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Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder characterized by progressive degeneration of motor 
neurons (MNs). Most cases are sporadic, whereas 10% are familial. The pathological mechanisms underlying the disease are 
partially understood, but it is increasingly being recognized that alterations in RNA metabolism and deregulation of micro-
RNA (miRNA) expression occur in ALS. In this study, we performed miRNA expression profile analysis of iPSC-derived 
MNs and related exosomes from familial patients and healthy subjects. We identified dysregulation of miR-34a, miR-335 and 
miR-625-3p expression in both MNs and exosomes. These miRNAs regulate genes and pathways which correlate with disease 
pathogenesis, suggesting that studying miRNAs deregulation can contribute to deeply investigate the molecular mechanisms 
underlying the disease. We also assayed the expression profile of these miRNAs in the cerebrospinal fluid (CSF) of familial 
(fALS) and sporadic patients (sALS) and we identified a significant dysregulation of miR-34a-3p and miR-625-3p levels 
in ALS compared to controls. Taken together, all these findings suggest that miRNA analysis simultaneously performed in 
different human biological samples could represent a promising molecular tool to understand the etiopathogenesis of ALS 
and to develop new potential miRNA-based strategies in this new propitious therapeutic era.
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FTD	� Frontotemporal dementia
HRE	� Hexanucleotide repeat expansion
ALSFRS-R	� Amyotrophic Lateral Sclerosis Functioning 

Rating Scale revised
GOI	� Genes of interest
HC	� Healthy controls
ROC	� Relative operating curve
AUC​	� Area under the curve

Introduction

Amyotrophic lateral sclerosis (ALS) is a complex multifac-
torial neurodegenerative disease characterized by progres-
sive degeneration of upper and lower motor neurons (MNs) 
in the brain and spinal cord, leading to progressive muscle 
paralysis and precocious death [1]. Except for riluzole and, 
more recently, edaravone, which only modestly increase 
survival, there is no specific treatment for ALS [2]. Most 
cases are sporadic (sALS), while only 10% of ALS patients 
have a family history of disease and exhibit familial ALS 
(fALS) [1]. The most common genetic causes of ALS are the 
hexanucleotide repeat expansion (HRE) in Chromosome 9 
open reading frame 72 (C9orf72) gene [3, 4] and mutations 
in superoxide dismutase 1 (SOD1) [5], TAR DNA binding 
protein 43 (TARDBP) [6] or Fused in sarcoma (FUS) [7, 
8]. Although several genes have been linked to alterations 
of protein quality control systems, perturbation of cytoskel-
etal dynamics in axons and RNA metabolism [9], the path-
ological mechanisms underlying the disease remain par-
tially understood. Interestingly, both TARDBP and FUS are 
involved in RNA processing, including microRNA (miRNA) 
biogenesis, sequestration or repression [10–18]. MiRNAs 
are small RNA molecules (~ 20 nucleotides) that play a key 
role as endogenous regulators of gene expression. Indeed, 
they can act at the post-transcriptional level by promoting 
degradation or translational repression of target messenger 
RNAs (mRNAs) [19]. Since each miRNA can regulate hun-
dreds of target mRNAs, alterations in the miRNA expres-
sion profile can modulate entire gene networks, potentially 
modifying the pathogenesis of complex syndromes such as 
neurodegenerative disorders. Interestingly, since approxi-
mately 70% of miRNAs are expressed in the brain [20, 21], 
they are probably involved in the majority of the pathoge-
netic mechanisms of neurodegeneration [22]. In addition, 
a small population of miRNAs was detected to circulate in 
exosomes, small extracellular vesicles (EVs) that can act 
as mediators of cell-to-cell communication by transferring 
their cargos to both neighboring and distant cells [23–26].

It has already been described that a dysregulation of 
miRNA expression occurs in ALS [27–29], but the down-
stream pathological events associated with MN degenera-
tion have not been completely clarified yet. Here, we aim to 

shed light on the common molecular pathways associated 
with MN degeneration among forms of ALS with different 
genetic backgrounds. We assessed the miRNA expression 
profiles of C9orf72-, SOD1- and TARDBP- iPSC-derived 
MNs, as well as the expression levels of exosomal miRNAs 
(ex-miRNAs) and we identified a small subset of miRNAs 
dysregulated in both MNs and exosomes. We further inves-
tigated the expression level of these miRNAs in the cer-
ebrospinal fluid (CSF) of ALS patients to identify a miRNA 
signature shared across different forms of the disease. Note-
worthy, altered expression of these molecules in the CSF 
may represent a useful hallmark of neurodegenerative dis-
eases since miRNAs can closely mirror the physiological 
and pathological conditions of the central nervous system 
(CNS) [30].

