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Abstract
The three-dimensional configuration of the genome ensures cell type-specific gene expression profiles by placing genes and 
regulatory elements in close spatial proximity. Here, we used in situ high-throughput chromosome conformation (in situ 
Hi-C), RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) to characterize the high-
order chromatin structure signature of female germline stem cells (FGSCs) and identify its regulating key factor based on the 
data-driven of multiple omics data. By comparison with pluripotent stem cells (PSCs), adult stem cells (ASCs), and somatic 
cells at three major levels of chromatin architecture, A/B compartments, topologically associating domains, and chromatin 
loops, the chromatin architecture of FGSCs was most similar to that of other ASCs and largely different from that of PSCs 
and somatic cells. After integrative analysis of the three-dimensional chromatin structure, active compartment-associating 
loops (aCALs) were identified as a signature of high-order chromatin organization in FGSCs, which revealed that CCCTC-
binding factor was a major factor to maintain the properties of FGSCs through regulation of aCALs. We found FGSCs belong 
to ASCs at chromatin structure level and characterized aCALs as the high-order chromatin structure signature of FGSCs. 
Furthermore, CTCF was identified to play a key role in regulating aCALS to maintain the biological functions of FGSCs. 
These data provide a valuable resource for future studies of the features of chromatin organization in mammalian stem cells 
and further understanding of the fundamental characteristics of FGSCs.
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Introduction

The chromatin architecture of germline stem cells (GSCs) 
carries the information necessary for cells to perform their 
unique functions and is thus an essential factor in the 
transmission of the genome from generation to generation. 
GSCs renew themselves and differentiate into gametes 
that include sperm and metaphase II (MII) oocytes [1–3]. 
During this process, spermatogonial stem cells (SSCs) 
differentiate into sperm by packaging chromatin into a 
highly condensed configuration. Recently identified female 
GSCs (FGSCs) in postnatal ovaries differentiate into MII 
oocytes after transplantation into the ovaries of infertile 
mice [2–8]; thereby, reshaping the concept that female 
mammals lose their ability to produce oocytes at birth [9, 
10]. Unlike other stem cells, GSCs undergo meiosis to 
produce haploid gametes with chromatin remodeling. It is 
therefore necessary to characterize the chromatin structure 
of GSCs during their development to further understand 
GSC biology.

High-throughput chromosome conformation (Hi-C) is 
a powerful technology to study genome-wide architec-
ture, which allows the high-order chromatin structure to 
be displayed and reveals the chromatin organization in 
the nucleus [11]. The spatial organization of chromatin as 
the structural and functional basis of the genome affects 
DNA localization with important roles in regulation of 
gene expression to ensure DNA duplication and other 
biological processes [12, 13], which suggests a close con-
nection to the biological functions and signature of the 
cell. Dixon et al. found extensive chromatin reorganiza-
tion during specification of human embryonic stem (ES) 
cell-derived lineages by mapping genome-wide chromatin 
interactions in human ES cells and four human ES cell-
derived lineages [14]. Previous studies have reported that 
the chromatin architecture changes dynamically during 
spermatogenesis with dissolved and reappeared topologi-
cally associating domains (TADs) and A/B compartments 
[15, 16]. The high-order chromatin organization exhib-
its statistically significant differences between sperm and 
embryonic fibroblasts [17, 18]. However, the signature of 
the chromatin architecture of FGSCs is unknown.

CCCTC-binding factor (CTCF) is a critical regulator 
of chromatin architecture, which underlies its functions 
that include gene expression and three-dimensional (3D) 
genome construction and regulation [19–22]. In mam-
mals, CTCF recognizes chromatin insulators to segment 
chromatin into several TADs. Therefore, disruption of 
CTCF expression can led to the disappearance of TAD 
formation [23]. Notably, CTCF regulates gene expres-
sion through the formation of chromatin loops [19, 20]. 
A recent study has reported that CTCF plays an important 

role in establishment of the 3D chromatin structure during 
human embryogenesis, which indicates that CTCF is also 
important for development [24]. However, the 3D archi-
tectural role of CTCF in FGSCs is unknown.

In this study, we used in situ Hi-C technology to compare 
the chromatin organizations of FGSCs and induced pluri-
potent stem cells (iPSCs), adult stem cells (ASCs), which 
included SSCs and neural stem cells (NSCs), and somatic 
cells (mouse SIM embryonic fibroblasts; STO cells) to explore 
the chromosome structure characteristics of FGSCs. Together 
with RNA sequencing (RNA-seq) and chromatin immunopre-
cipitation sequencing (ChIP-seq), we identified distinct fea-
tures (active compartment-associating loops; aCALs) of the 
chromatin organization in FGSCs at three major levels: A/B 
compartments, TADs, and chromatin loops, and found that 
FGSCs were most similar to other ASCs and largely different 
from iPSCs and STO cells. By further analysis of the distinct 
features, we revealed that CTCF may be a crucial factor to 
maintain the properties of FGSCs through regulation of the 
high-order chromatin structure.

Materials and methods

Animals

The CAG-EGFP mice from the Model Animal Research 
Center of Nanjing University, also named C57BL/6-Tg 
(CAG-EGFP) C14-Y01-FM131-Osb [25]. The Ddx4-Cre; 
mT/mG mice were generated as described previously [26]. 
DBA/2 mice were obtained from the Shanghai Slac Labo-
ratory Animal Co., Ltd. (Shanghai, China). All procedures 
involving animals were approved by the Institutional Animal 
Care and Use Committee (IACUC) at Shanghai Jiao Tong 
University, and all experiments were performed in accord-
ance with the approved protocols.

