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Abstract
Background Gene editing technology has provided researchers with the ability to modify genome sequences in almost all 
eukaryotes. Gene-edited cell lines are being used with increasing frequency in both bench research and targeted therapy. 
However, despite the great importance and universality of gene editing, the efficiency of homology-directed DNA repair 
(HDR) is too low, and base editors (BEs) cannot accomplish desired indel editing tasks.
Results and discussion Our group has improved HDR gene editing technology to indicate DNA variation with an independent 
selection marker using an HDR strategy, which we named Gene Editing through an Intronic Selection marker (GEIS). GEIS 
uses a simple process to avoid nonhomologous end joining (NHEJ)-mediated false-positive effects and achieves a DsRed 
positive rate as high as 87.5% after two rounds of fluorescence-activated cell sorter (FACS) selection without disturbing 
endogenous gene splicing and expression. We re-examined the correlation of the conversion tract and efficiency, and our data 
suggest that GEIS has the potential to edit approximately 97% of gene editing targets in human and mouse cells. The results 
of further comprehensive analysis suggest that the strategy may be useful for introducing multiple DNA variations in cells.
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Background

Genetic mutations cause human diseases, including cancers 
and heritable disorders. Therefore, gene editing technologies 
that can easily correct or generate mutations are critical for 
clinical applications and bench research, respectively [1]. 
Prokaryotes-derived CRISPR-Cas systems mediate target 
DNA cleavage guided by protospacer adjacent motif (PAM) 
and sgRNAs that form the DNA-RNA heteroduplex with 
the target genome DNA. Cas12 and Cas9 have been widely 
applied for eukaryotic genome editing because of their high 
efficiency in generating DNA double-strand breaks (DSBs), 
after which the DNA is repaired. Despite the potential for 
precise base editing by DNA repair, such as homology-
directed repair (HDR) and nonhomologous end joining 
(NHEJ) [2], the efficiency of these methods varies dramati-
cally in different cell lines [3, 4].

Recently, an alternative gene editing strategy was devel-
oped that uses dead Cas9 or Cas9 nickase to target DNA via 
sgRNA and recruits base deaminase domains to accomplish 
C-to-T base conversions (with a cytosine base editor, CBE) 
or A-to-G base conversions (with an adenine base editor, 
ABE) without introducing DSBs. Although the efficiency of 
this strategy can reach as high as 60%, its off-target effects, 
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inability to accomplish A-to-C, A-to-T, G-to-C or G-to-T 
conversion [5], and bystander effect might inhibit its appli-
cation [6, 7].

Introns are transcribed together with exons as pre-mRNA 
but are spliced by the spliceosome complex so that mature 
mRNA does not contain intronic sequences [8]. Introns 
are frequently used as targets for HDR genome editing 
strategies [9, 10]. To assist in the retrieval of successfully 
repaired clones, the target gene coding sequence (CDS) can 
be tagged with a fluorescent protein at the N- or C-terminus 
as a selectable marker [11]. To remove these tags, seamless 
repair using piggyBac or sleeping beauty is available [12, 
13]. However, this kind of selection can be used only when 
the target sites are near the terminus, and it changes the open 
reading frame (ORF), which may have unpredictable nega-
tive effects on genetic regulation. Furthermore, the marker 
is driven by the endogenous promoter, which might be too 
weak to make a difference for selection.

To solve the shortcomings of the current gene editing 
methods, we established an efficient gene editing sys-
tem based on HDR-mediated intronic fluorescent protein 
insertion without disruption of endogenous gene splicing 
and expression, which we named Gene Editing through 
an Intronic Selection marker (GEIS). This strategy avoids 
donor DNA-mediated false positive cell clones and produces 
as many as 87.5% gene-edited cells in our tested loci. The 
results of further studies reveal its strong potential for use in 
97% of exon editing applications and for multiple mutation 
introduction.

