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Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell–matrix interactions, cell adhesion, and anchorage-
dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with 
integrins, then facilitating further protein recruitment within the ILK–PINCH–Parvin complex. ILK is involved in crucial 
cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects 
on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dys-
function of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK 
localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK 
but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, 
its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of 
signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial 
domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of 
functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, 
protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but 
the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present 
an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies 
regarding ILK, finishing with pointing out some open questions to be resolved by further research.
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MYPT1  Myosin phosphatase target subunit 1
NF-κB  Nuclear factor-kappa B
PAK1  P21-activated kinase 1
PIP3  Phosphatidylinositol (3,4,5)-trisphosphate
PI3K  Phosphoinositide 3-kinase
PINCH  Particularly interesting cys-his-rich protein
PTMs  Post-translational modifications
RA  Reticular adhesion
Cdc42  Cell division control protein 42 homolog
SMC  Smooth muscle cell
VEGF  Vascular endothelial growth factor
TGF-β1  (Transforming Growth Factor β1)
UTR   Untranslated region

Introduction

Following its discovery in 1996 by Hannigan and colleagues, 
Integrin-linked kinase (ILK) emerged as a receptor–proximal 
protein kinase and a new molecular actor in cell adhesion 
and anchorage-dependent cell growth [1]. Although ILK was 
initially described as a serine/threonine–protein kinase, there 
had still been considerable controversy surrounding the issue 
of the exact molecular mechanism of signal transduction 
by ILK [2] until it was proven that ILK is a pseudokinase 
[3]. It has been primarily detected at focal adhesion (FA) 
sites [4], confirmed by co-localization with focal adhesion 
markers like vinculin and paxillin [5]. Subsequently, associa-
tion with its specific binding partners, such as particularly 
interesting cys-his-rich protein (PINCH) [4] and β-Parvin [6, 
7] within FAs has been revealed. ILK combines functions 
of a signal transductor and a scaffold protein by interact-
ing with the cytoplasmic domains of the β1 and β3 subu-
nits of integrin receptors, then facilitating further protein 
recruitment within the ILK–PINCH–Parvin complex (IPP) 
[8–11]. The IPP complex orchestrates bidirectional signaling 
between the extracellular matrix (ECM) and intracellular 
compartments [8]. Thus, it takes part in the regulation of 
cells’ shape, migration, survival, differentiation, and gene 
expression. Involvement in those processes, coupled with 
its crucial role in epithelial–mesenchymal transition (EMT), 
invasion, and angiogenesis, indicated ILK as an attractive 
target for tumor treatment. Essentially, upregulation of ILK 
expression has been reported in human malignancies, being 
associated with poor prognosis of patients’ survival; thus, 
emphasizing its role in cancer diagnosis and prognosis. In 
physiological conditions, ILK is also involved in develop-
mental processes both on the cellular [12] and embryonic 
level [13–16]. Going further, the implication of ILK in aging 
processes has been suggested as well [17]. Also, the crucial 
role of ILK in the cardiovascular system has been reported, 
particularly in processes of neovascularization and cardio-
myogenesis [18–20], which is additionally supported by the 

fact that mutations in the ILK gene may be linked with car-
diomyopathy in humans [21, 22]. Knockout experiments on 
Caenorhabditis elegans, Drosophila melanogaster, Xenopus 
laevis, and Mus musculus have revealed embryonic lethality 
linked to adhesive and migratory defects [13, 15, 23, 24]. All 
those functions of ILK are controlled through a myriad of 
signaling pathways including phosphoinositide 3-kinases/
protein kinase B (PI3K/Akt) [25], mammalian target of rapa-
mycin (mTOR) [26], nuclear factor-kappa B (NF-κB) [27, 
28], glycogen synthase kinase 3-beta (GSK3-β) [29–31], cell 
division control protein 42 homolog (Rac/Cdc42) [32–36], 
snail1/E-cadherin [37–39], and others [11, 40, 41].