Isolation and culture of SSCs

Mouse SSCs were isolated and cultured from 6-day-old male 
 F1 progeny of DBA/2 × CAG-EGFP mice, as previously 
described [27]. In brief, SSCs (> 20 passages) were cultured 
on mitomycin C (MMC)-treated mouse embryonic fibro-
blast (MEF) feeder cells with SSC culture medium. The SSC 
culture medium included StemPro-34 SFM supplemented 
with StemPro supplement (Invitrogen, Carlsbad, CA, USA), 
human basic fibroblast growth factor (100 μg/ml transferrin, 
25 μg/ml insulin, 10 ng/ml; Invitrogen), recombinant human 
epidermal growth factor (20 ng/ml; Invitrogen), recombinant 
human glial cell line-derived neurotrophic factor (10 ng/ml; 
Invitrogen), d-(+)-glucose (6 mg/ml; Invitrogen), putrescine 
(60 mM; Invitrogen), sodium selenite (30 nM; Invitrogen), 



Integrative analysis of the 3D genome structure reveals that CTCF maintains the properties…

1 3

Page 3 of 17 22

l-glutamine (2  mM; Invitrogen), pyruvic acid (30  μg/
ml), dl-lactic acid (1 μl/ml; Sigma, St. Louis, MO, USA), 
bovine serum albumin (5 mg/ml; Sigma), 2-mercaptoethanol 
(10 μM; Sigma), 1× MEM vitamin solution (Invitrogen), 
1× nonessential amino acid solution (Invitrogen), ascorbic 
acid (0.1 mM), d-biotin (10 μg/ml; Sigma), 1% fetal bovine 
serum (Gibco), and 1× penicillin/streptomycin solution (Inv-
itrogen). The medium was changed every 2–3 days.

Isolation and culture of FGSCs

Mouse FGSCs were isolated and cultured from neonatal 
Ddx4-Cre; mT/mG mouse ovaries (6 days old), as previously 
described [26]. Briefly, FGSCs (> 18 passages) were cul-
tured on mitotically inactivated STO (SIM mouse embryo-
derived thioguanine- and ouabain-resistant) cell feeders 
in minimum essential medium alpha (MEMα; Invitrogen) 
supplemented with 10% fetal bovine serum (FBS) (Life 
Technologies), mouse leukemia inhibitory factor (10 ng/
ml; Santa Cruz Biotechnology), mouse epidermal growth 
factor (EGF) (20 ng/ml; PeproTech), basic fibroblast growth 
factor (bFGF) (10 ng/ml; PeproTech), mouse glial cell line-
derived neurotrophic factor (GDNF) (10 ng/ml; PeproTech), 
nonessential amino acids (1 mM; Life Technologies), l-glu-
tamine (2 mM; Sigma), pyruvate (30 mg/ml; Amresco), and 
β-mercaptoethanol (50 mM; Biotech). The FGSCs were sub-
cultured every 4–7 days.

Isolation and culture of NSCs

NSCs were isolated from E12.5 mouse embryonic cortex, 
in accordance with a previously described procedure [28, 
29]. The primary NSCs were seeded onto poly-l-ornithine 
(Sigma-Aldrich)- and laminin (Invitrogen)-coated dishes, 
cultured as monocultures. Neural basal medium with EGF 
(20 ng/ml; PeproTech), bFGF (20 ng/ml; PeproTech), hepa-
rin (20 ng/ml; Sigma-Aldrich), and 2% B27 (Invitrogen) 
was used as NSC proliferation medium. For differentiation, 
NSCs were seeded on poly-L-ornithine (Sigma-Aldrich)- 
and laminin (Invitrogen)-coated dishes. Upon NSC attach-
ment, the medium was changed to differentiation medium 
identical to the NSC proliferation medium without growth 
factors (EGF and bFGF). After differentiation for 10 days, 
neural- and glial-specific markers were used to determine 
the differentiation potential of cultured NSCs.

STO culture

STOs were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM) with high glucose (Life Technologies), 
10% FBS (Life Technologies), 1% nonessential amino 
acids (Life Technologies), glutamine (2 mM; Sigma), and 

penicillin (100 U/ml; Sigma)/streptomycin (0.1 mg/ml; 
Sigma) at 37 °C and 5%  CO2, and passaged after 3–4 days.

Knockdown of CTCF in FGSCs

To examine the function of CTCF in mouse FGSCs, the 
following shRNAs targeting CTCF were designed and syn-
thesized by OBiO Technology (Shanghai, China) Corp., Ltd 
(Suppl. Table S5). Then, the sequence with the best interfer-
ence effect was used for lentivirus packaging. The sequences 
of shRNA were CTCF: 5′-GCG AAA GCA GCA TTC CTA 
T-3′. For lentivirus infection, 60–70% cell on 48-well plate 
incubated with 1:1 mixture of culture medium and lentivi-
rus solution. After overnight infection, we changed fresh 
culture medium and cultured for 12 h. To select for positive 
cells, 100 ng/ml puromycin was added to the FGSC culture 
medium for 72 h. The surviving FGSCs cells were collected 
and analyzed by qRT-PCR.

Immunofluorescence

The immunofluorescence procedure was performed as 
described previously with minor modification [30]. Cul-
tured cells were washed twice with phosphate-buffered 
saline (PBS) and then fixed in 4% paraformaldehyde for 
15 min. After that the cells were rinsed twice and incubated 
with PBS containing 0.1% (v/v) Triton X-100 for 15 min. 
Fixed cells were blocked by 10% normal horse serum in 
PBS for 10 min at room temperature. The cells were then 
incubated with primary antibodies: mouse monoclonal anti-
NESTIN and rabbit polyclonal anti-SOX2 (1:180 dilution; 
Abcam), mouse polyclonal anti-TUJ-1 and rabbit polyclonal 
anti-GFAP (1:150 dilution; Abcam), mouse monoclonal 
anti-MVH (1:500 dilution; Abcam), mouse monoclonal 
anti-PLZF (1:100 dilution; Santa Cruz Biotechnology). 
After 1 h of incubation at room temperature with the pri-
mary antibodies, the cells were rinsed twice in PBS and 
then incubated in the dark with a fluorescein isothiocyanate-
conjugated secondary antibody, either goat antirabbit IgG or 
goat anti-mouse IgG (1:200 dilution; Proteintech, Chicago, 
IL, USA) for 60 min at 37 °C. This was followed by rins-
ing and staining of the nucleus with 4′,6-diamidino-2-phe-
nylindole (DAPI) (1:1000 dilution; Sigma)-containing PBS 
for 10 min at room temperature. After washing twice with 
PBS, the cells were examined in fresh PBS under an inverted 
fluorescence microscope (Leica).

Western blot assay

Protein extracts were separated by 7–12% SDS–polyacryla-
mide gel electrophoresis (PAGE), and then transferred to 
0.45 μm PVDF membranes. The membrane was blocked in 
5% TBST milk for 1 h and probed overnight with antibodies 
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against CTCF (1:3000, Sigma-Aldrich). The membrane 
was thrice washed in 0.1% TBS-Tween-20, incubated with 
diluted secondary antibodies (Proteintech) in 5% PBST milk 
for 2 h and the antigen–antibody reaction was visualized by 
enhanced chemiluminescence assay (ECL, Thermo). West-
ern blot quantification was performed with ImageJ software.

