy, flow cytometry based-FRET is becoming popular 
within the last decade and more commonly used. Flow cytometry based-FRET offers the possibility to assess FRET in a 
short time-frame in a high number of cells thereby allowing stringent and statistically robust quantification of FRET in 
multiple samples. Furthermore, established, simple and easy to implement gating strategies facilitate the adaptation of flow 
cytometry based-FRET measurements to most common flow cytometers. We here summarize the basics of flow cytometry 
based-FRET, highlight recent novel developments in this field and emphasize on exciting future perspectives.

Keywords FACS · Förster resonance energy transfer · FLIM · Fluorescence proteins · Molecular interactions · Protein 
interactions

Introduction

Förster resonance energy transfer (FRET) is a process in 
which a donor fluorophore in its excited state transfers its 
excitation energy non-radiatively to an acceptor fluoro-
phore via dipole–dipole interactions, subsequently leading 
to the emission of the fluorescence of the acceptor. Since 
its discovery in 1948 [1, 2], FRET has developed to be a 
powerful tool to detect interactions between molecules and 
especially proteins, opening new possibilities in the broad 
field of biomedical research. Especially since the 1990s 
FRET-techniques have been implemented and continuously 
developed as a broad application in life sciences [3]. A com-
prehensive overview on the physical background of FRET 
can be found in literature [4–6]. FRET-measurements mostly 
depend on the use of a microscope, where certain limitations 
apply. For example, a relatively low throughput rate, special 
equipment, low signal-to-noise and the absolute necessity 

for careful normalization and data analysis to exclude false-
positive signals. To overcome these problems, since the 
mid-90 s, a combination of FRET with flow cytometry has 
been gradually developed [7]. In this review, we intend to 
introduce FRET briefly with the factors to consider choosing 
optimal FRET pairs and the different FRET measurement 
techniques. We then focus on flow cytometry based-FRET, 
explaining the working principle, the advantages and draw-
backs of this approach as well as the respective application 
in cell-based studies. Importantly, as this review is about 
FRET in the context of cell biology, we do not discuss on 
the multiple possibilities FRET offers in the field of recom-
binantly expressed and purified proteins.

FRET

In general, for FRET to occur between donor fluorophore 
and acceptor fluorophore, three basic conditions must be 
met [8]:

1. Suitable pairing of donor and acceptor: the energy of 
emitted light of the donor fluorophore must be absorbed 
by the acceptor fluorophore. Practically, the emission 
spectrum of the donor has to overlap with the excitation 
spectrum of the acceptor (Fig. 1a, b).
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2. FRET donor and acceptor must be within the Förster 
radius: FRET only takes place within a distance from 0.5 
to 10 nm [5, 9], depending on the fluorescent molecules 
(Fig. 1c, d).

3. FRET donor and acceptor must have a suitable orienta-
tion (Fig. 1e, f): as FRET does not transfer energy via 
photons but relies on dipole–dipole interaction instead 
[6, 9].

FRET, however, is not necessarily restricted to the use 
of two fluorophores. Different groups have shown that 
three fluorophores can be used, too (Fig. 1g), therefore 
enabling two FRET measurements at the same time and 
hence interaction of protein complexes [10, 11]. Another 
possibility is the use of the same fluorophore with highly 

overlapping excitation and emission as donor and accep-
tor (homo FRET, Fig. 1h). In any case, selection of the 
optimal donor and acceptor FRET pairs is essential for an 
optimal FRET efficiency.

FRET efficiency

FRET is characterized by FRET efficiency (E). Accord-
ing to Eq. 1, FRET E is highly dependent on the distance 
between donor and acceptor fluorophores that come into 
close proximity. The closer the distance between donor 
and acceptor is, the more energy can be transferred result-
ing in more efficient FRET [12].