Although ILK has received much attention over the last 
two decades, some areas of our knowledge, for example, its 
isoforms, subcellular localization, nuclear shuttling, have 
been overlooked in previous reviews, while views on other 
issues—such as structure and presumed kinase activity have 
been dynamically evolving throughout the time. Variety 
of contradictory findings and opinions leave some crucial 
pieces of our knowledge controversial or yet unestablished, 
creating space for hypotheses still awaiting further clarifica-
tion in upcoming research. The first step to a possible break-
through would be an unbiased summary of cross-sectional 
knowledge and past-to-present beliefs. Responding to these 
needs, our review sheds new light on integrin-linked kinase 
in an extensive literature survey covering a broad spectrum 
of latest findings, including references to already released 
reviews, then points out some open questions to be resolved 
by further research. We want to stress that we cover only 
briefly areas, on which there are splendid reviews, which 
we list in this review.

Genomic localization, transcripts, 
and isoforms of ILK

The chromosomal position of the gene encoding ILK has 
been localized to 11p15.5-p15.4 [42]. There are five tran-
scription variants of this gene, encoding three isoforms 
(Fig. 1). Variants 1, 2, and 3 encode the same isoform 1, 
namely ILK1 (51 kDa)—most widely described in the litera-
ture, thus selected as canonical. Variant 1 is the primary one, 
while two other variants differ in coding or processing the 
5’UTR regions [43, 44]. Two remaining isoforms are shorter 
than the canonical sequence of ILK1, each encoded by one 
corresponding transcript. Hence, variant 4, lacking two 
alternate exons in the coding region, causing a frameshift, 
is translated as Isoform 2 (44 kDa). As a result, the ILK2 
protein lacks a fragment covering a domain resembling the 
pleckstrin homology (PH) domain, as well as part of the 
ankyrin repeat domain (ARD), including the Threonine 
173 phosphorylation site (for graphic representation of the 
structural composition of ILK see Fig. 2). Instead of this 
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fragment, 28 different amino acids are inserted. Finally, Var-
iant 5, lacking an exon within the 5′ coding region, under-
goes alternative splicing in the 5′ UTR, and its translation 
is initiated at a downstream in-frame start codon, produc-
ing isoform 3 (36 kDa), which has shorter N-terminus, as 
compared to isoform 1 [44–46]. According to the UniProt 
database, all three isoforms exist on a protein level. Tak-
ing advantage of resolved structures of N- and C-terminal 
parts of ILK and using appropriate software, we generated 
complete structural representations of ILK1 and the other 
two ILK isoforms (Fig. 1B). In the case of ILK2 and ILK3, 

the ARD disappears, suggesting that these isoforms could 
not bind PINCH1 (for the binding interface of ILK:PINCH1 
complex, please see Fig. 3A, C, D). Moreover, the kinase 
domain (KD) seems to be reorganized as well; thus, ILKs 
interaction with α-Parvin could also be distorted (for the 
binding interface of ILK:α-Parvin complex, please see 
Fig. 3B–D).  

Despite the awareness of the presence of ILK isoforms, 
most studies tend to focus on ILK1, failing to distinguish 
the unique characteristics of others. That might result from 
the specifity of used antibodies. For instance, antibodies 

Fig. 1  Schematic representation of ILK isoforms (A) and cartoon 
prediction of their quaternary structures (B). A This figure was pre-
pared based on data available elsewhere [44, 47]. Accession numbers 
are referenced to Gene and Protein sections of the NCBI database. 
UniProt entries are as follows: ILK1—Q13418-1, ILK2—Q13418-2 
and ILK3—Q13418-3. Sequences of isoforms 2 and 3 are com-
pared to canonical isoform 1. The red dotted line indicates missing 
fragments of the sequence, while the green box inserted sequence. 
For the sake of orientation which domains are missing in ILK2 and 
ILK3 on the schematic representation of ILK1, there are marked fol-
lowing domains: ANK—Ankyrin repeat, PH—pleckstrin homology-