Cell proliferation assay

Cell proliferation rates was assayed using the cell count-
ing kit-8 (Genomeditech, Shanghai, China) and Cell-Light 
EdU  Apollo®567 in Vitro Imaging Kit (RiboBio, Guang-
zhou, China) according to the manufacturer’s instructions. 
In brief, for CCK8 assay, 10 μl CCK8 solution was added 
to each well containing 100 μl medium. The plate was incu-
bated for additional 4 h before measuring the absorbance at 
450 nm wavelength. For EdU labeling assay, the 5-ethynyl-
2′-deoxyuridine (EdU) was added to each well for 2 h, and 
the cells were fixed and stained by 1× Apollo for 30 min. 
Then, the cell nucleus was counterstained with 1× Hoechst 
33342. The stained cells were examined with Leica fluores-
cence microscope and photographed with camera.

RT‑PCR and qRT‑PCR

Total RNA from cells was extracted using Trizol reagent 
(Invitrogen), in accordance with the manufacturer’s instruc-
tions. After extraction, total RNA (1 µg) was used to synthe-
size cDNA with Primescript Reverse Transcriptase (Ther-
moFisher). qRT-PCR analysis was carried out with SYBR 
Premix Ex Taq (YEASEN, Shanghai, China) in a 20ul vol-
ume on an Applied Biosystems 7500 Real-Time PCR Sys-
tem. Specific marker genes, such as Mvh, Oct4, Fragilis, 
Stella, Dazl, Exv5, Plzf, Gfra1, Nestin, Sox2, Pax6, Olig2, 
Ascl1, Gfap, Meikin, Prdm9, Hspa1b, Majin, and Notch2, 
were used to characterize the cells. Gapdh was used as an 
internal control. Primer sequences are listed in Supplemen-
tary Table S1.

In situ Hi‑C library generation

Cells were used for in situ Hi-C, including iPSCs (from Kang’s 
Lab, Tongji University), FGSCs (collection with fluorescence 
activated cell sorting, FACS), SSCs, NSCs, and STOs [31]. 
Hi-C libraries were generated in accordance with the standard 
in situ Hi-C protocol, with minor modification [19]. Five mil-
lion cells were harvested with 0.05% trypsin, washed twice, 
resuspended with DMEM medium and then crosslinked with 
37% formaldehyde (F8775; Sigma) to a final concentration 
of 1% for 10 min at room temperature. Formaldehyde was 
quenched by adding glycine to a final concentration of 0.2 M 
and the cells were incubated for 5 min at room tempera-
ture, then transferred to ice for 20 min. The fixed cells were 

centrifuged at 400×g and 4 °C and washed with cold PBS 
once, followed by storage at − 80 °C. Fixed cells were resus-
pended in lysis buffer and then incubated on ice for 30 min. 
Nuclei were pelleted by centrifugation at 3000×g for 5 min 
and washed once with 500 μl of cold lysis buffer. The pellet 
was resuspended in 0.5% sodium dodecyl sulfate (SDS) and 
incubated at 62 °C for 5–10 min. Then, SDS was quenched 
by adding water (145 μl) and 10% Triton X-100 (25 μl) and 
incubated at 37 °C for 15 min. The nuclei were digested over-
night at 37 °C with 100U Mbol restriction enzyme (20 μl; 
NEB, R0417) and 10× NEBuffer 2 (25 μl). The next day, the 
nuclei were incubated at 62 °C for 20 min, followed by cool-
ing to room temperature. A mixed solution (50 μl) (37.5 μl 
of 0.4 mM biotin-14-dATP, 1.5 μl of 10 mM dCTP, 1.5 μl 
of 10 mM dGTP, 1.5 μl of 10 mM dTTP, and 8 μl of 5 U/μl 
DNA Polymerase I) was then added and incubated at 37 °C 
for 2 h. Ligation master mix (663 μl of water, 120 μl of 10× 
NEB T4 DNA ligase buffer, 100 μl of 10% Triton X-100, 12 μl 
of 10 mg/ml bovine serum albumin, and 5 μl of 400 U/μl T4 
DNA ligase) was added to a volume of 900 μl and slowly 
rotated for 6 h at room temperature. Next, to degrade protein, 
proteinase K (50 μl of final concentration 20 mg/ml) and 10% 
SDS (120 μl) were added and incubated at 55 °C for 30 min. 
Then, sodium chloride (5 M, 130 μl) was added and incubated 
at 68 °C overnight. On the third day, the DNA was purified 
by adding 1.6× volumes of pure ethanol and 0.1× volumes of 
sodium acetate (3 M), pH 5.2. Subsequently, DNA was diluted 
with Tris buffer and sheared by a Digital Sonifier (Branson). 
Dynabeads MyOne Streptavidin T1 beads (50 μl; Thermo Sci-
entific) were added and washed once with 1× Tween wash-
ing buffer (TWB) (5 mM Tris–HCl (pH 7.5), 0.5 mM EDTA, 
1 M NaCl, 0.05 Tween 20), separated on a magnet, and then 
the solution was discarded. The beads were resuspended in 
2× binding buffer (10 mM Tris–HCl (pH 7.5), 1 mM EDTA, 
2 M NaCl), mixed with the DNA, and incubated at room tem-
perature for 1 h with rotation, followed by washing twice with 
TWB (500 μl) and reclaiming the beads using a magnet. The 
beads were next resuspended with a mixture [88 μl of 1× NEB 
T4 DNA ligase buffer with 10 mM ATP, 2 μl of 25 mM dNTP 
mix, 5 μl of 10 U/μl NEB T4 PNK, 4 μl of 3 U/μl NEB T4 
DNA polymerase I, 1 μl of 5 U/μl NEB DNA polymerase I, 
Large (Klenow) Fragment] and incubated at room temperature 
for 30 min, followed by separation on a magnet and washing 
twice with 1× TWB. The beads were resuspended with mix-
ture (90 μl of 1× NEBuffer 2, 5 μl of 10 mM dATP, 5 μl of 
5 U/μl NEB KlenowExo Minus) and incubated at 37 °C for 
30 min. Then, separation on a magnet was performed, after 
which the solution was discarded and washing was carried out 
twice. The beads were resuspended in 1× NEB Quick ligation 
reaction buffer (50 μl; NEB), and NEB DNA Quick ligase 
(2 μl; NEB) and an Illumina indexed adapter of NEBNext 
Multiplex Oligos for Illumina (3 μl; NEB) were added at room 
temperature for 15 min. Then, USER enzyme of NEBNext 
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Multiplex Oligos for Illumina (3 μl) was added to the ligation 
mixture at 37 °C for 15 min. The DNA was washed twice 
and eluted by resuspending the beads with Tris–HCl (50 μl of 
10 mM; pH 8.0), followed by incubation at 98 °C for 10 min. 
The DNA suspension was transferred into a fresh tube and 
stored at − 20 °C. The Hi-C library was amplified in a PCR 
system (25 μl of NEBNext Q5 Hot Start HiFi PCR mix, 5 μl 
of index primer of NEBNext Multiplex Oligos for Illumina, 
5 μl of universal primer of NEBNext Multiplex Oligos for 
Illumina, and 15 μl of DNA template) with the following PCR 
conditions: initial denaturation at 98 °C for 30 s; eight cycles 
of denaturation at 98 °C for 10 s and annealing/extension at 
65 °C for 75 s; followed by final extension at 65 °C for 5 min, 
and then maintenance at 4 °C. The DNA fraction in the size 
range of 300–500 bp was selected using Agencourt AMPure 
XP beads (Beckman Coulter). The DNA was eluted with 1× 
Tris–HCl buffer (33 μl) and incubated at room temperature for 
5 min, followed by separation on a magnet and transfer of the 
solution to a fresh labeled tube. This produced the final Hi-C 
library. The quality of the Hi-C library was determined using 
the Qubit dsDNA HS Assay and Agilent 2100 DNA 1000 
HS kit. The high-quality libraries were sequenced using an 
Illumina sequencing platform.