Fig. 1  The principle of FRET. Basic conditions needed for FRET to 
occur include: a The overlapping of donor’s emission spectra with 
acceptor’s excitation spectra (grey area); b no FRET if the donor’s 
emission spectra are separated from acceptor’s excitation spectra; 
c FRET occurs when Förster radius is < 10  nm; d No FRET when 
Förster radius is > 10 nm; e FRET occurs at mutual molecular orien-
tation of donor and acceptor; f No FRET when orientation of donor 
and acceptor are different; g In three fluorophore FRET, the emis-

sion spectra of the donor is overlapping with the excitation spectra of 
acceptor 1 (grey area), acceptor 1 which is also the donor of accep-
tor 2, overlap its emission spectra with excitation spectra of acceptor 
2 (pale green area); h The excitation spectra of donor overlap with 
emission spectra of donor in single fluorophore FRET (grey area). 
DEx donor excitation, DEm donor emission, AEx acceptor excitation, 
AEm acceptor emission. Figure created with BioRender.com
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in which R is the actual distance between donor and accep-
tor dipoles; R0 indicates the “Förster distance” (or radius), 
the distance at which the probability for FRET to occur is 
50% [4]. The spectral properties of the donor and acceptor 
is affecting the magnitude of the R0 which can be evaluated 
based on the orientation between fluorophores ( k2 ), quantum 
yield of the donor ( �

D
 ), refractive index of the medium sur-

rounding the fluorophores (n) and the spectra overlap inte-
gral of donor and acceptor (J) as shown in the Eq. 2 below.

F
D(�) is the normalized fluorescence emission of the donor 

(wavelength dependent); �
A
 is the extinction coefficient (in 

M
−1

cm
−1 ) of the acceptor (wavelength dependent); λ is the 

wavelength. k2 is the orientation between fluorophores and 
often assumed to be 2/3 corresponding to a random ori-
entation as the exact k2 of FPs is unknown. A different k2 
value would give a different R

0
 but the trends between the 

different FRET pairs stay the same. Similar excitation and 
emission spectra are often shared by fluorescent proteins of 
the same spectral class. However, they may have different 
extinction coefficients ( � ) and quantum yields ( � ). Based on 
Eq. 2, when the donors have similar emission spectra, the FP 
with a larger �

D
 (quantum yield) is predicted to be a better 

donor. An acceptor that has a larger extinction coefficient 
compared to another acceptor with similar excitation spectra 
is expected to be a superior acceptor due to the larger overlap 
integral. The R0 of some commonly used fluorophores in 
FRET have been determined and reviewed previously [13]. 
Additionally, FPBase (https:// www. fpbase. org) is a highly 
recommended online tool for R0 calculation [14].

Calculating FRET efficiency seems more complicated 
than using “easier” proxies for FRET, as for instance rela-
tive increase in fluorescence intensity or the number of 
FRET-positive cells. However, using FRET efficiency is an 
unbiased parameter exactly quantifying FRET, independent 
of the used instrumentation and most importantly corrected 
for bleed-through emission.

Optimal donor and acceptor FRET pairs

Proteins, which contain aromatic amino acids harbor intrin-
sic fluorescence in the UV-range and FRET can occur 
between tyrosine and tryptophan. Most proteins contain a 
variety of these amino acids resulting in a huge background 
of protein fluorescence, especially in a cellular environment. 

(1)E =
R
6

0
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6

0
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Fluorescent proteins (FPs) harbor an additional specific fluo-
rophore which leads to fluorescence in the visual range. FPs 
are commonly used in fluorescence microscopy and flow 
cytometry. For exogenous expression, cells are transfected 
with plasmids to express FPs fused to specific proteins of 
interest (POIs). Most FPs were originally derived from dif-
ferent sea organisms such as corals or jellyfish [4], one of the 
first and most popular FP is GFP (green fluorescent protein). 
As of today, a great number of different FPs have been devel-
oped, providing a bevy of different options regarding absorb-
ance and emission spectra, pH- or oxygen sensitivity, as well 
as the quantum yield or the rate of events per absorbed pho-
tons [15, 16]. Contemporary fluorescent proteins cover all 
of the visible spectrum from blue to red (BFP, CFP, GFP. 
YFP, mRFP and the far-red range) [17], most of them being 
originally derived from GFP [4]. Red fluorophores in par-
ticular have gotten more attention in recent years due to 
some favorable properties as they show a reduced autofluo-
rescence [18] as well as a larger Stoke’s shift, which defines 
the difference in wavelength between excitation and emis-
sion maxima [4]. Furthermore, red fluorophores are better 
suited for live cell imaging, as usage of longer wavelengths 
result in less cellular phototoxicity. With regard to the FRET 
requirements mentioned above, several factors, like spectral 
and biochemical properties of the FPs should be considered 
and are summarized in Table 1.