This is the first work which analyzed simultaneously 
miRNAs isolated from different human biological samples, 
such as MNs, exosomes and CSF of different ALS types, 
offering an innovative approach to investigate the molecular 
bases of the disease. These findings could provide significant 
insights into ALS pathogenesis, contributing to translation 
into the clinic of new potential miRNA-based therapeutic 
strategies [31–34].

Materials and methods

iPSC generation and differentiation into MNs

Fibroblasts derived from skin biopsies of ALS patients (n = 2 
SOD1, p.A4V and p.L144F; n = 2 TARDBP, p.G287S and 
p.G294V; n = 2 C9orf72, 583 repeats and 917 repeats) and 
healthy subjects (n = 3) were reprogrammed into induced 
Pluripotent Stem Cells (iPSCs) using the CytoTune®-iPS 
2.0 Sendai Reprogramming Kit (ThermoFisher Scientific). 
Karyotype analyses were performed to evaluate genetic sta-
bility. iPSCs were stained for specific stem cell markers and 
differentiated into MNs following the protocol described 
by Maury and colleagues [35]. The proper phenotype was 
assessed with immunostaining for typical MN markers.

qPCR analysis

Total RNA was extracted from each MN sample using 
ReliaPrep™ RNA Cell Miniprep System kit (Promega) 
and reverse transcribed using the TaqMan® MicroRNA 
Reverse Transcription Kit (ThermoFisher Scientific) 
and First Strand cDNA Synthesis kit (GE Healthcare). 
Exosomes were collected by ultracentrifugation and assessed 
by the NanoSight NS300 System (Malvern Panalytical). 
ex-miRNA extraction was performed with the combina-
tion of miRNeasy kit and RNeasy Cleanup Kit (Qiagen) 
and assessed through the 2100 Bioanalyzer RNA system 
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(Agilent Technologies). Reverse transcription of ex-miRNA 
was followed by preamplification with TaqMan® Preamp 
Master Mix kit (ThermoFisher Scientific). Gene and miRNA 
expression levels were assayed on the 7500 Real Time PCR 
System (Applied Biosystem). Relative expression quantifica-
tion was performed by the 2^(-ΔΔCt) method, using 18S or 
RNU6 as reference. All data are mean of triplicates. Only 
genes and miRNAs with Ct < 35 were taken into considera-
tion for subsequent analysis. All the TaqMan® assay IDs are 
available upon request.

Microfluidic cards assay

TaqMan® Low Density Arrays (TLDA, ThermoFisher Sci-
entific) were used for miRNA profiling. Plates were run on 
7900HT Fast Real Time PCR System (Applied Biosystem) 
and quantification was performed with the Gene Expres-
sion Suite Software (ThermoFisher Scientific), using RNU6 
as control, automatic baseline settings and a threshold of 
0.2. For ex-miRNAs, data were normalized using the global 
mean method [36].

Bioinformatic analysis

miRTarBase and miRWalk were exploited to identify vali-
dated and predicted miRNA target genes and related path-
ways. Genes identified in both databases were processed 
with STRING (version 11) to predict functional interac-
tions among targets, setting the threshold at 0.7 for inter-
action score and excluding interaction predicted by gene 
fusion. Cytoscape (version 3.7.2) was used to visualize 
complex miRNA-gene networks as well as functional inter-
actions. GTex database (Release 8 since Aug 26, 2019) was 
employed to assay the tissue-specificity gene expression 
levels. Molecular pathway analysis to identify enriched 
pathways was performed against Reactome (version 72 
on Apr 27, 2020) correcting p-values for multiple testing 
(Benjamini–Hochberg).

MN treatment with miRNA mimics

ALS-MNs were transfected with a combination of mir-
Vana® miRNA mimics hsa-miR-335-3p (MC13018), hsa-
miR-335-5p (MC10063), hsa-miR-34a-3p (MC13089) and 
hsa-miR-34a-5p (MC10063) by using Lipofectamine® 
RNAiMAX Transfection Kit (ThermoFisher Scientific) to 
a final total concentration of 15 nM for 48 h.

Analysis of miRNA isolated from CSF

Circulating miRNAs were isolated from 300 μL of cer-
ebrospinal fluid (CSF) using NucleoSpin® miRNA plasma 
kit (Macherey Nagel). RT reactions were performed using 

10 ng of RNA, preamplified and run on the 7900HT Fast 
Real Time PCR System (Applied Biosystem). The expres-
sion level of each miRNA was normalized to the average 
levels of hsa-miR-125b [37] and referred to control sam-
ples. Relative expression quantification was performed by 
the 2^(−ΔCt) method, where ΔCt = Ct miR-X − Ct miR-
125b. All data are mean of triplicates. Only miRNAs with 
Ct < 35 were taken into consideration for the analysis.