ChIP‑Seq library preparation

The preparation of ChIP and input DNA libraries was per-
formed as previously described [32]. In brief, two cells were 
crosslinked with 1% formaldehyde for 5 min at room temper-
ature and quenched with glycine (125 mM). Cells were then 
put on ice, resuspended in cold cell lysis buffer [140 mM 
NaCl, 1 mM EDTA pH 8.0, 1% Triton X-100, 0.1% SDS, 
and protease inhibitors (Roche)]. Nuclei were sonicated into 
fragments of 200–1000 bp in size. The chromatin fragments 
were precleared and then immunoprecipitated with Protein 
A + G magnetic beads coupled with anti-H3K4me3 (ab8580; 
Abcam), anti-H3K27ac (ab4729; Abcam), anti-H3K27me3 
(07-449; Millipore), and anti-CTCF (ab70303; Abcam). 
After reverse crosslinking, immunoprecipitated DNA and 
input DNA were end-repaired and adapters were ligated to 
the DNA fragments using NEBNext Ultra End-Repair/dA-
Tailing Module (E7442; NEB) and NEBNext Ultra Ligation 
Module (E7445; NEB). High-throughput sequencing of the 
ChIP fragments was performed using Illumina NextSeq 500, 
following the manufacturer’s protocol.

Hi‑C data processing, mapping, and ICE 
normalization

Hi-C pair-end was trimmed of adaptor sequences and low-
quality reads were filtered with BBmap (version 38.16). 
HiCPro (version 2.7) [33] was then used to map, process, 
and perform iterative correction for normalization. Reads 

were independently aligned to the mouse reference genome 
(mm9) with the bowtie2 algorithm [34]. Uncut DNA reads, 
re-ligation reads, continuous reads, and PCR artifacts were 
discarded. We then constructed a contact matrix using the 
unique mapped reads (MAPQ > 10). We divided the genome 
into sequential bins of equal size and valid read pairs were 
then binned at a specific resolution. ICE [35] normalization 
was applied to remove bias in the raw matrix, such as GC 
content, mappability, and effective fragment length in Hi-C 
data. Contact matrices were finally generated at binning 
resolutions of 10, 20, 40, 200, and 400 kb.

Validation of Hi‑C data

The data reproducibility was confirmed by calculating Pear-
son’s correlation coefficient between the two Hi-C repeats. 
For each possible interaction Iij between two replicates, these 
were correlated by comparing each point’s interaction in the 
normalized interaction matrix. Considering that the inter-
action matrix was highly skewed toward proximal interac-
tions, we calculated the correlation to a maximum distance 
restricted to 2 Mb between points i and j. R was used to 
calculate Pearson’s correlation between two duplicates.

Contact probability p(s) calculation

p(s) only considering intra interactions, was calculated with 
normalized interaction matrices at 40-kb resolution, as 
described previously [36]. Briefly, we divided the genome 
into 40-kb bins and counted the number of interactions at 
corresponding distances for each distance (separated by 40, 
80, 120, 160 kb, etc.). We then divided the number of inter-
actions in each bin by the total number of possible region 
reads as p(s). Finally, we normalized the sum of p(s) over the 
range of distances as 1. The curve (log–log axis) was gener-
ated by locally weighted scatterplot smoothing.

Identification of A and B compartments

The R package (HiTC) [37] was used to generate the PC1 
eigenvectors using 400-kb normalized matrices with pca.
hic function, using the options: (normPerExpected = TRUE, 
npc = 1), for which a positive value indicates the A compart-
ment and a negative value indicated the B compartment. 
To investigate compartment switching, we defined switched 
bins only if the PC1 eigenvectors changed in the same direc-
tion for two replicates.

Identification of concordant genes with A/B 
compartment switch

We defined genes with concordant changes in expression 
and compartment status according to a previously described 
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method, with minor modifications [14]. Briefly, the covari-
ance between the vector of the gene expression values 
(FPKM) and the vector of PC1 values for each gene was cal-
culated across five cell types. We then used the covariance 
metric to quantitatively define ‘concordance’. The observed 
covariance values were compared with a random background 
distribution to calculate a p value for the covariance for each 
gene. Randomly shuffling the vector of FPKM for each gene 
produced the background distribution, and then obtained the 
covariance between the PC1 values and the random gene 
expression vector. A rank-based p value could be calculated 
for the observed covariance values with 1000 repeats for 
each gene. Concordant genes were defined as those with a 
p value < 0.01.