To excite and measure FRET, two different laser-filter 
systems are used, in which the laser functions to excite a 
fluorophore and the filter to detect its emission.

Table 1  Considerations during donor and acceptor FRET pair selec-
tion

Factors Considerations

FRET efficiency Distance between fluorophores
Orientation between fluorophores
Laser/filter of the measuring instruments
Spectral properties
 - Spectral overlap
 - Cross excitation, bleed-through or cross-

talk of donor and acceptor fluorophores
Biochemical properties Oligomeric state of the fluorophores

Folding and maturation time of the fluoro-
phores

Photostability of fluorophores
pH sensitivity of fluorophores

Probes labeling For exogenous proteins
 - FP tagging site (N-, C-, or within POI)
 - With or without linker
 - Length of linker
For endogenous proteins
 - Fluorophore conjugated antibodies
 - SNAP/CLIP tags (also for exogenous 

proteins)
 - CRISPR/Cas9

https://www.fpbase.org


 J. Lim et al.

1 3

217 Page 4 of 12

A one laser system is usually used to measure homo-
FRET in which the fluorescence polarization is measured 
with a polarizer and only one filter is used. To measure fluo-
rescence lifetime (FLIM, will be explained below), only one 
laser is used, too.

A combination of two lasers and two filters is employed 
to measure hetero-FRET [19]. It is the most widely used 
and commonly known as 3-filter FRET for it allows meas-
urements of three different combinations of excitation and 
emission wavelengths:.

 (i) A combination of donor-specific excitation and 
donor-specific emission.

 (ii) A combination of acceptor-specific excitation and 
acceptor-specific emission.

 (iii) The FRET channel, a combination of donor-specific 
excitation and acceptor-specific emission.

The overlap of the emission spectra of donor with accep-
tor excitation spectra is one of the key elements for FRET to 
occur. However, in some cases, the cross excitation (stimula-
tion of acceptor with donor exciting light), the bleed-through 
(donor fluorescence spill over into the emission of acceptor) 
as well as the crosstalk between acceptor and FRET signal 
due to their similar emission spectra could be problematic. 
This can be avoided or reduced by choosing FRET pairs 
based on the laser and filter set of the available instrument 
that allow an optimal excitation of the donor without or with 
compensable cross excitation from the acceptor. Further-
more, the acceptor emission should be detected with filters 
that have no or minimal donor bleed-through. It is also pos-
sible to select FRET pairs from fluorophores in which the 
spectra are separated to a maximum (large Stoke’s shift). 
However, it has to be noted that reducing the spectral overlap 
integral will also result in reduced FRET.

Another thing to consider is the oligomeric nature of 
fluorescent proteins. Furthermore, oligomerization might 
also happen due to local high chromophore concentrations, 
when FPs are present in confined regions like the plasma 
membrane [20]. To avoid some of these issues, a numerous 
amount of monomeric fluorescent protein variants has been 
introduced and reviewed previously [13, 21, 22].

In addition, the folding, maturation time, photostability 
and pH sensitivity of FPs should also be considered as they 
could affect the FRET efficiency. FPs with good folding 
kinetics may enhance the quantum yield [23, 24] and the 
fluorescence proteins in a FRET pair with similar and fast 
maturation may further enhance the FRET performance [23, 
25–27]. The use of brighter and more photo-stable fluoro-
phores is advantageous for FRET measurements [17, 26]. 
The use of pH sensitive fluorophores may also reduce the 
FRET efficiency [28]. Some commonly used FRET pairs had 
been reviewed previously based on the mentioned factors 

[12, 13]. As an example, CFP and YFP which have been 
the most popular fluorophores for long [29] are less utilized 
nowadays. The reason is that CFP and YFP have some limi-
tations in their applicability [30], such as their dependence 
on pH and the relatively low quantum yield of CFP, which 
renders it non-optimal as a FRET donor. A feasible alterna-
tive, therefore, could be the use of Clover/mRuby2 as FRET-
pair, a green and a red fluorophore, which show increased 
Förster distance and yield better possibilities for the detec-
tion of fast molecular interactions [4, 31].