Patient evaluation

ALS patients and healthy controls (HC) were recruited 
at the Neurology Unit of Fondazione IRCCS Ca’ Granda 
Ospedale Maggiore Policlinico of Milan and at the Neu-
rology Department of the University Hospitals in Leu-
ven. ALS diagnosis was formulated according to the El 
Escorial Revised and Awaji-Shima diagnostic criteria and 
lumbar puncture for CSF collection was performed during 
the diagnostic assessment. Site and symptom onset were 
defined according to the first patient-reported weakness, 
and disease duration was calculated at the time of CSF 
collection. HC were defined as individuals with possible 
neurological symptoms, without evidence of underly-
ing neurological disease after an appropriate diagnostic 
assessment.

Statistical analysis

Two-tailed, unpaired Student's t test was employed to com-
pare the mean expression level of miRNAs detected in 
MNs and exosomes. q-PCR quantification was expressed 
as mean with SEM. Data were analyzed with GraphPad 
Prism Version 5. Baseline demographic and clinical fea-
tures of ALS patients and HC were analyzed through 
descriptive statistics. After assessing for normality, 
continuous variables were reported as mean ± standard 
deviation (SD) or median and interquartile range [IQR]. 
Mann–Whitney and Kruskal–Wallis tests were employed 
to perform between-group comparisons and to compare 
CSF miRNA levels between ALS and healthy controls, 
and among disease groups. Receiver Operating Charac-
teristic (ROC) curves were generated and area under the 
curve (AUC) was calculated to assess accuracy of CSF 
miRNA levels in discriminating between ALS and controls 
of between two ALS subgroups. The ratios of levels of 
CSF miRNAs were calculated for significant pairs [38]. 
Best cut-off values were calculated with Youden’s Index. 
Univariable binomial logistic regression models were 
employed to evaluate the association among CSF miRNA 
levels and the disease. Statistical analysis was performed 
with GraphPad Prism Version 9.1.
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Ethical statement

The studies involving human samples were conducted in 
accordance with the ethical standards of the Declaration 
of Helsinki and with national legislation and institutional 
guidelines. Human fibroblast cell lines were obtained from 
Eurobiobank with informed consent approved by the ethi-
cal committee at Fondazione IRCCS Ca' Granda Ospedale 
Maggiore Policlinico, Milan. All subjects provided written 
informed consent approved by the local ethical commit-
tee for the collection, storage and analysis of CSF samples 
(0004520, S50354, S55312, S59552). This experimental 
study was conducted in accordance with the international 
GLP and GCP guidelines.

Results

Dysregulation of miRNA expression in ALS‑MNs 
affects molecular pathways associated with MN 
degeneration

miRNA profiling

After generation of iPSCs (Fig. S1, A) and MNs (Fig. S1, B) 
of healthy individuals and ALS patients carrying C9orf72, 
SOD1 and TARDBP mutations, we profiled the miRNA tran-
scriptome of ALS-MNs by TaqMan® Low Density Arrays 
(TLDA). We identified a subset of 16 significantly down-
regulated miRNAs (Fig. 1A) whose reduced expression was 
validated by qPCR (Fig. 1B). Interestingly, when C9orf72-
MNs, SOD1-MNs or TARDBP-MNs were considered inde-
pendent biological groups, the profiling data showed that 
the expression of both miR-34a and miR-335 was reduced in 
all three MN lines (Table S1, A). This downregulation was 
validated by RT-PCR for miR-34a-3p, miR-34a-5p (SOD1-
MNs: P < 0.05; TARDBP-MNs: P < 0.05; C9orf72-MNs: 
P < 0.05), miR-335-3p (TARDBP-MNs: P < 0.001; C9orf72-
MNs: P < 0.001) and miR-335-5p (TARDBP-MNs: P < 0.05; 
C9orf72-MNs: P < 0.05) (Fig. 1C).