like domain, and kinase domain (KD). B Cartoon representation 
of predicted quaternary structures of ILK isoforms. Predicted 3-D 
projections of full-length ILK1, ILK2, and ILK3. ILK1 representa-
tion was based on PDB entries #3REP and #4HI9. ILK2 representa-
tion is based on PDB entry #3REP.1.A., while ILK3 representation 
is based on PDB entry #6mib.1. Predictions were prepared based on 
the above structures, which were next merged and modified in Swiss-
PdbViewer (aka DeepView) [48] desktop with ILKs alpha-model 
generated in Swiss Model online tool software, and finally rendered 
in POV-Ray 3.7.0 (Persistence of Vision Raytracer Pty. Ltd)
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directed against N-terminus of ILK1 will not detect ILK3. 
The same situation might be valid for ILK2 while using anti-
bodies recognizing the central part of the ILK moiety. For 
example, one of the antibodies against ILK (HPA048437, 
Merck) is directed against residues from 118 to 241 of ILK1, 
which overlap with the long fragment of ILK3 (107 out of 
124 residues, 86% of the immunogen) and barely 37 residues 
of ILK2 (29% of the immunogen). Henceforward, those anti-
bodies shall also recognize ILK3 and probably have no or 
low affinity to ILK2.

To the best of our knowledge, only one research article 
addressed the issue of different functional characteristics of 
ILK1 and ILK2. Level of ILK2 occurred to be regulated in a 
TGF-β1 (Transforming Growth Factor β1)-dependent manner, 
exclusively in a highly invasive melanoma cell line but not in 
normal adult tissues [52, 53]. On the other hand, it was noted 
that ILK1 is ubiquitously expressed in normal tissues, but also 
upregulated in various malignancies, independently of TGF-β1 
stimulation [43]. Concluding from the structural differences 

within essential domains described for ILKs isoforms, their 
functional properties are likely to vary. Considering the com-
plexity of ILKs interactome, taken together with the current 
gap in knowledge on the role of particular isoforms in those 
processes, further exploration of the functional differences 
between those is one of the most intriguing issues for further 
research.

Despite some recent controversy on the role of alternative 
splicing [54], past-to-present literature provides a plethora 
of evidence of differential functions of proteins’ splice vari-
ants or isoforms, mainly investigated in the matter of cellular 
pathology, including carcinogenesis (for details, see general 
reviews [55, 56] or those written on examples of specific pro-
teins [57–59]), but in nonpathological conditions as well (for 
instance gelsolin, addressed in [60, 61]). Thus, studies on dif-
ferent ILK isoforms might bring new exciting data. Due to the 
lack of recognition between the ILK isoforms in most of the 
existing studies, if not stated otherwise, henceforth, it will be 
spoken exclusively of ILK1.

Fig. 2  Modular distribution of functional regions, post-translational 
modifications (PTMs) and domains of integrin-linked kinase. Only 
the regions to which ILK’s most critical molecular partners bind are 
marked here. For exact sources (references) of the data on domain 
localization, see the text of chapter  4. Phosphorylation sites were 
taken from PhosphoSitePlus, a database of mammalian post-transla-
tional modifications (PTMs), including phosphor (P)-, acetyl (A)- and 

methyl (M)-groups as well as Ubiquitin (U) and SUMO (S) modifica-
tions. Over 95% of the sites were confirmed by Mass Spectrometry 
(MS) experiments. Early MS data have been reanalyzed for data reli-
ability improvement, applying a common standard of analysis across 
over 1 000 000 spectra [49, 50]. ATP binding sites were taken from 
[51]
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Regulation of ILK level and activity

Regulation of ILK expression level

The ILK gene shares some characteristic features of house-
keeping genes such as TATA-less and GC-rich promoter 
region with plenty of motifs capable of binding transcription 
factors, such as AP-2, Sp1, and NF-κβ [43]. Still, the exact 
characteristics of transcription factors regulating ILK expres-
sion are far from understanding. However, an increasing 
number of studies have proven that regulation of ILK expres-
sion depends on Sp1 protein level and Sp1 DNA-binding 
activity in the ILK promoter [62, 63]. Conversely, increased 
expression of AP-2α is correlated with the downregulation 
of ILK expression [64]. Furthermore, Sp1 and AP-2α have 

been demonstrated to act synergistically in the regulation of 
ILK promoter [64]. Integrin αVβ3 might be associated with 
positive regulation of promoter activity either through Sp1 
[63] or involving the binding of Ets-1 to the ILKs second Ets 
DNA motif [65, 66]. Lastly, hypoxic conditions have been 
proven to upregulate ILK expression through HIF-α action 
[67, 68]. In summary, various transcription factors can reg-
ulate ILK expression. Further deciphering their interplay 
would be relevant, especially in the context of malignancies.

