Skip to main content

Advertisement

Log in

Thioredoxin reductase 3 suppression promotes colitis and carcinogenesis via activating pyroptosis and necrosis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Background

Txnrd3 as selenoprotein plays key roles in antioxidant process and sperm maturation. Inflammatory bowel diseases, such as ulcerative colitis and Crohn’s disease, are becoming significantly increasing disease worldwide in recent years which are proved relative to diet, especially selenium intake.

Methods

In the present study, 8-week-old C57BL/6N male Txnrd3-/-, Txnrd3-/ + , Txnrd3 + / + mice, weight 25–30 g, were randomly chosen and each group with 30 mice. Feed 3.5% DSS drinking water and normal water continuously for 7 days. Mouse colon cancer cells (CT26) were cultured in vitro to establish Txnrd3 overexpressed/knocked-down model by cell transfection technology. Morphology and ultrastructure, calcium levels, ROS level, cell death were observed and detected in vivo and vitro.

Results

In Txnrd3-/-mice, ulcerative colitis was more severe, the morphological and ultrastructural lesions were also more prominent compared with wild-type mice, accompanied by the significantly increased expression of NLRP3, Caspase1, RIPK3, and MLKL. Overexpression of Txnrd3 could lead to increased oxidative stress through intracellular calcium outflow-induced oxidative stress increase followed by necrosis and pyroptosis pathway activation and further inhibit the growth and proliferation of colon cancer cells.

Conclusion

Txnrd3 overexpression leads to intracellular calcium outflow and increased ROS, which eventually leads to necrosis and focal death of colon cancer cells, while causing Txnrd3-/- mice depth of the crypt deeper, weakened intestinal secretion and immune function and aggravate the occurrence of ulcerative colitis. The present study lays a foundation for the prevention and treatment of ulcerative colitis and colon carcinoma in clinic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All the data underlying this article are available in the article and in its online supplementary material.

Code availability

Manuscript was written using Microsoft Word 2010; Figures were achieved via Photoshop CS5. Data analysis and graph drawing were finished with Graphpad Prism 8.

Abbreviations

Selenium:

Se

Txnrd3:

Thioredoxin reductase 3

UC:

Ulcerative colitis

IBD:

Inflammatory bowel diseases

CRC:

Colorectal cancer

DSS:

Dextran sulfate sodium

siRNA:

Small interferring RNA

DAI:

Disease activity index

IOD:

Integrated Optical Density

References

  1. Wang W, Shi Q, Wang S, Zhang H, Xu S (2020) Ammonia regulates chicken tracheal cell necroptosis via the LncRNA-107053293/MiR-148a-3p/FAF1 axis. J Hazard Mater 386:121626

    Article  CAS  PubMed  Google Scholar 

  2. Chi Q, Zhang Q, Lu Y, Zhang Y, Xu S, Li S (2021) Roles of selenoprotein S in reactive oxygen species-dependent neutrophil extracellular trap formation induced by selenium-deficient arteritis. Redox Biol 44:102003

    Article  Google Scholar 

  3. Kryukov GV, Castellano S, Fau-Novoselov SV, Novoselov SV, Fau-Lobanov AV, Lobanov AV, Fau-Zehtab O, Zehtab O, Fau-Guigó R, Guigó R, Fau-Gladyshev VN et al (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    Article  CAS  PubMed  Google Scholar 

  4. Fomenko DE, Xing W, Adair BM, Thomas DJ et al (2007) High-throughput identification of catalytic redox-active cysteine residues. Science 315(5810):387–389

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Zhang W, Zhou P, Tong X, Guo D, Lin H (2021) Selenium deficiency induced apoptosis via mitochondrial pathway caused by Oxidative Stress in porcine gastric tissues. Res Vet Sci 1:S0034-5288(21)00305-2

    Google Scholar 

  6. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL et al (1999) Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem 274(35):24522

    Article  CAS  PubMed  Google Scholar 

  7. Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91(5):1484S-1491S

    Article  CAS  PubMed  Google Scholar 

  8. Davis CD, Tsuji PA et al (2012) Selenoproteins and cancer prevention. Ann Rev Nutr 32:73–95

    Article  CAS  Google Scholar 

  9. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Hurst R (2011) Selenium in human health and disease. Antioxid Redox Signal 14(7):1337–1383