Bioinformatics

To identify target genes and related pathways associated 
with miR-34a-3p, miR-34a-5p, miR-335-3p and miR-
335-5p, we employed the miRWalk and miRTarBase 
databases, which provide a list of validated and predicted 
miRNAs. We identified 21 genes targeted by at least two of 
these four miRNAs in both the databases, to obtain the most 
stringent and reliable dataset (Fig. 2A). Notably, these 21 
genes were all targets of miR-34a-5p, while none of them 
was targeted by miR-335-5p. In particular, 13 out of these 21 
genes were targeted by both miR-34a-5p and miR-335-3p, 

whereas the remaining 8 genes were targeted by both miR-
34a-5p and miR-34a-3p. To predict the functional inter-
actions among these target genes, the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) (Fig. 2B) 
and miRNA–gene interactions were used, as well as func-
tional connections from STRING were visualized exploit-
ing Cytoscape (Fig. 2C). We queried the Genotype-Tissue 
Expression (GTEx) database to assay the tissue-specific 
expression of these 21 genes, focusing on their expression 
in brain and spinal cord (Fig. 2D). Finally, we employed 
the Reactome Pathway Database to identify the biological 
pathways in which these genes are involved. Three hundred 
forty-three pathways (141 with statistical significance) were 
hit by at least one of 16 out of 21 genes (Table S2). In par-
ticular, the most enriched pathways are mainly involved in 
neurodegeneration processes, such as intrinsic pathway for 
apoptosis (P < 0.001), programmed cell death (P < 0.01), 
death receptor signaling (P = 0.05), cytokine signaling in the 
immune system (P < 0.001) and SUMOylation (P < 0.01). 
Due to the relevance of apoptosis and apoptotic pathways 
in MN degeneration, we selected BCL2, IL6R, MAP3K7, 
PLCG1, PPARA​ and PRRC2B as promising candidates for 
further investigations. We also investigated LDHA due to 
its very high expression levels in neural tissues. Finally, we 
investigated FOXN3 given its crucial role in DNA damage 
[39] as well as NUFIP2 for its interaction with FMRP pro-
tein, involved in synaptic plasticity [40].

miRNA mimic transfection

We assayed whether synthetic sequences that mimic endog-
enous miRNAs can functionally rescue miRNA levels and 
modulate the expression of target genes of interest (GOI). 
To this end, we transfected ALS-MNs with the four miRNA 
mimics (Fig. 3A) and assessed the expression of GOI. Over-
all, our results showed a general dysregulation of almost 
all the selected target genes in affected MNs compared to 
controls, with notable differences among the expression lev-
els of these genes in C9orf72-, SOD1- and TARDBP-MNs. 
However, the administration of miRNA mimics was not able 
to significantly modulate or completely rescue the expres-
sion of GOI (Fig. 3B).

Exosomal miRNA profiling reveals their potential 
role in intercellular communication

ex‑miRNAs profiling

The exosomal nature of EVs isolated from ALS-MN 
culture media was confirmed by nanoparticle tracking 
analysis (Fig.  4A). We profiled the expression levels 
of ex-miRNAs by TLDA. In particular, we found that 
miR-34a-5p, miR-625-3p and miR-1267 expression was 
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downregulated while miR-629-5p and miR-194-5p levels 
were upregulated (Fig. 4B). Notably, miR-625-3p expres-
sion was always significantly downregulated in C9orf72- 
and SOD1-exosomes when considered as independent 
biological groups (Table S1, B). However, we confirmed 
by qPCR the dysregulation of ex-miR-625-3p expression 
only in exosomes isolated from C9orf72 lines (P < 0.01) 

while TARDBP exosomes showed a strong increase in ex-
miR-625-3p content (P < 0.01) (Fig. 4B).

Bioinformatics

To deeply elucidate the role of ex-miR-625-3p as a poten-
tial mediator of intercellular communication, we performed 