The strategy of fusing a FP to the amino (N-) or the car-
boxy (C-) terminus of POIs to study their biological func-
tions in living cells is widely employed in the field. Most 
of the fluorescent proteins are relatively large molecules of 
about 240 amino acids with a mass of 25 kDa [17]. How-
ever, such tagging may impair the native properties of these 
POIs, as the fused fluorescent protein may alter the fold-
ing, functionality and interaction of a target protein [4]. To 
control for this, it is advisable to analyze FRET signals with 
both, C-terminal and N-terminal tags [17, 32]. Besides, the 
fluorescent proteins could be tagged to the POIs via a linker 
sequence consisting of up to 30 amino acids [17], to guar-
antee sufficient motility of the FPs. However, one should 
be aware that inserting a linker of different sequences may 
shift the distance and the orientation of the fluorescent pro-
tein which might hence affect FRET efficiency. On top, due 
to the unpredictable complex formation between the two 
proteins, the fluorophores might be orientated in a turned-
away-position, resulting in an interaction without FRET. As 
the N- and C- termini of FPs are often quite proximate [33], 
swapping the FP might not result in FRET, even though an 
interaction is expected. Then, another possibility is to insert 
the FP into the target protein between functional domains, 
which could result in FP positioning alongside the target 
protein, without disrupting it [34–36]. In this case, structural 
information of the POI is beneficial to assure insertion does 
not disrupt the POI’s structure [34].

Fluorophore conjugated antibodies are a popular tool to 
study interactions with endogenous cellular proteins [4], as 
they show high affinity and specificity towards their binding 
domain. However, due to their considerable size of ~ 150 
kDA and bivalent binding property, they also entail certain 
problems as they tend to form artificial clusters, thus tam-
pering with FRET measurements. Furthermore, the use of 
antibodies largely precludes the possibility to analyze living 
cells, as for internal protein staining cells need to be fixed 
and permeabilized. Today, such an alternative is the use of 
SNAP/CLIP tags, using derivatives of human DNA repair 
proteins which are then co-expressed with the protein of 
interest as SNAP/CLIP-tag, leaving the possibility for side-
specific tags [4, 37]. After that, a cell-permeable fluorescent 
molecule, linked to O6-alkylguanine (in case of SNAP) or 
O6-benzylguanine (in case of CLIP) can be attached to this 
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complex [17]. When used together, SNAP and CLIP can 
thus function to label two different proteins with fluoro-
phores. Additionally, this approach offers the possibility to 
introduce many different fluorophores to one target molecule 
[29].

Another possibility that arose with the CRISPR/Cas9 
technology is insertion of FPs into endogenous proteins. 
This would allow to perform FRET based on FP-tagging 
without the necessity, limitations and problems of transfect-
ing cells to overexpress exogenous proteins.

Possible approaches to measure FRET

Over 20 different imaging techniques to determine FRET 
have been suggested [2, 5, 38, 39], most of which rely on 
the use of fluorescence microscopy. Several possible FRET 
approaches that involve single fluorophore (homo-FRET) or 
multiple fluorophore (hetero-FRET) will be outlined in brief 
and summarized in Fig. 2.

Single fluorophore FRET

In case of FRET, the fluorescence emission from the donor 
is quenched. This donor quenching can be monitored as the 
non-fluorescent acceptor is releasing the energy transferred 

a b c

d e

Fig. 2  Different approaches to measurement FRET. There are dif-
ferent approaches to measure single fluorophore homo-FRET (top 
panel) and hetero-FRET (bottom row). a Donor quenching: the non-
fluorescent acceptor releases the acquired energy non-radiatively. 
b Homo-FRET: fluorescence molecules excited by polarized light. 
Energy transfer between two identical fluorophores, polarized light 
becomes depolarized due to the different orientation indicating homo-
FRET. The light remains polarized in the absence of energy transfer. 
c FLIM: the energy transfer is monitored via the fluorescence life-