Regulation of mRNA level by miRNAs

The ILK gene expression has also been proved to be sup-
pressed by miRNAs through binding to ILKs mRNA 
3′-UTR. Such inhibition has been confirmed for miR-542-3p 

Fig. 3  Cartoon representation of quaternary structures of 
ILK:PINCH1, ILK:α-Parvin and IPP  complexes. A ILKs ankyrin 
repeats region (residues 1–174) in complex with PINCH1 (residues 
10–72). Resolution: 1.2 Å; PDB #4HI9. B Region containing the cat-
alytic domain of ILK (residues 182–454) in complex with α-Parvin 
(residues 243–372). Resolution: 1.8  Å; PDB #3REP. C and D Pre-

dicted 3-D projections of full-length ILK with its ligands. Predic-
tions were prepared based on the above structures, which were as 
next merged and modified in Swiss-PdbViewer (aka DeepView) [48] 
desktop with ILKs alpha-model generated in Swiss Model online 
tool software, and finally rendered in POV-Ray 3.7.0 (Persistence of 
Vision Raytracer Pty. Ltd)
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in oral squamous cell carcinoma cells [69] and gastric ade-
nocarcinoma cells [70]. Similar repression of ILK expression 
has been described through miR-625, which was linked to 
ameliorating lymphatic metastasis in human gastric cancer 
cells both in vitro and in vivo [71]. Another report indicates 
that ILK migt be downregulated by synergistic interaction 
of miR-145 and miR-143, projecting on inhibiting growth 
of bladder cancer cells [72].

Control of ILKs level and its activity 
by post‑transcriptional modifications (PTMs)

High-throughput mass spectrometry data reported several 
dozen post-translational modifications (PTMs) of ILK, 
including phosphorylation, acetylation, ubiquitylation, 
SUMOylation, and methylation. However, their exact func-
tions are predominantly yet to be clarified [49, 50]. Many 
phosphorylation sites have been in focus of the proteomic as 
well functional research, among which Serine 246, Threo-
nine 173, Threonine 181, Serine 259, and Serine 343 have 
been gaining the most attention. Further progress on this 
topic might be expected since dedicated antibodies for 
detecting some of those sites are currently available. How-
ever, experimental verification of those antibodies is still 
awaited. To date, there is just one approach in the literature 
validating their application, although not on appropriately 
mutated versions of ILK [73]. Early reports have suggested 
Serine 343 of ILK to be the target of autophosphorylation 
[74]. It was further evaluated that this amino acid residue 
is essential for following phosphorylation of ILKs down-
stream targets and its putative interaction with PKB/Akt [25, 
74]. The majority of physiological processes regulated by 
ILK have been found to overlap with those controlled by 
p21-activated kinase 1 (PAK1), suggesting a crucial role 
of ILKs phosphorylation by PAK1 in its functions [75]. An 
essential role in the negative regulation of ILKs activity 
is played by phosphatases, such as ILK-associated protein 
(ILKAP) [76] or phosphatase and tensin homolog deleted 
on chromosome 10 (PTEN) [77]. Together with Chromo-
somal Maintenance 1 (CRM1), also known as Exportin 1, 
ILKAP is also implicated in the nucleo-cytoplasmic shut-
tling of ILK, facilitating its export to the cytoplasm. Stud-
ies suggest that ILK is imported into the nucleus through 
the N-terminal nuclear localization sequence (Fig. 2) via 
active transport mechanisms involving nuclear pore com-
plexes [69]. Mapping studies of the ILK sequence suggest 
that the first 192 N-terminal residues are crucial for induc-
tion of the nuclear localization. At the same time, the 52 
amino acid long fragment on its C-terminus is pivotal in 
triggering ILKAP-induced nuclear export [69, 75]. Going 
further, the nuclear export of ILK is also dependent on phos-
phorylation of its Threonine 173 and Serine 246 residues 
by PAK1, which was confirmed both in vitro and in vivo 

[75]. Investigation of pathways involved in axon guidance 
revealed that phosphorylation of Threonine 173 and Threo-
nine 181 occurs through protein kinase Cα (PKCα) [70].