TAD calling and TAD boundaries

We calculated the location of the TADs using the direc-
tional index (DI) value, as previously described [38]. We 
first calculated the DI value for each bin based on the ICE-
normalized and depth-normalized matrix and then used this 
value as the input for a hidden Markov model (HMM) to 
call TADs. TAD boundaries were defined as those < 400 kb.

TAD signal calculation

We calculated TADs signals using the insulation score [39]. 
The insulation score for each bin in the 20 kb was calculated 
by the average number of interactions that occurred across 
each bin. Using this matrix, we then plotted the insulation 
score distribution centered in the FGSC TADs (up/down to 
0.5 TAD).

Identification of chromatin loops and calculation 
of APA score

We carried out chromatin loop calling using the tool (Juicer), 
as described previously [19]. The merged loops at different 
resolution as the calling chromatin loops. The calculation of 
APA score was followed the parameters: − r 25,000, 1000.

ChIP‑Seq data analysis

We aligned fastq files to the mm9 reference genome, 
removed PCR duplicates using Samtools (version 2.0.1) 
[40], and generated normalized genome coverage tracks 
from uniquely mapping reads (MAPQ > 10) using deep-
Tools2 (version 3.1) [41]. Biological replicates were pooled, 
and coverage was then calculated as the average reads per 
million mapped reads (RPM) in 1-kb bins. To identify the 
correlation between ChIP-Seq and A/B compartment, we 
summed the log2 of the fold enrichment (treatment/input) 

from ChIP-Seq to calculate the relative ChIP-Seq signal in 
each compartment.

RNA‑Seq library generation and data analysis

Total RNA was extracted from 2 to 6 million cells using 
Trizol Reagent (Invitrogen). The RNA quality was assessed 
using Agilent Bioanalyzer 2100. RNA-Seq libraries were 
prepared using the KAPA Stranded mRNA-Seq kit, follow-
ing the manufacturer’s instructions. After preparation, librar-
ies were quantified using a Qubit fluorometer and sequenced 
with HiSeq Platform (2 × 150 bp). All RNA-Seq data were 
trimmed and aligned to the mm9 reference genome using 
Hisat2 (version 4.8.2) [42] with the default parameters. 
Gene expression FPKM was calculated by Cufflinks (ver-
sion 2.2.1) [43] using the RefSeq database from the UCSC 
genome browser. Sequencing depth was normalized.

GO term enrichment analysis

GO term enrichment analysis was performed using the 
DAVID tool (version 6.8) [44], with a focus on enriched 
biological processes (BP). The GO results were displayed 
by Cytoscape (version 3.5.1) [45]. For the Benjamin-cor-
rected p value, a threshold of less than 0.05 was used for 
significance.

Results

Biological characterization of FGSCs and other ASCs

FGSCs were isolated from the ovaries of Ddx4-Cre;mT/
mG neonatal mice and cultured as described previously 
[26]. After culture for at least 18 passages, the cells exhib-
ited a characteristic morphology similar to that previously 
described for FGSCs [2, 26]. The expression of female ger-
mline marker genes was determined by reverse transcrip-
tion-polymerase chain reaction (RT-PCR). FGSCs after 
long-term culture expressed Oct4, Fragilis, Mvh (mouse 
vasa homologue expressed exclusively in germ cells), Stella, 
Gfrα1, and Dazl genes. Furthermore, immunofluorescence 
analysis revealed that these cells expressed MVH, which 
confirmed their identity as FGSCs (Fig. 1a).

We isolated SSCs from the testes of 6-day-old DBA/2× 
CAG-EGFP  F1 mice and cultured them as described previ-
ously [27]. Long-term cultured SSCs (> 20 passages) were 
assessed by RT-PCR and found to express male germline 
marker genes [Etv5, Oct4, Plzf (promyelocytic leukemia zinc 
finger), Gfrα1, and Mvh]. These results were confirmed by 
immunofluorescence and most cultured cells were also posi-
tive for PLZF expression, which confirmed their identity as 
SSCs (Fig. 1b).
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Isolated primary NSCs self-proliferated and were cul-
tured for 5–8 passages in NSC proliferation medium. Mor-
phologically, cultured NSCs were shaped as spindles with a 
high nucleus-to-cytoplasm ratio as reported previously [29]. 
The cultured NSCs were positive for several NSC-specific 
markers, which included Nestin, Sox2, Pax6, Olig2, and 
Ascl1, as determined by RT-PCR. Gfap is a the standard 
marker for astrocytes as a negative control [46]. Immunocy-
tochemical staining confirmed that most cultured NSCs were 
positive for NESTIN and SOX2 as typical markers specific 
for NSCs. Following the removal of epidermal growth factor 
and basic fibroblast growth factor from the medium, NSCs 
differentiated spontaneously into neurons and astrocytes as 
characterized by prominent dendrites with long axons and 
extensive cytoplasm with thick processes, respectively. The 

differentiation potential of cultured NSCs was confirmed by 
immunochemical staining of neural- and astrocyte-specific 
markers TUJ-1 (β3 tubulin) and GFAP (glial fibrillary acidic 
protein), respectively. These results confirmed the identity 
of the cultured cells as NSCs (Fig. 1c). The morphology of 
STO cells is shown in Fig. 1d.

Global chromosome organization map of FGSCs

To reveal the signature of the chromatin architecture in 
FGSCs, we performed in situ Hi-C [19] with two biological 
replicates of FGSCs and other cells (SSCs, NSCs, iPSCs, 
and STO cells), which generated approximately 400 million 
reads for each replicate. After filtering artificial reads and 
normalization, we obtained 2 billion valid Hi-C reads over 
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the five cell lines, which included an average of 207 million 
long range intrachromosomal cis-contacts and 90 million 
interchromosomal trans-contacts (Suppl. Table S1). We con-
firmed high reproducibility of the Hi-C data (Suppl. Figure 
S1) and combined the two biological replicates into a single 
set of merged Hi-C data per cell type to reach a maximum 
resolution of 20 kb.