Fig. 1   miRNA expression 
profiling of iPSC-derived MNs. 
A Volcano plot and list of dys-
regulated miRNAs. Results are 
presented enclosing ALS sub-
jects presenting C9orf72, TAR-
DBP or SOD1 mutations in a 
unique biological group (n = 6) 
versus controls (n = 3). The 
statistically significant down-
regulated miRNAs are listed 
in the table. B Specific qPCR 
assays confirmed the downregu-
lation of identified miRNAs in 
ALS-MNs (n = 6) compared 
to controls (n = 3) (*P < 0.05, 
**P < 0.01, ***P < 0.001, 
student t-test, values represent 
means + SEM). C qPCR assays 
confirmed the specific reduction 
of miR-34a-3p, miR-34a-5p, 
miR-335-3p or miR-335-5p 
expression in C9orf72-MNs, 
SOD1-MNs and TARDBP-MNs 
(at least n = 3 healthy subjects, 
C9orf72-MNs, SOD1-MNs and 
TARDBP-MNs, *P < 0.05, *** 
P < 0.001, student t-test, values 
represent means + SEM)
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bioinformatics analysis as previously described for MNs. 
We identified 15 genes as validated targets of miR-625-3p 
(Fig. 5A) and processed them with STRING to identify pre-
dicted functional interactions (Fig. 5B). We assessed their 
expression level with the GTEx database (Fig. 5C). Enrich-
ment analysis revealed that 10 out of 15 identified genes 
were found in the Reactome Pathway Database, with 148 
pathways being enriched for at least one of these genes (37 
statistically significant, Table S3). Transcriptional regula-
tion by TP53 as well as the role of TP53 in regulating the 
transcription of cell death genes, together with the cell–cell 
communication pathway, autophagy and axon guidance 
stood out significantly. Considering the biological relevance 
of these pathways together with the expression of selected 
genes in the CNS and putative interactions among them, we 
selected CD47, CSNK2A1, HSPA8 and TRIAP1 as promising 
candidates for further investigations. We include PEG10 in 
the group of candidate genes since it has already been inves-
tigated as possibly involved in pathological mechanisms 
underlying ALS [41]. The dysregulation of predicted target 
genes in almost all ALS-MN lines suggests the potential role 
of miR-625-3p as a mediator of cell-to-cell communication 
(Fig. 5D).

A subset of specific miRNAs is dysregulated 
in ALS‑MNs and exosomes

To correlate the miRNA profile data of MNs and related 
exosomes, we assessed the expression levels of miR-625-3p 
in ALS-MNs. Data from TLDA experiments showed a 
reduced expression of miR-625-3p in C9orf72- and SOD1-
MNs, whereas no change was detected in TARDBP-MNs 
(Table S1, A). However, qPCR validation revealed signifi-
cantly increased expression of this miRNA in SOD1-MNs 
(P < 0.05) and TARDBP-MNs (P < 0.001) (Fig. 6A).

Conversely, we assessed the expression levels of miR-
34a-3p, miR-34a-5p, miR-335-3p and miR-335-5p in ALS-
exosomes detecting an overall downregulation of all four 
miRNAs in exosomes released from C9orf72-, SOD1- and 
TARDBP-MNs compared to control exosomes (Table S1, B). 
qPCR validation assays revealed a general downregulation of 
ex-miR-34a-5p (C9orf72: P < 0.05), ex-miR-335-3p (SOD1, 
TARDBP, and C9orf72: P < 0.001) and ex-miR-335-5p 
(SOD1, TARDBP, and C9orf72: P < 0.01), along with an 
upregulation of ex-miR-34a-3p in SOD1- and C9orf72-MNs 
(P < 0.001) (Fig. 6B).

A subset of miRNAs is increased in the CSF of some 
ALS forms

We investigated the expression of the previously identi-
fied miRNAs in the CSF of a cohort of ALS patients and 
HC. We enrolled 55 ALS patients (sALS, n = 28, fALS, 
n = 27), with a mean age of 58.3 ± 11.5 years and 19 HC 
with a mean age of 52.8 ± 17.5 years (P = 0.128). The 
demographic and clinical features of ALS patients are 
summarized in Table 1. FALS were carriers of a HRE 
in C9orf72 (n = 13) and mutations in SOD1 (n = 11) and 
TARDBP (n = 3).

We compared CSF miRNA levels between HC and 
ALS patients and we found increased CSF miR-34a-3p 
levels in ALS with respect to controls (P = 0.039), while 
other miRNA concentrations did not significantly differ 
between the two groups (Fig. 7A). Then, we performed 
between-group comparisons and we found that CSF 
miR-34a-3p levels were higher in fALS compared to HC 
(P = 0.0022) (Fig. 7B). Moreover, miR-625-3p concen-
trations were increased in fALS patients as compared 
with HC (P = 0.0084) and sALS patients (P < 0.0001) 
(Fig. 7C).