Results

The GEIS workflow generates RELA/p65 S276C 
HEK293T cells within 1 month

p65 is a REL-associated protein involved in NF-κB heterodi-
mer formation, nuclear translocation, and downstream gene 
transactivation [14]. We applied GEIS to generate the S276C 
mutation in RELA/p65. A LentiCRISPR-v2 plasmid carry-
ing sgRNA targeting intron 8 of the RELA gene was used 
to generate DSBs. To avoid disrupting RNA splicing, we 
did not target the splice site. The donor DNA template con-
tained a cytomegalovirus (CMV) promoter-driven DsRed-
expressing cassette between the left and right homology 
arms (HAs), while the desired S276C mutation was located 
on the left arm (Fig. 1A). The LentiCRISPR-v2 plasmid and 
donor DNA were cotransfected into HEK293T cells for 24 h, 
and then puromycin selection was conducted for 72 h to kill 
nontransfected cells. The surviving cells were subjected to 
FACS to fractionate the DsRed-positive cells. To increase 
the selection efficiency, a second round of FACS was per-
formed. The sorted cells were seeded into 96-well plates for 

single-cell clone growth. We obtained positive cell clones 
with the S276C mutation within 1 month with this work-
flow (Fig. 1B, C). Reverse transcription PCR (RT–PCR) 
and quantitative PCR (qPCR) showed that the inclusion of 
the CMV-DsRed cassette in the intron neither disturbed the 
splicing of the two adjacent exons nor affected mRNA tran-
scription (Fig. 1D, E).

HDR with an ssDNA template reduces 
the production of false‑positive cell clones

In this strategy, the use of dsDNA as donor DNA produces 
false-positive cell clones via direct transcription and trans-
lation or via random integration into the genome through 
canonical NHEJ (c-NHEJ) [15]. Recent studies have dem-
onstrated that ssDNA donors show superior performance 
compared to dsDNA donors in mammalian systems by 
reducing the probability of NHEJ [16]. To effectively 
obtain ssDNA sequences as large as 5000 nt, we denatured 
the dsDNA from PCR at 95 °C and with 100 mM NaCl for 
10 min (Fig. 2A). Transfection of dsDNA or ssDNA without 
CRISPR–Cas9 demonstrated that a single-stranded CMV-
DsRed donor led to significantly lower fluorescence intensity 
than a double-stranded donor. Considering that NaCl might 
influence transfection, we purified DNA. The purification 
of ssDNA resulted in a slight increase in DsRed-positive 
cells (Figs. 2B, S1A, B). Based on the above results, we 
speculated that the use of an ssDNA donor would increase 
the true-positive rate of FACS-enriched DsRed-expressing 
cells. As shown in Fig. 2C, with ssDNA as a donor cotrans-
fected with CRISPR–Cas9, the recombination rate for RELA 
reached 87.5% (21 out of 24), while with dsDNA, it was 
only 41.7% (10 out of 24) after two rounds of sorting. Ele-
vated recombination rates were also observed at the NABP2 
and EGFR loci, and no abnormal splicing or mRNA level 
changes were detected (Fig. 2C–E).

Conversion tract length influence gene editing 
efficiency

Despite the efficient selection of successfully recombined 
cells, GEIS still exhibits a low efficiency when the conver-
sion tract is too long. Because the CMV-DsRed cassette 
must be located in an intron to avoid disrupting endogenous 
gene splicing and expression, the sgRNA target site should 
usually be intronic, but the expected conversion site is usu-
ally exonic. The distance from the DSB to the conversion 
site (conversion tract) affects the efficiency [17].

To estimate the influence of conversion tract length on 
efficiency, we first evaluated the HA length required for effi-
cient insertion of the selection cassette into the intron. Using 
the EGFR locus as an example, we designed a series of 
donors with 250, 500, 800 and 1000 nt HAs. We found that 
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HAs longer than 500 nt were necessary for recombination 
at this locus (Fig. S2 A, B). Next, we designed donor DNA 
with a left HA (800 nt) containing nucleotide variations 45, 
90, 171, 386, 490, 596 and 696 nt away from the DSB site 
for GEIS of NABP2 (Fig. 3A). The genomic DNA of the 
GEIS-processed cell group was PCR-amplified with the for-
ward primer located outside the left HA on the genome and 
the reverse primer at the DsRed cassette. The PCR product 
was cloned into pLV-MCS-puro-Green for Sanger sequenc-
ing. A total of 624 amplicons were sequenced, and the con-
version efficiency was calculated. We repeated this workflow 
in RELA and EGFR recombination to test more loci, which 
introduce nucleotide switches, insertions and deletions 