time of the donor fluorophore. d Donor and acceptor photobleaching: 
the photobleaching of donor is monitored in presence or in absence 
of acceptor. e Sensitized emission FRET: The control of the meas-
urement includes donor fluorophore (DF) only (negative control, no 
FRET), acceptor fluorophore (AF) only (negative control, no FRET), 
donor fluorophore + acceptor fluorophore (negative control, no 
FRET), donor–acceptor fluorophore fusion (positive control, FRET). 
FRET only occurs when the two FP tagged target proteins come into 
close proximity. Figure created with BioRender.com
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from the donor non-radiatively [12]. This approach allows 
FRET measurement with multiple FRET pairs at the same 
time, as the spectra areas occupied by the acceptors’ emis-
sion become available. Donor quenching can also be meas-
ured in hetero-FRET.

Polarization anisotropy imaging uses polarized light, 
exciting only the fluorescence molecules aligned parallel to 
the polarization vector (photoselection). If the molecules 
do not rotate, fluorescence emission maintains this parallel 
orientation, the fluorescence is anisotropic [5]. Thus, anisot-
ropy of a molecule is an indicator of its orientation. Anisot-
ropy imaging then compares the orientation of the excited 
and of the emitting molecules. Without FRET, there is virtu-
ally no difference between both. However, upon FRET, the 
excited and the emitting molecule are no longer the same 
and a substantial decrease in the correlation of their orienta-
tion can be observed [34]. This is then used to determine the 
rate of FRET. Of note, polarization anisotropy is the only 
technique capable of detecting FRET between two identi-
cal fluorophores, and is therefore called homo-FRET [12]. 
As the spectra of donor and acceptor are exactly the same 
here, none of the aforementioned techniques allow to meas-
ure homo-FRET. However, homo-FRET based on polariza-
tion anisotropy is not applied broadly, most likely due to the 
complicated assay read out and expert knowledge necessary 
to perform reliable measurements [40].

Fluorescence lifetime imaging microscopy (FLIM) allows 
FRET determination by investigating how long a fluorophore 
remains in an excited state, suggesting a certain FRET effi-
ciency [5]. It was first implemented by Wang et al. in 1989 
[41]. Characteristically, each fluorochrome’s emission is 
reduced after being excited, thus allowing the determina-
tion of a fluorescence lifetime. As FRET alters the state of 
excitement of both fluorophores, reducing the donor’s fluo-
rescence lifetime and increasing the acceptor’s, FLIM allows 
to determine FRET efficiency. It has proven to be a very 
potent tool, for it lacks certain limitations of other FRET 
techniques, such as sensitivity to signal cross-contamination 
or photobleaching. Thus, it is the most accurate method to 
measure FRET in living cells [5].

Multiple fluorophores FRET (Hetero‑FRET)

Donor and acceptor photobleaching rely on the fact that an 
excited fluorophore is more likely to undergo a process of 
covalent modification, rendering it incapable of undergoing 
the excitement-emission process again. Molecules involved 
are often reactive oxygen species (ROS) which are known 
for their ability to irreversibly change biomolecules. Here, 
the effect that the presence of an acceptor reduces donor 
photobleaching, is used to calculate FRET efficiency by 
comparing donor photobleaching in presence and in absence 

of the acceptor fluorophore. However, this method is some-
what prone to limitations, as it requires relatively long exci-
tation time to achieve photobleaching, potentially challeng-
ing the cell’s homeostasis and affecting cellular viability [5].

In a different technique, only the sensitized emission of 
the acceptor molecule is measured. This is the simplest way 
to measure FRET and it is the main technique also exploited 
in the context of flow cytometry based-FRET. Therefore, 
different samples have to be prepared to serve as a control 
for the intended measurement [32, 42]:

 (i) Donor fluorophore only.
 (ii) Acceptor fluorophore only.
 (iii) Donor and acceptor fluorophore fused together.
 (iv) Donor and acceptor fluorophore separately.

Although this method is relatively easy, its main disad-
vantage when done via fluorescence microscopy is that there 
is a huge fluorescence crosstalk between the various imaging 
channels, leading to a high background and a low signal-to-
noise ratio. To correct for this, extended image processing 
and normalization is necessary [5].