Interestingly, ubiquitylation of ILK has been reported 
to be involved in the regulation of its degradation, both 
through the endocytic–lysosomal pathway and proteasomal 
pathway. Indeed, to our best knowledge, there are 14 known 
ubiquitylation sites of ILK [49, 50] (Fig. 2), but the cur-
rent literature lacks evaluation of exact functions for each 
of them. An essential role in those processes is played by 
Hsp90, which is not only required for formation and stability 
of ILK complexes, but also is crucial for the regulation of 
ILKs degradation pathways. Inhibition of Hsp90 promotes 
ILK ubiquitylation by the E3 ubiquitin ligase C terminus of 
HSC70-interacting protein (CHIP), which triggers the deg-
radation of ILK in a proteasome [71]. Furthermore, another 
report suggests that ubiquitylation of ILK preceded specifi-
cally by induction by nitric oxide might lead alternatively 
to the degradation of ILK exclusively through the endo-
cytic–lysosomal pathway [72].

Taken together, the current knowledge on the multilevel 
regulation of ILK leaves much to explore in further research. 
New protein–protein interactions are awaiting discovery, and 
potential crosstalk between each level of regulation shall be 
taken into account in a broader perspective. That may even-
tually lead to the clarification of ILK’s exact mechanisms of 
action, which would explain, e.g., its (apparently nondirect) 
involvement in phosphorylation of downstream targets. For 
the sake of such studies, validated antibodies recognizing 
modified by PTMs ILK, and constructs coding for appropri-
ately mutated ILK versions would be highly relevant. The 
issue of being by ILK a pseudokinase is addressed in the 
next chapter.

Other ways of ILKs action modulation

Regulation of ILK functioning evaluated as phosphorylation 
of downstream targets also undergoes through well soluble 
mediators, including growth factors and chemokines [28, 
78–82]. ILK might function here via, e.g., interaction with 
other molecules possessing catalytic functions or direct 
recruitment of kinases phosphorylating downstream targets, 
but somewhat less likely as a kinase.

Molecular architecture of ILK

Initial analysis of the ILK sequence, comprised of 452 
amino  acids, distinguished N-terminal ankyrin repeat 
domain (ARD) containing four ankyrin repeats linked with 
a C-terminal kinase domain (KD) by a PH-like domain [43]. 
Further crystallography studies of the 192-amino-acid-long 
N-terminus of ILK in complex with the LIM1 domain of 
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human PINCH1 revealed that the ARD domain includes five 
ankyrin repeats (ANK 1–5) (Figs. 2 and 3). Each consists 
of a pair of antiparallel α-helices separated by a short loop 
and packed against one another. The interior region of the 
superhelical spiral created with these stacked repeats forms 
an “ankyrin groove” that facilitates the interaction with 
PINCH1 [83].

Docking of ILK to focal adhesion (FA) by interaction 
with other proteins

Early studies showed that deletion of ANK1 preventing 
PINCH from binding to ILK abolishes, in turn, the docking 
of ILK to FAs [4]. Going further, the fourth LIM domain 
of PINCH facilitates interaction with Nck-2, enabling the 
formation of a complex between ILK and Nck-2 and there-
fore create a physical link between the integrin-mediated 
ILK signaling pathway and growth factor-mediated or small 
GTPase-mediated signaling pathways [84].