An overview of the intrachromosomal contact heat 
maps revealed that FGSCs had a distinct chromatin organi-
zation (Fig. 2a). We further examined the characteristics 
of the chromatin organization by analyzing the patterns 
of the compartment status and TADs in autosomes across 
cells, which avoided sex chromosome effects. The com-
partment status was classified as active (A) or inactive (B) 
(Suppl. Table S2). The result showed FGSCs had different 

A/B compartments compared with other cell types and the 
patterns of TADs or directional indexes (DIs) were almost 
the same for these cells (Fig. 2b). We counted the numbers 
of compartments and TADs in the cells and found that 
FGSCs had the lowest number of TADs and the number of 
compartments was similar to that in SSCs (Fig. 2c, Suppl. 
Table S3). We also calculated the average intrachromo-
somal contact probability of cells and found that the chro-
matin interaction frequency was decreased monotonically 
from 1 ×  105 to 1 ×  108 bp for FGSCs and the other cells 
(Fig. 2d). The contact probability curves were similar in 
the five cell types from 1 ×  105 to 1 ×  108 bp, but changes 
were observed at the long-distance genome as reported 
previously [47].
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Compartment status distinguishes FGSCs from iPSCs

Further systematic analysis of the compartment status across 
five cell types showed that FGSCs were more similar to 
NSCs and SSCs in terms of A/B compartments compared 
with iPSCs and STOs cells (Fig. 3a), suggesting that FGSCs 
were ASCs. Meanwhile, switching compartments of FGSCs 
accounted for about 40% proportion of compartments com-
pared with iPSCs and STO cells, but a smaller proportion 
(30%) compared with SSCs and NSCs (Suppl. Figure S2A). 
These results suggested that FGSCs had a unique A/B com-
partment status that was more similar to other ASCs than 
iPSCs or STO cells. Furthermore, RNA-seq data showed 
genes were highly expressed in compartment A than in com-
partment B (Suppl. Figure S2B). The genes located in the 
switching compartment tended to be differentially expressed 
compared with the stable compartments (Fig. 3b), which 

indicated that the compartment status was correlated with 
gene expression. Unexpectedly, go enrichment of the genes 
located in A compartment of FGSCs showed there was no 
female or stem cells related pathways (Suppl. Figure S2C). 
Then we asked whether there was a pattern of compartment 
status could reflect FGSCs’ property. We used K-means 
method to cluster the PC1 value of compartment status of 
all cell types examined for characterizing FGSCs’ property. 
The result showed compartment status could be divided two 
cluster: FGSC activation compartments and FGSC repres-
sion compartments (Fig. 3c), indicating the compartment A 
and B only present in FGSCs. Gene Ontology (GO) analysis 
of the genes with changed compartment status in FGSCs 
showed that it was particularly associated with stem cell 
population maintenance and cell proliferation (Fig. 3d), 
suggesting that FGSC activation compartments were highly 
related with FGSCs’ biological property.
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We next identified TADs in FGSCs using the direction 
index (DI) (Suppl. Table S3). Well-defined TADs were occu-
pied in ~ 90% of the genome across cell types (Suppl. Figure 
S2D). According to the proportion of overlapping TADs 
compared with FGSCs, we classified the TADs into five 
types: stable, merged, split, reorganized, and unique (Fig. 3e). 
In which, two or more TADs in a stage fused into one TAD 
was defined as “merge”; one TAD divided into two or more 
TADs was defined as ‘split’; and a TAD was unique in cells 
was defined as ‘unique’. In addition to the merge, split, and 
unique TADs, a proportion of overlapping TADs > 0.70 
was defined this as ‘stable’, and other TADs were defined 
as ‘reorganized’. We found most TADs were the stable type 
(Fig. 3f), which suggested that the TAD structure was highly 
stable across all five types of cells in accordance with a pre-
vious report [38]. Taken together, our data indicated that the 
compartment status was more characteristic than TADs and 
represented the features of cells across the five cell types.

Active compartment‑associating loops (aCALs) 
reveal the FGSC signature

To systematically identify FGSC-specific functional chro-
matin loops using Juicer [19], we first identified 3332, 
1064, 6031, 2941, and 5280 chromatin loops in FGSCs, 
SSCs, NSCs, iPSCs and STO cells, respectively (Suppl. 
Figure S3A,B). Next, we found that 3874, 1383, 5924, 
3091, and 5031 genes in FGSCs, SSCs, NSCs, iPSCs and 
STO cells, respectively, were located in chromatin loops. 
Using a Venn diagram, we observed that 392 genes were 
shared across all cell types (cell type-shared loops) (Suppl. 
Figure S3C), which suggested that chromatin loops varied 
greatly among each cell type. To identify FGSC-specific 
chromatin loops, we further analyzed the data above. The 
results demonstrated that genes, which had formed chro-
matin loops located in compartments, had higher expres-
sion than in compartment boundaries and the compartment 
genes without chromatin loops forming in FGSCs (Fig. 4a). 
This suggested that the chromatin state-mediated compart-
ment may contribute to gene regulation of chromatin loops. 
Further analysis of the expression of genes formed chroma-
tin loops located in compartments showed they had high-
est expression in FGSCs compared with other type of cells 
(Fig. 4b), suggesting those specific loops were related with 
FGSCs. These specific loops were termed as compartment-
associating loops (CALs). We found that expression of genes 
and the PC1 score in CALs were higher than those out of 
CALs in FGSCs (Fig. 4c, d). In addition, the CALs were 
not related to the chromatin length, gene density, or TAD 
density (Suppl. Figure S4). Subsequently, by measuring the 
number of genes located in CALs per 1Mbp, we observed 
that the distribution of gene number of CALs was not cor-
related with PC1 (Fig. 4e), which was not biased to A or 

B compartment status. Interestingly, most of CALs (about 
96%) were located in TADs, but the expression of genes in 
CALs were higher than in TADs (Suppl. Figure S5A). When 
we divided the CALs into active (aCALs) and repressed 
CALs in accordance with the previously identified FGSC 
activation and repression compartment statuses, we found 
1818 and 1262 genes located in aCALs and repressed CALs, 
respectively (Suppl. Figure S5B). By comparison with other 
cell types, we found aCALs were mostly specific to FGSCs 
(Suppl. Figure S5C). The genes located in aCALs were 
highly expressed in FGSCs compared with other cell types 
(Suppl. Figure S5D). GO analysis showed that the genes 
in aCALs were highly involved in female sex differentia-
tion, female gonad development, and stem cell population 
maintenance, while genes in repressed CALs were related 
to male sex determination, embryonic organ development, 
and tissue morphogenesis (Fig. 4f). Those results indicated 
that the aCALs could be potentially the signature of FGSCs.