Combination with flow cytometry

FRET-measurements mostly depend on the use of a micro-
scope, where certain limitations apply. For instance, a 
relatively low throughput rate, special equipment, low sig-
nal-to-noise ratio and the absolute necessity for careful nor-
malization to exclude false-positive signals. To overcome 
these problems, since the mid-90s, a combination of FRET 
with flow cytometry has been gradually developed, called 
FACS-FRET (FACS is Fluorescence activated cell sorting) 
[7].

The major FRET technique used in FACS measurements 
is sensitized emission [19], even though donor-quenching 
was relatively early established as a robust technique to 
assess FRET by FACS [43]. Another approach is FLIM 
based FACS-FRET, which is restricted to special flow 
cytometers. As there has already been an excellent review 
on this issue [44], this manuscript will focus on the intensity-
based approach, instead.

Possible applications of FACS‑FRET

After its first description, even though FACS-FRET soon 
showed to have major advantages compared to other tech-
niques [7, 45], it took some 15 years for it to find broader 
application, yielding more than 300 results at PubMed as 
of today. FACS-FRET proved tremendously successful 
when it comes to the detection of molecular interaction in 
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cells. Essentially, it is able to measure FRET in virtually 
all cellular compartments [32]. So far it has been used not 
only to study protein interactions in the cytoplasm, as for 
example in the detection of cellular pathways [46] or pro-
tein self-assembly [47] but also at the plasma membrane 
or different membranes like the endoplasmic reticulum  
[32] and in the analysis of receptor oligomerization [34, 
48]. When FRET between fluorophores in the same mem-
brane subdomain is measured, the work of Winkler et al. 
[49] indicates that random FRET without direct molecu-
lar interaction occurs more often as there is much less 
space for the molecules to diffuse freely. To determine 
FRET-positive cells, this has to be taken into considera-
tion, although the effect was found to be relatively weak.

Additionally, Suffner et al. demonstrated that FACS-
FRET can also be used to study the oligomerization of 
viral proteins within cells, in this case the S protein of the 
hepatitis B virus, and its role in the formation of subviral 
units [50]. The technique has also been used to study inter-
actions between proteins of both virus and host [32, 51].

FACS-FRET, however, is not only restricted to mam-
malian cells but can also be used to study other organisms. 
Voyton et al., for example, have shown that the technique 
is very well applicable to protozoa like Trypanosoma bru-
cei [52]. An earlier paper describes a FACS-FRET based 
experiment approach to study Escherichia coli [53].

Another approach FACS-FRET was used for, is to study 
the influence of individual amino acid positions on protein 
interaction and function. Papers pursuing this approach 
have been presented, for example, by Hagen et al. [42] 
or Winkler et al. [49]. In addition, the technique allows 
to study the influence of pharmacological treatment on 
molecular interactions as demonstrated by Trümper et al. 
[30] or van de Wiel et al. [54]. Lastly, Doucette et al. have 
shown that FACS-FRET is suited to measure not only 
inter- but also intramolecular interactions [55].

As explained in the introduction, FRET as a biophysical 
phenomenon has been known for long and became popu-
lar in life sciences when it was possible to link FRET to 
a molecular process of interest, initially mainly protein 
interaction. However, in the meantime, many additional 
applications of FRET have been realized, for instance 
activity of enzymes, apoptosis as proxy of caspase cleav-
age, proximity of probes to membranes, or intracellular 
signaling, i.e. cGMP or calcium signaling, to name just a 
few examples. These measurements are usually realized 
by specific FRET-reporters and read-out is microscopy 
[56–58]. In the future, such reporter assays might also be 
adapted to the flow cytometry based-FRET measurements, 
with the advantages discussed (Fig. 3).

Constraints

Despite the huge potential of FACS-FRET, making it a 
powerful tool in contemporary biomedical research, it is 
not without limitations. Most of these arise from the natu-
ral constraints of FRET itself, such as the fact that cells are 
transfected to overexpress the FP-tagged target proteins, 
which could result in artefacts like altered subcellular 
localization and function, activation of the ERAD (endo-
plasmic reticulum associated degradation) and cytotoxic-
ity [17]. Therefore, compared to antibody-based FRET, a 
major constraint is that an exogenous expression of target 
proteins is required [3], an obstacle that could be over-
come by FP-tagging of endogenous host cell proteins via 
CRISPR/Cas9.