(sequences are provided in the supplementary material). A 
total of 265 amplicons of EGFR and 446 amplicons of RELA 
were sequenced and calculated. In general, the conversion 
efficiency decreased as the tract became further away from 
the DSB. Although the efficiency varied largely in different 
loci, the conversion efficiency remained at 35% when the 
tract was shorter than 300 bp in the tested loci (Fig. 3B). We 
picked single-cell clones from RELA- and EGFR-edited cells 
for Sanger sequencing to exclude the effect of false ampli-
cons generated by the possible overlap-extension process in 
PCR amplification. The results were highly consistent with 
those of amplicons (Fig. S2C). Previous research based on 
80 cell clones reported an efficiency of only 20% when the 

Fig. 1  A Schematic view of GEIS to introduce the S276C mutation 
into the RELA locus in HEK293T cells. LentiCRISPR-V2 is used to 
generate DSBs in intron 8 and donor ssDNA as a template to intro-
duce mutations by HDR. B Workflow of GEIS, with two rounds of 
FACS to enrich and fractionate individual DsRed-positive cells. C 
Sanger sequencing of RELA genomic DNA sequences derived from 

WT- and GEIS-treated RELA S276C gene-edited HEK293T cells. D 
RT–PCR of cDNA from WT and S276C HEK293T cells. No alterna-
tive variants were found. E Relative expression of RELA in WT and 
S276C HEK293T cells. No significant (n. s.) change in RELA expres-
sion was detected
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tract was 200 bp long [17]. The extremely low efficiency 
might result from the DNA locus. Despite the variations, the 
three loci in this study showed far higher efficiencies than 
previously reported.

Because introns adjacent to the target exon on both the 
left and right sides are available for GEIS DSB generation, 
a nearer intron can always be found for the exonic editing 
site for GEIS, which needs less than half of the exon length 
as the conversion tract. For example, the conversion tract of 
300 bp indicated that GEIS has at least a 35% probability 

of generating mutations for exons as large as 600 bp in the 
locus (Fig. S2D).

Furthermore, we investigated the requirement of conver-
sion lengths in gene editing tasks. To assess the applicability 
of GEIS in the human and mouse genomes, we analyzed 
the distributions of exon length in these two species from 
the Consensus CDS (CCDS) Project (Fig. S2E) [18–20]. 
Most exons longer than 600 bp were the first or last exons, 
which contain long 5′ or 3′ untranslated regions (UTRs); 
however, DSBs can still be introduced by sgRNA in the first 

Fig. 2  A Agarose gel electrophoresis of denaturing dsDNA under the 
indicated conditions. B Percentage of DsRed-positive cells from 1 μg 
of dsDNA-, ssDNA(denatured)- or ssDNA (denatured and purified)-
transfected HEK293T cells determined by FACS. C HDR efficiency 
of RELA, NABP2 and EGFR using GEIS using dsDNA (nondena-
tured) or ssDNA (denatured) as donor DNA. D. qPCR of NABP2 

and EGFR in WT and GEIS-recombined (Rec) cells. Data are the 
mean ± s.d. of n = 3 biological independent experiments. No signifi-
cant (n. s.) variation was found by Student’s t-test for either NABP2 or 
EGFR mutants. E Agarose gel electrophoresis of RT–PCR products 
of NABP2 and EGFR in WT- and GEIS-modified cells. No alterna-
tive variant was found
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or last intron. When we excluded the UTRs and reanalyzed 
the distribution of exon lengths, only approximately 3% of 
exons had lengths longer than 600 bp (Fig. 3C). Based on the 
conversion tract analysis from the NABP2, RELA and EGFR 
loci, we speculate that GEIS might be able to edit 97% of 
gene targets with relatively high efficiency.

GEIS has the potential to introduce multiple DNA 
variations

To evaluate the possibility of introducing multiple genome 
alterations in one GEIS reaction, we analyzed the muta-
tion distributions in each of the 624 NABP2 amplicons. A 
heatmap was created to show the percentage of alterations 
that occurred at the remaining sites (horizontal axis) when 

an alteration occurred at the indicated site (vertical axis) 
(Fig. 3D). According to the map, mutations at a further site 
largely indicated successful editing of the nearer site, and 
genome editing showed a high extent of linkage rather than 
independence, indicating that multiple genome alterations 
can be introduced in one GEIS reaction.