    Article  CAS  PubMed  Google Scholar 

  10. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268

    Article  CAS  PubMed  Google Scholar 

  11. Slattery ML, Lundgreen A, Welbourn B, Corcoran C, Wolff RK (2012) Genetic variation in selenoprotein genes, lifestyle, and risk of colon and rectal cancer. PLoS ONE 7(5):e37312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hughes D, Kunická T, Schomburg L, Liška V, Swan N, Souček P (2018) Expression of selenoprotein genes and association with selenium status in colorectal adenoma and colorectal cancer. Nutrients 10(11):1812

    Article  PubMed Central  Google Scholar 

  13. Short SP, Pilat JM, Williams CS (2018) Roles for selenium and selenoprotein P in the development, progression, and prevention of intestinal disease. Free Radical Biol Med 127:26–35

    Article  CAS  Google Scholar 

  14. Aleksandrova K, Romero-Mosquera B, Hernandez V (2017) Diet, gut microbiome and epigenetics: emerging links with inflammatory bowel diseases and prospects for management and prevention. Nutrients 9(9):962

    Article  PubMed Central  Google Scholar 

  15. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146(6):1489–1499

    Article  CAS  Google Scholar 

  16. Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D, Lewis JD et al (2015) Diet in the pathogenesis and treatment of inflammatory bowel diseases. Other 148(6):1087–1106

    CAS  Google Scholar 

  17. Vita MD (2013) Strong correlation between diet and development of colorectal cancer. Front Biosci 18(1):190–198

    Article  Google Scholar 

  18. Slattery ML, Lundgreen A, Herrick JS, Caan BJ, Potter JD, Wolff RK (2011) Diet and colorectal cancer: analysis of a candidate pathway using SNPS, haplotypes, and multi-gene assessment. Nutr Cancer 63(8):1226–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferlay J, Soerjomataram I, Fau-Dikshit R, Dikshit R, Fau-Eser S, Eser S, Fau-Mathers C, Mathers C, Fau-Rebelo M, Rebelo M, Fau-Parkin DM et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  Google Scholar 

  20. Fedirko V, Jenab M, Méplan C, Jones JS, Zhu W, Schomburg L et al (2019) Association of selenoprotein and selenium pathway genotypes with risk of colorectal cancer and interaction with selenium status. Nutrients 11(4):935

    Article  CAS  PubMed Central  Google Scholar 

  21. Méplan C, Hesketh J (2014) Selenium and cancer: a story that should not be forgotten-insights from genomics. Cancer Treat Res 159(159):145–166

    Article  PubMed  Google Scholar 

  22. Hughes DJ, Fedirko V, Jenab M, Schomburg L, Hesketh JE (2014) Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort. Int J Cancer 136(5):1149–1161

    Article  PubMed  Google Scholar 

  23. Gerald FC (2015) Biomarkers of selenium status. Nutrients 7(4):2209–2236

    Article  Google Scholar 

  24. Song D, Lu Z, Wang F, Wang Y (2017) Biogenic nano-selenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. J Anim Sci 9(17):14724–14740

    CAS  Google Scholar 

  25. Joan CS, David MA, Teresa BM, Mickael B, Eric P, Ruth F et al (2019) 2-Hydroxy-(4-methylseleno)butanoic acid is used by intestinal Caco-2 cells as a source of selenium and protects against oxidative stress. J Nutr 149:2191–2198

    Article  Google Scholar 

  26. Clab E, Yze B, Jw C, Yy D, Yz J, Xq I et al (2020) FoxO3 reverses 5-fluorouracil resistance in human colorectal cancer cells by inhibiting the Nrf2/TR1 signaling pathway. Cancer Lett 470:29–42

    Article  Google Scholar 

  27. Slattery ML, Pellatt DF, Wolff RK, Lundgreen A (2016) Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality. Int J Mol Epidemiol Genetics 7(1):45–57

    CAS  Google Scholar 

  28. Slattery ML, Abbie L, Bill W, Christopher C, Wolff RK, Hold GL (2012) Genetic variation in selenoprotein genes, lifestyle, and risk of colon and rectal cancer. PLoS ONE 7(5):e37312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Q, Yang J, Gong Y, Cai J, Zhang Z (2019) Role of miR-731 and miR-2188–3p in mediating chlorpyrifos induced head kidney injury in common carp via targeting TLR and apoptosis pathways. Aquat Toxicol 215:105286