CTCF is a potentially important factor in regulating 
aCALs of FGSCs

To further investigate the factor involved in regulation of 
the chromatin architecture in FGSCs, we performed motif 
analysis of aCALs. As a result, the top motifs within aCAL 
regions matched the CTCF motifs (Fig. 5a), which suggested 
that CTCF may be an important factor involved in regulation 
of aCALs in FGSCs. Next, we performed ChIP-seq of CTCF 
in FGSCs and found that ~ 86% of aCALs significantly 
overlapped with CTCF-binding sites (Suppl. Figure S6A, 
Fisher’s test p < 2.2e−16), which also suggested that CTCF 
plays a major role in the regulation of aCALs. Moreover, we 
observed that CTCF was enriched in the A compartment in 
FGSCs (Fig. 5b), which was in line with aCALs. By com-
paring the number of CTCF peaks between A and B com-
partments in FGSCs and  iPSCs48, we found that CTCF was 
specifically enriched in the A compartment of FGSCs and 
not in iPSCs (Fig. 5c, Suppl. Figure S6B), which suggested 
specific enrichment of CTCF in the A compartment was 
FGSC and not in iPSCs. Furthermore, we found that genes 
located in aCALs had higher enrichment of CTCF than those 
out of aCALs (Fig. 5d). H3K4me3 and H3K27ac were also 
more enriched in the promoters of genes located in aCALs 
than in those out of aCALs (Suppl. Figure S6C), which sug-
gested activation of more genes in aCALs. Subsequently, we 
identified 1566 overlapped genes between the CTCF-binding 
region and aCALs termed as CTCF-related aCAL genes. 
Indeed, RNA-seq results showed that CTCF-related aCAL 
genes had the highest expression among genes in and out 
of aCALs (Fig. 5e). Moreover, those CTCF-related aCALs 
genes had highest expression in FGSCs compared with other 
cell types, confirmed that those genes were related with 
FGSCs (Fig. 5f). GO analysis showed that the genes were 
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involved in stem cell population maintenance, reproduc-
tive structure development and female gonad development 
(Fig. 5g). Taken together, our data indicated that CTCF was 
a potentially important factor in regulating aCALs of FGSCs 
and possibly involved in FGSC development.

CTCF maintains the biological functions of FGSCs

To determine whether CTCF was implicated in the biologi-
cal functions of FGSCs, we performed CTCF knockdown 
assays in FGSCs using short hairpin RNA (shRNA) tech-
nology (Suppl. Figure S7A). After CTCF knockdown in 
FGSCs, we observed that the size of FGSCs was obviously 
larger and the proliferative capacity of FGSCs was reduced 
significantly compared with the control (Fig. 6a–c). Further-
more, EdU incorporation assays demonstrated that the pro-
portion of EdU-positive cells was significantly decreased in 

the shCTCF group compared with the control (Fig. 6d). To 
clarify the reason why cells viability had declined and the 
size of FGSCs was larger after shCTCF treatment, we meas-
ured the expression of meiotic kinetochore factor (Meikin) 
and PR domain zinc finger protein 9 (Prdm9), which are 
differentiation related-genes of germline stem cells, by qRT-
PCR. Significant differences were found between the control 
and CTCF knockdown group (Fig. 6e). CTCF knockdown 
inhibited FGSC proliferation and induced FGSC differentia-
tion. Next, RNA-seq data were generated from the CTCF 
knockdown group, which identified 2255 upregulated genes 
and 3321 downregulated genes (Fig. 6f). Notably, downreg-
ulated genes were enriched for stem cell population mainte-
nance and mitotic sister chromatid segregation, while upreg-
ulated genes were related to stem cell differentiation and 
female gonad development (Fig. 6g). The expression of heat 
shock protein family A member 1B (Hspa1b), membrane 
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anchored junction protein (Majin), and Notch receptor 2 
(Notch2), which are differentiation or proliferation related-
genes of germline stem cells, was measured by qRT-PCR 
to validate the RNA-seq data (Suppl. Figure S7B). Among 
them, 486 genes of CTCF-related aCALs showed signifi-
cantly different expression between CTCF knockdown 
and control groups, in which 224 genes were up-regulated 
and 262 genes were down-regulated in CTCF knockdown 
group (Suppl. Figure S7C). GO analyses showed that they 
were related to stem cell development and female gonad 
development (Suppl. Figure S7D), which is consistent with 
our previous findings that CTCF-related aCAL genes may 
have a dominant role in FGSC development. In summary, 
these results indicated that CTCF might maintain the bio-
logical functions of FGSCs through regulation of chromatin 
organization.

CTCF is required to maintain the high‑order 
chromatin structure of FGSCs

To explore whether CTCF affected the high-order chromatin 
structure of FGSCs, a Hi-C experiment was implemented for 
the CTCF knockdown group (Suppl. Table S4). We observed 
the change of TADs and A/B compartments between the 
CTCF knockdown group and control (Fig. 7a). Globally, we 
calculated the proportion of interactions of less than 20, 40, 
80, 100, or 120 kb versus total cis-interactions. The relative 
proportions of cis-short interactions were decreased in the 
CTCF knockdown group, which recovered with the distance 
of interactions (Fig. 7b, Suppl. Figure S8A), suggesting that 
CTCF was implicated in short interactions such as chromatin 
loops and TADs. The numbers of TADs in the CTCF knock-
down group were reduced compared with the control (Suppl. 
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Figure S8B). Furthermore, we found the high-order chromatin 
organization of CTCF knockdown group was closer to iPSCs 
and STOs (Fig. 7c), indicating that CTCF play an important 
role of maintaining the chromatin architecture of FGSCs.