Discussion

Here, we have developed a universal and efficient HDR-
based gene editing strategy in cell lines. Rather than tag-
ging a fluorescent protein to the target gene ORF for FACS 
selection, we chose to insert a pCMV-driven DsRed selec-
tion marker into introns so that the selection marker did not 

Fig. 3  A Schematic overview of the genome editing conversion tract 
experiments in the NABP2 locus: seven different DNA variations 
were included in the left HA of donor DNA in GEIS to test how 
many of these variations could be introduced in the genome locus of 
NABP2. B Percentage of DNA variations from the workflow of A in 
NABP2, RELA and EGFR that were introduced in the genome based 
on PCR amplicons. C Calculation of exon lengths of all human and 

mouse exons (UTR excluded). D Calculation of the selection effi-
ciency of each variation indicated in B from Sanger sequencing of 
624 clones that were PCR amplified from the GEIS-edited cell mix. 
When alteration A (vertical axis, M stands for mutated position, num-
bers stand for numbers of mutated clones) occurs, the percentage of 
the remaining alterations (horizontal axis, M stands for mutated posi-
tion) is presented on a heatmap
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influence target gene expression or splicing when indicating 
the desired DNA variations for FACS selection. To elimi-
nate the possibility of false-positive cell clone generation 
by pCMV-driven DsRed-containing donor DNA and ran-
dom integration of the DNA into the genome via NHEJ, we 
used ssDNA as the donor [21, 22]. To obtain bulk ssDNA 
sequences as large as 5000 nt [23], we simply denatured 
dsDNA at a high temperature in a certain concentration of 
salt, which is widely applied for all kinds of PCR [24, 25]. 
Given that an editing target that is too far away from an 
intron might result in failure to introduce a DNA variation, 
we explored the editing efficiency based on the conversion 
tract length, and the results are of great value for other gene 
editing strategies [26–28]. Considering these results and 
the analysis of the exon length distribution in humans and 
mice, we speculate that GEIS can accomplish nearly 97% of 
exon editing tasks at relatively high efficiency. In addition, 
GEIS’s ability to introduce multiple DNA variations was 
also assessed in this study. Such an ability has strong poten-
tial for use in the development of novel features based on a 
directed molecular evolution strategy [29, 30]. Overall, we 
have introduced a developed gene editing strategy and have 
described its risks as well as methods to avoid those risks. 
Our data can also be used in other gene editing applications 
and can support the use of novel strategies for specific edit-
ing tasks.

NHEJ and HDR are two ways to repair DNA after DSBs. 
The choice is determined by a series of factors, including 
cell cycle regulation [31] and chromatin context [32]. On the 
other hand, DSBs could arise during DNA replication, and 
NHEJ could randomly incorporate dsDNA into the genome 
in the DNA repair process [33]. Methods to impair NHEJ are 
useful to increase HDR efficiency [34, 35]. NHEJ inhibitors 
such as SCR7 increase the HDR product and knocking down 
SHROOM1 can increase HDR efficiency by 4.7-fold [36]. 
In this study, both NHEJ and HDR could generate DsRed-
positive cells, but only HDR products were desired.

The conversion tract describes the distance of muta-
tion and the DSB in donor DNA [37], which is important 
in HDR-mediated gene editing. If the conversion tract is 
too short, the chances of introducing desired DNA altera-
tions are low. The conversion efficiency varies largely in 
different reports. Previous studies also reported only 20% 
when the tract was 200 bp [17]. In plants, the efficacy could 
remain at 80% when the tract is 600 bp [38]. In this study, 
we measured the conversion tract at three different loci, and 
the efficiency was as high as 65% for NABP2 when the tract 
was 400 bp and 30% for EGFR. The efficiency could be 
influenced by the expression of Pif1, Sgs1 and Blm [28, 39]. 
However, these factors cannot explain the difference in dif-
ferent loci in the same cell lines. More factors that influence 
conversion efficiencies are not yet clear.