To test the reliability of CSF miRNAs in identify-
ing ALS subgroups, we performed ROC analysis and 
binomial logistic regression analyses. ROC analysis 
showed that miR-34a-3p was able to accurate discrimi-
nate ALS (AUC 0.695, P = 0.039) and fALS (AUC 
0.832, P = 0.003) from HC (Fig.  7D) and provided a 
cutoff value of 0.0188 (sensitivity 60%, specificity 
78.6%) and of 0.0159 (sensitivity 92.3%, specificity 
66.7%), respectively. CSF miR-34a-3p concentrations 
higher than 0.0188 predicted ALS diagnosis compared 
to healthy controls in a binomial regression analysis with 
an OR = 3.667 (95%CI = 1.064–14.15, P = 0.046). CSF 
miR-34a-3p levels higher than 0.0159 were significantly 
associated with fALS (OR = 20, 95%CI = 2.86–413.9, 
P = 0.009, Fig. 7D). ROC analysis for CSF miR-625-3p 
levels showed a moderate accuracy in distinguish-
ing fALS from HC (AUC 0.736, P = 0.009) and fALS 
from sALS group (AUC 0.807, P = 0.0001) (Fig. 7E), 
yielding a cutoff value of 1.462 (sensitivity 64%, speci-
ficity 83.3%) and 1.051 (sensitivity 72%, specificity 
85.2%), respectively. In a binomial logistic regression 
analysis, CSF miR-625-3p levels higher than cutoff 
values were associated with fALS with an OR = 4.653 
(95%CI = 1.35–17.63, P = 0.018) compared to HC and 
with fALS with an OR = 11.33 (95%CI = 3.237–48.43, 
P = 0.0004) in comparison with sALS group (Fig. 7E). 
Finally, we performed a ROC analysis between fALS 
and HC by using the ratio of levels of miR-625-3p/
miR-34a-3p pair. This shows an AUC of 0.731 with a 
P = 0.063 in discriminating fALS from HC (Fig. 7F).

Fig. 2   Bioinformatic analysis of dysregulated miRNAs in C9orf72-, 
SOD1- and TARDBP-MNs. A List of candidate genes identified by 
bioinformatic analysis. B STRING analysis disclosed the predicted 
functional interactions among target genes. C Cytoscape map of the 
miRNA-target genes interactions and functional connections among 
target genes. D GTEx plot displaying the tissue-specific expression of 
identified target genes, with a special focus on neural tissues

◂
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Fig. 3   ALS-MNs transfection with miRNA mimics. A qPCR experi-
ments showed the efficiency of transfection with the four selected miRNA 
mimics in SOD1-, TARDBP- and C9orf72-MNs (at least n = 3 healthy 
subjects, C9orf72-MNs, SOD1-MNs and TARDBP-MNs, *P < 0.05, 
**P < 0.01, *** P < 0.001, student t-test, values represent means + SEM). 
B qPCR experiments showed the dysregulation of all selected target 

genes in SOD1-, TARDBP- and C9orf72-MNs, which could not be com-
pletely rescue by the treatment with miRNA-mimics (at least n = 3 healthy 
subjects, C9orf72-MNs, SOD1-MNs and TARDBP-MNs, *P < 0.05, 
**P < 0.01, ***P < 0.001, student t test, values represent means + SEM)
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Discussion

In the past years, several strategies have been developed to 
understand both the genetic and molecular mechanisms of 
ALS, in the attempt to accelerate the discovery of effective 
treatments [42–45]. Although the pathological events under-
lying ALS have not been completely clarified yet, defective 
RNA metabolism is known to be deeply associated with 
the pathology [46]. Particularly, aberrant miRNA biogen-
esis has already been related to stress response induced by 
mutations in the TARDBP, FUS and SOD1 genes, providing 
a potential link between defective miRNA biogenesis and 
ALS [29, 47, 48]. Interestingly, several studies have already 
reported a general dysregulation of miRNA expression in 
both fALS and sALS cases, suggesting that altered miRNA 

expression could be a common molecular denominator of 
multiple forms of ALS [28, 49–55].

We performed miRNA expression profile analysis of iPSC-
derived MNs from fALS patients and we demonstrated that 
miR-34a (3p and 5p) and miR-335 (3p and 5p) were commonly 
dysregulated in C9orf72-, SOD1- and TARDBP-MNs. Bioinfor-
matic analysis showed that these miRNAs regulate several genes 
associated with programmed cell death, synaptic plasticity and 
mitochondrial biogenesis, biological pathways/processes which 
well correlate with the disease pathogenesis [56]. Indeed, since 
miRNAs are fundamental for ensuring the physiological homeo-
stasis of tissues, alterations in their expression profile can result 
in massive impairment of multiple biological pathways [57–59].