Initial studies indicated that the presumable PH 
domain binds phosphatidylinositol-3,4,5-trisphosphate 
(PtdIns(3,4,5)P3)  (PIP3) [78, 85]. This domain indeed 
shares sequence homology with other PH domain-con-
taining proteins such as cytohesin-1 and general receptor 
for phosphoinositides 1 (GRP1) capable of binding  PIP3 
[78]. However, the subsequent structural analysis excluded 
the possibility of interaction between  PIP3 and ILK. It is 
now believed that the PH-like domain is an integral part 
of the P loop of the KD of ILK, and between the N-ter-
minal ILK ARD and C-terminal KD, there is a 14-resi-
due linker domain that is either unstructured or partially 
structured [86]. The KD is engaged in ILKs interaction 
with three Parvin isoforms: α-Parvin, β-Parvin (affixin), 
and γ-Parvin [3, 6, 87, 88] through a conservative CH2 
(calponin homology) domain present in Parvin structure, 
which takes part in targeting of the IPP complex to FA sites 
[3, 7]. Recruitment of preassembled IPP to FAs is depend-
ent on KD, which requires stabilization by binding to the 
chaperone Hsp90 because of its inherently unstable con-
formation [89]. The interaction of KD with Hsp90 seems 
to enhance the interaction between ILK and Parvin, stabi-
lizing the KD’s conformation [71, 90]. All components of 
the IPP complex, especially ILK and PINCH are mutually 
dependent on each other not only in the complex formation 
but also in the maintenance of their protein level, which 
is regulated by degradation in proteasomes in the case of 
depletion of one of them [91]. Referring to Pichlo and Wick-
ström, unpublished work, this degradation seems to occur 
independently of CHIP E3 ligase activity [11], and the exact 
mechanisms of IPP complex turnover are still to be clarified 
by further studies. In Fig. 3A, B, there are shown structures 
of ILK (ANK1-5):PINCH1 (10–72) and ILK (KD):α-Parvin 
(243–372) complexes based on the crystallographic data. 

Taking advantage of that data and appropriate software, we 
generated a structural representation of the IPP complex 
(Fig. 3C).

A short motif located within the KD, responsible for 
binding Leucine-rich (LD) sequences of ILKs molecular 
partners, facilitates interaction with paxillin, which takes 
part in the targeting of ILK to FAs [5]. That interaction is 
crucial for the regulation of actin cytoskeleton functions 
since paxillin LD motifs enable the interplay of paxillin 
with proteins, such as focal adhesion kinase (FAK), vincu-
lin, Arf-GAP (GTPase-activating protein), paxillin-kinase 
linker (PKL), and the actin-binding protein actopaxin [5]. 
Apart from the LD motif, paxillin also contains the LIM 
domain at its C-terminus, which is crucial for its localiza-
tion to FAs and facilitates interaction with cytoskeletal com-
ponents, such as tyrosine–protein phosphatase nonreceptor 
type 12 (PTP-PEST) and tubulin [92].

One of the main functional properties of ILK relies on 
the end of its C-terminal domain, facilitating the binding 
to cytoplasmic domains of β1 [1] and β3 integrins [1, 9] 
(Fig. 2). It was hypothesized to play a role in the recruit-
ment of ILK to FAs [1]. However, molecular details of this 
interaction still await clarification. Fukuda with colleagues 
showed that ILK directly binds cytoplasmic tails (CT) of 
integrins β1 and β3, but without revealing which amino acids 
are involved in that process [3]. Interestingly, a recent study 
implementing conservation-guided mapping has shown a 
previously unknown binding site for kindlin-2 on the C-lobe 
of the KD of ILK, which might shed light on this topic. It 
was further evaluated that interaction between ILK and kind-
lin-2 is pivotal for cell spreading and localization of both 
proteins at a FA site, representing a fundamental signaling 
axis downstream of integrins [93]. Regions of ILK binding 
its most important partners are shown in Fig. 2.

ILK is most probably a pseudokinase

ILK is known to affect several downstream pathways. How-
ever, there is still substantial controversy on its exact role 
in those interactions. It is still under debate whether it pos-
sesses a Ser/Thr kinase activity as originally thought or 
remains just a scaffold protein, with a possibility of other 
mechanisms of involvement in signal transduction. There are 
contradictory reviews either determining ILK as pseudoki-
nase [2] or those that do not yet agree with that premature 
judgment [94]. Although the ambiguities on catalytic capac-
ity arising from sequence analysis seem to be supported by 
extensive genetic [13, 23, 24] and structural [3, 14] studies, 
some older in vitro analyses provide evidence for the kinase 
activity of ILK [6, 25, 94–96].