This strategy is unlike intronic insertion knock-in HDR 
strategies, which are restricted to editing of bases near the 
stop or start codons for tagging markers that must be located 
at the N- or C-terminus of a CDS. The independent intronic 
marker strategy untethers the HDR gene editing strategy, 
allowing it to be used to solve editing problems in any 
exon in cells. Although similar intron targeting strategies 
have been reported, few of them eliminate the burden of 
in-frame marker tagging [10, 40, 41]. This strategy leaves 
a DsRed cassette in the genome that may contradict other 
experiments. To overcome this defect, if needed, we can 
turn to a scareless gene editing strategy [42] that employs 
an additional process of HDR to remove the DNA imprint 
in introns.

Methods

Plasmid and donor DNA

DSBs were generated by CRISPR–Cas9 technology with 
LentiCRISPR-V2 (Addgene, #98290) carrying the indicated 
intron-targeting sgRNAs (RELA: GGC UCU GUG CCG UGA 
GAG AG, NABP2: GGG CAA AGG GGU UUG CAA GG, 
EGFR: GCC AGC AUU UUC CUG ACA CC). Important: sgR-
NAs should avoid targeting the GU-AG at the intron–exon 
boundaries and the pyrimidines required for RNA splicing! 
The pDonor-GEIS plasmid was used as the framework for 
preparing the donor DNA. According to the sequence, two 
EcoRV sites were located adjacent to the pCMV-driving 
DsRed cassette for HA cloning. Important: donor DNA 
should contain no terminators. HAs were PCR amplified 
from HEK293T genomic DNA and inserted into the plasmid 
using a Gibson assembly cloning strategy. Mutations in HAs 
were generated by mutation- or truncation-containing prim-
ers using an overlap extension PCR strategy.

Donor DNA was generated from preprepared pDonor-
GEIS (RELA, NABP2, and EGFR) by PCR using a pair of 
universal primers: Donor-F: TGT GGT GGA ATT CTG CAG 
AT and Donor-R: GCG GCC GCC ACT GTG CTG GAT. PCR 
was carried out in 28 cycles on an Eppendorf thermocy-
cler with denaturation at 94 °C for 15 s, annealing at 58 °C 
for 15 s, and extension at 72 °C for 3 min using PrimeS-
tar (TaKaRa, Japan). PCR products were purified using an 
Ultra-Sep Gel Extraction Kit (Omega).

Fluorescence microscopy

Donor dsDNA and ssDNA were separately transfected into 
HEK293T cells. dsDNA was prepared from a purified PCR 
product that was dissolved in  ddH2O. ssDNA was prepared 
by denaturation of dsDNA at 95 °C for 10 min in 100 mM 
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NaCl. Transfected cells were photographed 24 h after trans-
fection under a fluorescence microscope (NIKON).

Cell culture and FACS

HEK293T cells were obtained from the American Type 
Culture Collection. Cells were cultured in DMEM (Dul-
becco’s modified Eagle’s medium) containing 10% fetal 
bovine serum at 37 °C and 5%  CO2. Fifteen micrograms of 
LentiCRISPR-V2 and 2 µg of donor DNA were cotransfected 
into 5 ×  107 cells with Lipofectamine 2000™ (Invitrogen) 
according to the manufacturer’s instructions. Subsequently, 
transfected cells were treated with 1 µg/mL puromycin for 
72 h. Cells were washed with PBS and treated with 0.05% 
trypsin. The cell suspension was filtered through a 40 µm 
cell strainer (BD Falcon) before FACS. Flow cytometry 
analysis and FACS were performed using BD LSR II. Cells 
isolated by FACS were then cultured for one week and pro-
cessed by FACS again to enhance the positive rate. Har-
vested cells were seeded in 96-well plates at 1/2 cell per well 
for single-clone growth.

Genomic DNA extraction and analysis

Genomic DNA was extracted using the TIANamp Genomic 
DNA Kit (#DP304-03). PCR of single clones derived from 
genomic DNA was processed to verify that the clone pos-
sessed the desired sequence. PCR was performed for 35 
cycles on an Eppendorf thermocycler with denaturation at 
94 °C for 15 s, annealing at 58 °C for 15 s, and extension 
at 72 °C for 30 s using PrimeStar. Forward primers were 
located outside the left HA on the genome, and the universal 
reverse primer was located in the DsRed cassette.

The primers used were as follows:
RELA-gTest-F: GCT CAT TGC CAA GGT GGG TA.
NABP2-gTest-F: GGA TGG ACC GAG TCC CGG CT.
EGFR-gTest-F: ATA AGA AGT CTG CAG AAC TT.
Red Uni-R: TTG GAC ATG ACT CCA CAT .