    Article  CAS  PubMed  Google Scholar 

  30. Liu Q, Yang J, Gong Y, Cai J, Zheng Y, Zhang Y et al (2020) MicroRNA profiling identifies biomarkers in head kidneys of common carp exposed to cadmium. Chemosphere 247:125901

    Article  CAS  PubMed  Google Scholar 

  31. Greenwald P, Milner JA, Anderson DE, Mcdonald SS (2002) Micronutrients in cancer chemoprevention. Cancer Metastasis Rev 21(3–4):217–230

    Article  CAS  PubMed  Google Scholar 

  32. Stratton MS, Reid ME, Schwartzberg G, Minter FE, Monroe BK, Alberts DS et al (2003) Selenium and inhibition of disease progression in men diagnosed with prostate carcinoma: study design and baseline characteristics of the “Watchful Waiting” Study. Anticancer Drugs 14(8):595–600

    Article  CAS  PubMed  Google Scholar 

  33. Catherine M (2015) Selenium and chronic diseases: a nutritional genomics perspective. Nutrients 7(5):3621–3651

    Article  Google Scholar 

  34. Kahlos K, Soini Y, Fau-Säily M, Säily M, Fau-Koistinen P, Koistinen P, Fau-Kakko S, Kakko S, Fau-Pääkkö P, Pääkkö P, Fau-Holmgren A et al (2001) Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma. Int J Cancer 95(3):198–204

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Bi M, Yang J, Cai J, Zhang H, Zhu Y et al (2021) Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine. J Hazard Mater 20;421:126704

    Google Scholar 

  36. Liu XJ, Wang YQ, Shang SQ, Xu SW, Guo MY (2022) TMT induces apoptosis and necroptosis in mouse kidneys through oxidative stress-induced activation of the NLRP3 inflammasome. Ecotoxicol Environ Saf 230:113167

    Article  CAS  PubMed  Google Scholar 

  37. Geerling BJ, Badart-Smook A, Stockbrügger RW, Brummer RJM (2000) Comprehensive nutritional status in recently diagnosed patients with inflammatory bowel disease compared with population controls. Eur J Clin Nutr 54(6):514–521

    Article  CAS  PubMed  Google Scholar 

  38. Ojuawo A, Keith L (2002) The serum concentrations of zinc, copper and selenium in children with inflammatory bowel disease. Cent Afr J Med 48(9–10):116–119

    CAS  PubMed  Google Scholar 

  39. Kuroki F, Matsumoto T, Iida M (2003) Selenium is depleted in Crohn’s disease on enteral nutrition. Dig Dis 21(3):266–270

    Article  PubMed  Google Scholar 

  40. Teresa AT, Miguel N-A, Javier QG, Cristina SS, José R-H, Flor NL (2016) Ulcerative colitis and Crohn’s disease are associated with decreased serum selenium concentrations and increased cardiovascular risk. Nutrients 8(12):780

    Article  Google Scholar 

  41. Lener MR, Gupta S, Scott RJ, Tootsi M, Ski JL (2013) Can selenium levels act as a marker of colorectal cancer risk? BMC Cancer 13(1):214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official view of the Northeast Agricultural University. We would like to acknowledge the contributions and support of Pro. Shiwen Xu, Pro. Hongjin Lin and Dr. Mengrao Guo in present study.

Funding

This work was supported by the National Natural Science Foundation of China [grant number 31872531].

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Ziwei Zhang, Qi Liu. Performed the experiments: Qi Liu, Yue Zhu, Xintong Zhang. Analyzed the data: Pengyue Du, Jingzeng Cai. Contributed reagents /materials/analysis tools: Ziwei Zhang. Wrote the paper: Qi Liu.

Corresponding author

Correspondence to Ziwei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethics approval and consent to participate

Animal care and experimental procedures were performed with approval from the Northeast Agricultural University Institutional Animal Care and Use Committee.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 265 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Du, P., Zhu, Y. et al. Thioredoxin reductase 3 suppression promotes colitis and carcinogenesis via activating pyroptosis and necrosis. Cell. Mol. Life Sci. 79, 106 (2022). https://doi.org/10.1007/s00018-022-04155-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04155-y

Keywords

Navigation