We have already described a downregulation of miR-34a 
expression in iPSC-derived MN progenitors derived from 

Fig. 4   Exosomal miRNA profiling. A Representative plots of nano-
particle tracking analysis. B Volcano plot and list of dysregulated 
miRNAs identified in exosomes released from ALS-MNs. Results 
are presented enclosing ALS subjects in a unique biological group 
(n = 6) versus controls (n = 3). qPCR assays confirmed a statisti-

cally significant downregulation of miR-625-3p in exosomes iso-
lated from C9orf72-MNs (at least n = 3, **P < 0.01), while there is 
a strong increase of its expression in exosomes derived from TAR-
DBP-MNs (at least n = 3, **P < 0.01, student t test, values represent 
means + SEM)
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both sALS and fALS patients, supporting its putative role in 
cell cycle regulation, induction of apoptosis after cell dam-
age and autophagy [53]. Notably, miR-34a is involved in neu-
ronal differentiation and neurogenesis [60] and dysregulation 
of its expression results in early neurodegeneration in SOD1 
mice [61, 62]. An alteration of miR-34a levels has also been 
reported in monocytes from ALS patients and mouse mod-
els, supporting its involvement in neurodegenerative disorder-
related inflammation [37]. Recent evidence has shown that in 
neurodegenerative diseases, a group of miRNAs, including 
miR-34a and miR-335, enhances reactive oxygen species gen-
eration, perturbing the function of mitochondrial antioxida-
tive enzymes [63]. Moreover, data from ALS subjects’ serum 
revealed a strong reduction in miR-335-5p levels, which cor-
relates with neuronal mitochondrial dysfunction and apoptosis 
[64]. The role of miR-335-5p in neurodegeneration is further 
supported by the evidence that downregulation of expression 
is necessary to maintain hippocampal synaptic plasticity and 
spatial memory processes in mice [65].

We also assayed the miRNA profiles of exosomes iso-
lated from the culture medium of ALS and healthy MN cul-
tures and we identified a dysregulation of ex-miR-625-3p 
in ALS-MNs. Indeed, exosomes seem to have a key role in 
intercellular communication, potentially promoting the pro-
gression and the spread of neurodegenerative disorders by 
modulating cell proliferation, neuronal stability, inflamma-
tion and immune response [23, 66]. Bioinformatics analysis 
revealed that miR-625-3p is predicted to be associated with 
cell-to-cell communication, autophagy and immune system 
pathways. Interestingly, miR-625-3p has been identified as 
a target of long noncoding RNA-p21, which mediates neu-
roinflammation, oxidative stress, apoptosis and neuronal 
death [67, 68]. Increased levels of miR-625-3p have been 
also reported in the muscle tissue of ALS patients [69].

Modulation of one or more miRNAs could be a poten-
tial therapeutic strategy. Indeed, restoring the miRNA bal-
ance may be particularly interesting since they can modulate 
multiple pathways simultaneously, but may interact with 
off-target genes. We successfully used synthetic sequences 
that mimic endogenous miRNAs to functionally increase the 
levels of deregulated miRNAs in iPSC-derived MNs. How-
ever, our data showed that the modulatory effect of miRNA 
mimics was not efficacious in rescuing the expression of the 
target genes, suggesting that changes in target mRNA levels 

in affected MNs could not be merely explained by differences 
in miRNA amount. Alternatively, the treatment needs to be 
extended in time to permanently change gene target expres-
sion or through a direct modulation of crucial target genes. 
Overall, these experiments together with bioinformatic find-
ings could provide useful insights into specific deregulated 
pathways in ALS that can represent the ground to understand 
the pathogenesis and find new therapeutic targets.

There has been an increasing interest in investigating miR-
NAs in biological fluids as potential disease biomarkers in 
neurodegenerative disorders. Indeed, they showed exceptional 
stability in body fluids which allows accurate measurement of 
their expression levels [70]. Notably, the CSF may be the most 
promising biological fluid for deep investigation of the patho-
mechanisms underlying neurodegeneration due to its proxim-
ity to the CNS [30]. Different studies have already identified 
specific subsets of dysregulated miRNAs in serum and CSF 
samples of patients compared to controls [12, 31, 32, 71–73]. 
Our data showed an upregulation of CSF miR-34a-3p expres-
sion in ALS patients compared to healthy subjects, which has 
been confirmed by ROC analysis. FALS patients showed sig-
nificantly higher CSF levels of both miR-34a-3p and miR-
625-3p, arguing in favor of the role of these miRNAs in dis-
ease pathogenesis. Moreover, miR-625-3p was increased in 
fALS compared to sALS, suggesting that familial forms might 
share different pathological mechanisms from sporadic cases. 
In our cohort, we did not find any significant differences in 
CSF levels of miR-335-3p and miR-335-5p between ALS and 
controls, although other studies reported that plasma miR-335 
levels accurately distinguish patients with neurodegenerative 
disorders such as FTD and ALS from controls [74]. Finally, 
ROC and regression analyses allowed to identify cutoff values 
for CSF miR-34a-3p and miR-625-3p able to discriminate 
fALS from both healthy subjects and sporadic patients. Com-
bined analysis using the miR-625-3p/miR-34a-3p pair did not 
reach significance for discrimination of fALS from controls, 
likely due to the relatively small sample size. Future studies 
on broader populations might strengthen the power of these 
findings and explore the potentiality of these miRNAs as dis-
ease biomarkers.