In addition, absence of FRET does not necessarily indi-
cate a lack of interaction [61]. This is due to the inherent 
property of FRET, that for an efficient energy transfer a very 
small distance between both fluorophores is necessary. This 
distance can be much higher than 10 nm for instance due to 
the use of chromophore labeled antibodies and their inher-
ent size, or distance increasing parameters as for instance 
cellular organelles and membranes resulting in a suboptimal 
FRET signal [30]. On the other hand, even positive FRET 
signals have to be evaluated carefully, as fluorophores show 
a certain tendency to self-associate, which may consequently 
lead to artificial increases in FRET [4].

Another disadvantage of FACS-FRET is that it only 
allows fluorescence measurement on a cell-by-cell basis. 
This, of course, is due to the functioning of a flow cytom-
eter, only allowing single-cell measurements. Along with 
this problem comes that, although living cells can be meas-
ured, detachment of adherent cells from their substrate is a 
prerequisite to the measurement, therefore ruling out meas-
urements of solid tissue [2]. Moreover, the necessary trypsi-
nization of the cells could also impair FRET [62].

FACS-FRET does not detect heterogeneity within cells, 
as the entire spatial information gets lost [19]. To detect 
sub-cellular distribution of fluorophores, therefore, fluo-
rescence microscopy is still the gold standard today and 
even used in FACS-FRET experiments [32]. However, as 
already mentioned, imaging flow cytometry could set new 
standards here.

Finally, a major constraint of flow cytometry based-
FRET, for long, was its complexity and the lack of a stand-
ardized approach. However, in recent years there has been 
major progress and development, thus increasing popular-
ity of FACS-FRET. Here, an important milestone was the 
design of an easy to adapt FACS-FRET assay by Banning 
et al. [32], allowing for a simple reproduction in different 
experimental settings. Moreover, it facilitated quantifica-
tion and statistical analysis.
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To further simplify the evaluation of FRET data, another 
crucial improvement has been the development of automated 
software-based FRET-calculation. Von Kolontaj et al. pre-
sented a novel algorithm in 2016, allowing for an automatic 
detection of T cell activation as measured by FRET post 
antibody-labeling of the cell surface, thus proposing the first 
automated flow cytometry based-FRET assay method suited 
for high-throughput screening [61].

Prospects in the use of FACS‑FRET

Despite all this, considering the virtues of FACS-FRET, the 
technique has potential for further developments and broad 
usage in the future.

First of all, FACS-FRET has the major advantage that 
given the nature of a cytometer, it is a fast, high through-
put technique. This has been shown very impressively by 
van de Wiel et al. [54]. There, they describe how they used 

the technique to scan 1280 FDA-approved drugs, to find 
compounds that activate the Farnesoid X Receptor. On top, 
flow cytometry is not only high throughput in term of cell 
numbers analyzed, but also advantageous when measur-
ing kinetics [63], for instance assessing FRET over time 
after a certain stimuli, With regard to its quality, a recent 
study found virtually no relevant difference in FRET val-
ues between microscopy and FACS-FRET while obviously 
flow cytometry worked much faster and yielded better results 
due to the analysis of high cell numbers [55, 64]. Addition-
ally, FACS-FRET has the advantage that the data obtained 
is much easier to interpret as the technique does not require 
complex data analysis, background and crosstalk correction 
and many more as compared to fluorescence microscopy 
[32]. Therefore, FACS-FRET is very valuable for statistics, 
too, allowing easy categorization of cells. Banning et al. 
[32] have suggested a feasible approach to quantify FRET-
efficiency as the percentage of FRET-positive cells within a 
sample, which again correlates with the proximity between 