To systematically evaluate the phenotype of CTCF in the 
high-order chromatin structure of FGSCs, we compared the 
Hi-C data between CTCF knockdown and control groups. 
TAD signals demonstrated that the CTCF knockdown group 
had significantly reduced strength of TADs compared with the 
control (Fig. 7d). A global change of the compartment status 
showed that the proportion of the A compartment was increased 
in the CTCF knockdown group (Fig. 7e). When compared with 
FGSC activation and repression compartments, we observed 
that some activation compartments had switched to repression 
in the CTCF knockdown group and vice versa (Suppl. Figure 

S8C). Genes located in the switching compartment tended to 
exhibit differential expression compared with the stable com-
partments (Suppl. Figure S8D). Importantly, CTCF knockdown 
dramatically reduced the number of chromatin loops, which had 
loss of about 95% of chromatin loops (Suppl. Figure S8E). GO 
analysis of genes in the eliminated chromatin loops showed they 
were also involved in female development and stem cell popula-
tion maintenance (Suppl. Figure S8F). Moreover, 1707 genes of 
aCALs did not form chromatin loops in the CTCF knockdown 
group, which included 1480 genes of CTCF-related aCALs 
(Suppl. Figure S9A). Combined with RNA-seq data, we finally 
identified 466 genes of CTCF-related aCALs, in which 212 
genes were up-regulated and 254 genes were down-regulated in 
CTCF knockdown group (Suppl. Figure S9B, C). Among them, 
Notch2 showed higher expression than in the CTCF knockdown 
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group in which it lost formation of the chromatin loop (Fig. 7f). 
These results indicated those genes were regulated by the for-
mation of CTCF-mediated chromatin loops. Further analysis 
of enrichment of Gene Ontology showed that these genes were 
related to female development (Fig. 7g), which is consistent 
with previous findings. Taken together, these findings indicated 
that CTCF played an important role to maintain the high-order 
chromatin structure in FGSCs.

Discussion

Stem cells, which include pluripotent stem cells (ESCs and 
iPSCs) and ASCs, have important implications in basic 
biology and regenerative medicine. Our previous studies 

have shown that FGSCs exist in postnatal ovarian tissues 
of mice, rats, humans, and pigs [2,  4–6, 49]. As a novel 
ASC, FGSC had potential applications in biotechnology 
and medicine. Therefore, their isolation from adult ovaries, 
long-term culture, and regulation of self-renewal and dif-
ferentiation have gained a great deal of interest in stem cell 
biology and reproductive medicine [2, 4–6, 50–52]. Zou 
et al. showed that long-term-cultured FGSCs from adult 
mammals differentiate into oocytes after transplantation 
in vivo and play an important role in maintaining female 
fertility [2]. White et al. isolated human FGSCs from adult 
ovaries and maintained long-term cultures of these cells 
[4]. Wu et al. characterized and traced the development 
of transplanted FGSCs of long-term culture in vivo [3]. 
By integrative epigenomic analysis, unique epigenetic 
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signatures involved in unipotency of FGSCs have been 
revealed [32]. However, the regulatory mechanism of the 
FGSC signature based on the high-order chromatin struc-
ture remains to be explored.

To identify the chromosome structure characteristics of 
FGSCs, we compared FGSCs with pluripotent stem cells 
(iPSCs), ASCs (SSCs and NSCs), and somatic cells (STO 
cells) by Hi-C technology. The results revealed that FGSCs 
had a distinct high-order genome structure in terms of the 
A/B compartment status, chromatin loops, and TADs. For 
further characterization, we identified FGSC-specific acti-
vated and repressed compartment regions, and identified 
some genes that were highly related to the switch of the 
FGSC compartment status. These genes were related to 
stem cell maintenance and differentiation pathways, which 
strongly supports the role of FGSCs as ASCs with some 
shared characteristics with SSCs and NSCs. This sug-
gests that the compartment status was highly specific to 
the cells. However, the further analysis of TADs showed 
that they were stable across stem cells, while chromatin 
loops analysis demonstrated that there were less shared 
chromatin loops, which indicated that chromatin loops 
may be another feature of the 3D chromatin structure. 
Hence, we propose that the regulation of the 3D chroma-
tin architecture is not at a single level. By the combina-
tion of the distinct compartments and chromatin loops in 
FGSCs, we finally identified aCALs and repressed CALs 
in FGSCs. The results of GO analysis showed that the 
genes of aCALs were involved in female development and 
stem cell development, which suggested that these aCALs 
were features of FGSCs and consistent with FGSC biol-
ogy. Our data indicated that the characteristics of FGSCs 
were regulated by cooperation through multiple levels of 
the high-order chromatin structure, such as the compart-
ment status and chromatin loops, which has revealed the 
features of the 3D chromatin architecture.

By further exploring these specific chromatin loops, 
CTCF was identified as an important factor to regulate 
these features. Thus, we knocked down CTCF and found that 
CTCF knockdown inhibited FGSC proliferation and induced 
differentiation. Combined with RNA-seq and Hi-C results, 
we also found that the CTCF knockdown group lost most 
of the specific chromatin loops in which genes that did not 
form chromatin loops were enriched in female development. 
These findings not only revealed that CTCF is involved in 
maintaining the properties of FGSCs through regulating 
the high-order chromatin structure, but also suggested that 
FGSC development in vitro can be used to study female 
germline cell development.

Previous researches reported CTCF shaped the chro-
matin structure accompanied with cohesin complex [20, 
53–55]. It raised a question whether cohesion complex is 
related with the maintenance of FGSCs. Several lines of 

evidence showed that cohesion complex was involved in 
the development of germline cells and stem cells. First, it 
is reported that cohesion complex played important role in 
meiosis process [56–58], which disruption of cohesion com-
plex led to sterile in mouse. Secondly, cohesion complex 
is necessary for the maintenance of self-renewal genes in 
stem cells [59], which depletion of cohesin led to the abol-
ishment of enhancer–promoter stabilization of self-renewal 
genes. Moreover, it is reported that cohesion complex not 
only maintain the self-renewal, but also can block the dif-
ferentiation in epidermal progenitor cells and intestinal stem 
cells [60, 61]. Last but most important, we found the expres-
sion of subunit of cohesin complex (SMC1a, SMC3, Rad21) 
was down-regulated in knock down CTCF FGSCs, suggest-
ing that there was relationship between CTCF and cohesin 
complex. These findings suggested that cohesin complex is 
a potential factor to maintain the FGSCs in conjunction with 
CTCF.

Conclusion

In conclusion, we present a comprehensive overview of the 
chromatin organization in FGSCs to create a rich resource 
for genome-wide maps. Our findings revealed that the chro-
matin architecture of FGSCs included a unique compartment 
status and chromatin loops, especially aCALs, which may 
contribute to their cell type-specific gene regulation. Fur-
thermore, CTCF was identified to play an important role in 
maintaining the biological functions of FGSCs by regulat-
ing the chromatin organization. These data provide a valu-
able resource for future studies of the features of chromatin 
organization in mammalian stem cells and further under-
standing of the fundamental features of FGSCs.
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