Conclusions

This study shed light on the common pathological mecha-
nisms underlying MN degeneration, confirming the rel-
evance of miRNA modulation in ALS pathogenesis and 
paving the way for the development of miRNA-based thera-
peutic approaches aimed at modifying disease pathogen-
esis. Moreover, we demonstrated that analyzing miRNAs 
present in CSF could represent a promising tool to define 
the classification, prognosis, and progression in the context 
of ALS and eventually in other neurodegenerative diseases.

Fig. 5   Bioinformatic analysis of ex-miR-625-3p. A List of predicted 
target genes of miR-625-3p. B STRING analysis showed the func-
tional networks among the target genes. C GTEx chart illustrates 
the neural-specific expression of identified target genes. D qPCR 
assays revealed the dysregulation of CD47, CSNK2A1, HSPA8, 
PEG10 and TRIAP1 expression in almost all ALS-MNs (at least n = 3 
healthy subjects, C9orf72-MNs, SOD1-MNs and TARDBP-MNs, 
*P < 0.05, **P < 0.01, ***P < 0.001, student t test, values represent 
means + SEM)

◂
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Fig. 6   Correlation between 
profiling data of ALS-MNs and 
released exosomes. A qPCR 
assays confirmed the statisti-
cally significant dysregulation 
of miR-625-3p in SOD1-MNs 
and TARDBP-MNs (at least 
n = 3, *P < 0.05, **P < 0.01, 
student t test, values repre-
sent means + SEM). B qPCR 
experiments validated the 
deregulation of ex-miR-34a-3p, 
ex-miR-34a-5p, ex-miR-335-3p 
and ex-miR-335-5p expression 
in all exosomes isolated from 
affected MN lines (at least n = 3 
healthy subjects, C9orf72-MNs, 
SOD1-MNs and TARDBP-
MNs, *P < 0.05, **P < 0.01, 
***P < 0.001, student t test, 
values represent means + SEM)

Table 1   Demographic and clinical features of ALS cohort

Demographic and clinical features of enrolled sALS and fALS patients. Mean ± SD or median [IQR] and number (%), as appropriate
fALS familial amyotrophic lateral sclerosis, sALS sporadic amyotrophic lateral sclerosis

Total (n = 55) sALS (n = 28) fALS (n = 27) P-value C9orf72 (n = 13) SOD1 (n = 11) TARDBP (n = 3) P-value

Age, yeas 58.3 ± 11.5 63.9 ± 11 52.5 ± 9  < 0.0001 54.6 ± 6.2 48.6 ± 10.8 57 ± 7.8 0.166
Female sex, n (%) 20 (36.4) 11 (39.3) 9 (33.3) 0.646 4 (30.8) 3 (27.3) 2 (66.6) 0.250
Age at onset, yeas 56.8 ± 11 62 ± 10.5 51.4 ± 8.8 0.0002 53.6 ± 5.9 47.6 ± 11.1 55.3 ± 6.7 0.183
Spinal phenotype, n 

(%)
38 (69.1) 17 (60.7) 21 (77.8) 0.171 8 (61.5) 10 (90.9) 3 (100) 0.139

Disease duration, 
months

13 [9–24] 13 [8.3–24] 16 [10–25] 0.838 10 [7–14] 25 [12–42] 16 [16–32] 0.004
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Fig. 7   Distribution of miRNA levels in CSF of ALS patients. A 
CSF miR-34a-3p, miR-34a-5p, miR-335-3p, miR-335-5p and miR-
625-3p levels in healthy controls (HC) and ALS patients. CSF 
miR-34a-3p levels are higher in ALS than in HC (*P < 0.05). Scat-
ter dot plot values represent medians and [IQR]. B CSF miR-34a-3p 
levels are increased in familial ALS (fALS) compared to HC 
(**P < 0.01). C CSF miR-625-3p levels are higher in fALS compared 

to HC (**P < 0.01) and in fALS compared to sporadic ALS (sALS) 
(****P < 0.001). D ROC curve showed accuracy of CSF miR34a-3p 
levels in ALS vs. HC (*P < 0.05) and fALS vs. HC (**P < 0.01). E 
ROC curve showed accuracy of CSF miR-625-3p levels in fALS vs. 
HC (**P < 0.01) and in fALS vs. sALS (***P < 0.001). F ROC curve 
showed accuracy of CSF miR-625-3p/miR-34a-3p pair in fALS vs. 
HC (non-significant)
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