Fig. 3  Application of FACS-FRET in cell-based studies. Fluores-
cently labeled proteins of interest could be expressed in different 
expression systems including E. coli, protozoa, yeast and eukaryotic 
cells and subjected for FACS-FRET analysis for the study of protein–

protein interactions [32, 42, 46, 49, 51, 53, 59, 60], protein assembly 
[47], protein oligomerization [34, 48, 50] and cellular pharmacology 
[30, 54]. Figure created with BioRender.com
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the molecules. Positive and negative controls were used to 
establish a gate allowing easy classification of FRET cells. 
The percentage of FRET-positive samples, then, is a sug-
gestion for the binding strength between both target pro-
teins. Consequently, this approach has been used by various 
other groups in the following years, such as Hassinen et al. 
who successfully showed the homomeric and heteromeric 
complexes formation within Golgi N- and O-glycosylation 
pathways in living cells [59] and Furman et al. established 
a proteopathic seeding assay to study protein aggregation 
disorders that arise in neurodegenerative diseases [60].

However, this type of analysis is at best semi-quantitative 
as it only distinguishes between FRET-positive and negative 
signals, i.e. the FRET ratio. The FRET ratio is calculated 
simply by dividing donor-specific excitation and acceptor-
specific emission through the donor-specific excitation and 
donor-specific emission. This calculation is largely instru-
ment dependent, hence data generated by different flow 
cytometers is not comparable. Furthermore, sensitivity is 
rather low. While this is sufficient when the question is to 
assess if there is a robust interaction or not, it does not pro-
vide the possibility to calculate FRET parameters and to 
quantify FRET. To achieve that, different approach have 
been presented [19, 63]. Hochreiter and colleagues [19] use a 
three-filter based FACS-FRET to establish a saturation curve 
of apparent FRET efficiencies (DFRET) and describe how 
they combined it with a mathematical algorithm, allowing a 
quantitative determination of  FRETmax, the donor acceptor 
ratio z as well as the interaction strength Ka

app, which cor-
relates with the affinity constant Ka. The approach is inso-
far remarkable as it allows the determination of all three of 
these parameters at the same time, whereas previously, the 
values had to be obtained separately.  FRETmax is a measure 
of particular interest here, as it relates to the actual distance 
between donor and acceptor. Later, they confirmed that the 
predicted value for Ka

app was indeed similar to the values 
obtained by in vitro measurement [65].

Again, the combination with flow cytometry proved cru-
cial for their approach as it allowed the measurement of a 
sufficient number of cells to establish the saturation curve, 
which would not have been feasible with different methods 
like microscopy. A similar approach using another math-
ematical model had also been described previously [66].

As already mentioned, another novel attempt to further 
expand the possible applications of FACS-FRET is the use 
of CRISPR/Cas9, potentially opening the doors to studying 
not only exogenous but also endogenous proteins by FP-
tagging. Since the examination of endogenous proteins is far 
more relevant, the use of CRISPR/Cas9 could well become 
a very important improvement in the use of FACS-FRET, 
increasing the technique’s possibilities even further.

Other exciting developments opening new avenues 
to FACS-FRET are technological advances in f low 

cytometry. Imaging flow cytometry allows to determine 
not only if FRET occurs due to the measured FRET signal 
but also to localize the interaction to a specific subcellular 
compartment, overcoming one of the major disadvantages 
of FACS-FRET as compared to microscopy [67]. Recent 
implementations of high-throughput flow cytometry might 
not only render this technique high-throughput in terms 
of individual cells measured per sample, but also related 
to the total number of samples that can be processed in a 
reasonable time-frame [68]. By this, it can be envisioned 
that FACS-FRET finds its way to rational-based screening 
of protein interaction inhibitors. Finally, one recent excit-
ing study exemplifies the adaptation of FACS-FRET to 
spectral flow cytometry, which allows much more precise 
single-cell determination of FRET and hence robust sort-
ing of FRET-positive cells [69].

Conclusion

To conclude, it should be noted that FACS-FRET is a 
powerful tool not only in the detection of protein–protein 
interactions in living cells in different compartments but 
also with regard to their functionality, pharmacological 
treatment as well as conditions of stress. The technique 
is, moreover, not merely restricted to mammalian cells, as 
different organisms like viruses or protozoa can be studied, 
too. The current trends outlined above show the poten-
tial of FACS-FRET as a research tool in cell biology and 
the many related disciplines. It will be exciting to further 
develop and apply this technique in the future.
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