Conversion tract length detection

Multiple DNA variations on the left HA for NABP2, 
RELA and EGFR GEIS were introduced to HEK293T 
cells. FACS-sorted cells were collected for genomic DNA 
extraction. PCR was performed to amplify the successfully 
integrated DNA fragment from the donor DNA. PCR was 
performed for 28 cycles on an Eppendorf thermocycler 
with denaturation at 94 °C for 15 s, annealing at 58 °C for 
15 s, and extension at 72 °C for 1 min using PrimeStar. 

PCR products were cloned into the vector pLV-MCS-puro-
Green (digested by EcoRI) using Gibson assembly. A total 
of E. coli 624 colonies were sequenced. The mutations 
identified in the colonies were mapped to the wild-type 
NABP2 genomic sequence, and the seven candidate DNA 
alterations were recorded and calculated. The percentage 
of every variation was calculated as the number of mutated 
clones divided by 624 (total number of clones) and is illus-
trated in Fig. 2B.

The primers used were as follows:
EcoRI + NABP2-F: TTC TAG AGC TAG CGA ATT GGA 

TGG ACC GAG TCC CGG CT.
EcoRI + Uni-R: CCG ATT TAA ATT CGA ATT TTG GAC 

ATG ACT CCA CAT .

Human and mouse exon length distribution

Human (GRCh38, release 37) and mouse (GRCm38, 
release M25) genomic annotation files from GENCODE 
were used to evaluate the distribution of CDSs and exon 
lengths. In brief, each exon (UTR contained or excluded) 
was identified, and its length was calculated based on the 
end and start positions in the genome. The calculated 
lengths were then grouped and illustrated.

RNA extraction, RT–PCR and qPCR

Total RNA was extracted using a MolPure Cell/Tissue 
Total RNA Kit (Yeasen, China). RNA concentration was 
quantified by  NanodropC (Thermo, US). cDNA was pro-
cessed with DNase treatment and reverse transcription 
from 500 ng total RNA using the Hifair III 1st Strand 
cDNA Synthesis Kit (Yeasen). Reverse transcription was 
performed on a thermocycler at 25 °C for 5 min, 55 °C 
for 15 min and then 85 °C for 5 min. RT–PCR was pro-
cessed for 35 cycles on an Eppendorf thermocycler with 
denaturation at 94 °C for 15 s, annealing at 58 °C for 15 s, 
and extension at 72 °C for 20 s using PrimeStar. RT–PCR 
primers were set on exons adjacent to the processed intron 
to determine whether any alternative variants were pro-
duced. qPCR was performed to check whether there were 
any significant differences in expression in edited cells. 
qPCRs were processed using Hieff UNICON Universal 
Blue qPCR SYBR Green Master Mix (Yeasen) on QuantS-
tudio Dx (ABI), and qPCR primer sequences were derived 
from PrimerBank. The qPCR was repeated three times.

The RT–PCR and qPCR primers were as follows:



 S. Wang et al.

1 3

111 Page 8 of 9

RT-RELA-F:  CTC GGT GGG GAT GAG ATC TT
RT-RELA-R:  TTC TTC ATG ATG CTC TTG AA
RT-NABP2-F:  GAC AAA ACA GGC AGC ATC AA
RT-NABP2-R:  GGG TTT GGC TCA CTG AAG TT
RT-EGFR-F:  GTG ATG GCC AGC GTG GAC AA
RT-EGFR-R:  GGG ATT CCG TCA TAT GGC TT
qGAPDH-F:  GGA GCG AGA TCC CTC CAA AAT 
qGAPDH-R:  GGC TGT TGT CAT ACT TCT CATGG 

(product length = 197 bp)

qNABP2-F:  TCT GGG ACG ATG TTG GCA AT
qNABP2-R:  GGT GCC TGC TGG GTG CTG TA

(product length = 202 bp)

qRELA-F:   CCC AAC ACT GCC GAG CTC AA
qRELA-R:  CCT TTT ACG TTT CTC CTC AA

(product length = 348 bp)

qEGFR-F:  AGG CAC GAG TAA CAA GCT CAC 
qEGFR-R:  ATG AGG ACA TAA CCA GCC ACC 

(product length = 177 bp)
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