In the light of uncertainties surrounding the ILKs 
mode of action as a kinase, it has to be noted that ILKs 
KD binds  Mg2+-ATP, which is known to be crucial for 
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conventional kinase catalysis. Most of the point muta-
tions within the ATP-binding domain were crucial for 
ILK’s structural integrity/stability, which is why the role 
of  Mg2+-ATP was hard to assess. A recent study involving 
a structurally stable ILK mutant with Leucine substitution 
at position 207 with Tryptophan, which makes ILK to be 
sterically unable of ATP binding, indicated that this pro-
cess is at least partially crucial in noncatalytic functions 
of ILK associated with F-actin bundling, such as stress 
fibers formation, cell spreading, and migration [97]. 
Other point mutation, namely K220M was found to dis-
rupt ATP binding to ILK and cause cellular defects [14, 
98]. Fukuda et al. assessed number of residues involved in 
ATP binding [51] (Fig. 2). Studies on recombinant KD of 
human ILK produced in E. coli showed that this domain 
indeed binds  Mg2+-ATP, but it is not hydrolyzed, which is 
indispensable for the catalytic reaction of phosphorylation 
[3]. Moreover, it was proven that recombinant full-length 
ILK did not exhibit kinase activity towards myelin basic 
protein (MBP) or PKB/Akt. It turned out that the pseu-
dokinase site conformation of KD is responsible for ILKs 
interaction with α-Parvin. The same study showed that 
partially purified endogenous ILK from chicken tissue 
was capable of MBP phosphorylation, but it was rather 
due to contamination of the chicken extract and not due 
to claimed ILK activity as a kinase.

Although discussing ILKs action regulation, it is cru-
cial to acknowledge the existence of an ILK inhibitor, 
QLT267, also known as QLT-267 or QLT0267, which 
is commercially available. Several studies are employ-
ing this compound [99–104]. However, caution should be 
taken while using this inhibitor as it has never been unam-
biguously characterized in literature, whether it directly 
binds to ILK or is specific. To support that, results pub-
lished recently suggest that QLT267 does not target solely 
ILK, as the results obtained upon the usage of it were 
diverging from the outcomes obtained upon ILK expres-
sion knockdown [105].

Concluding this section, there are many strong pieces 
of evidence supporting the notion that ILK functions 
solely as a scaffold protein. However, there has not been 
still resolved the structure of the full-length wild-type 
ILK of human origin produced in mammalian system. 
Thus, no biochemical studies have been done on such 
recombinant ILK in the aspect of ILKs kinase activity. 
We want to stress that in the following sections, we do not 
refer to ILK’s activity as direct phosphorylation of other 
proteins but as a cascade of events leading to phospho-
rylation of downstream targets, although in several cited 
here articles ILK’s action is perceived as a functional 
kinase.

ILKs interactome and its cellular functions

ILK interacts with several proteins taking part in signaling 
cascades involved in cell death and survival, differentia-
tion, proliferation, migration, and many other processes 
in mammalian cells, projecting on respective systemic 
changes (Fig. 4). Amongst the main downstream targets 
of ILK following may be mentioned: Akt/PKB, GSK3β, 
β-catenin, p44/42 MAP kinases  (ERK1/2), the myosin 
light chain (MLC) [94] as well as Merlin’s phosphatase 
MYPT1 (myosin phosphatase target subunit) in the Hippo 
pathway [106]. Akt, involved in regulating cell survival 
and apoptosis, is activated by phosphorylation on Thre-
onine 308 and Serine 473. The latter occurs as a result 
of the activity of PI3K [25], the Rictor-mTOR complex 
[26], and the ILK-Rictor complex [107]. Inactivation of 
GSK3β through ILK-mediated phosphorylation at Serine 
9 is required for regulation of cell cycle by fluctuating 
amount of cyclin D1 and activation of the transcription 
factors, such as AP-1 (activator protein 1), β-catenin/Tcf, 
and CREB (cAMP-response element-binding protein) 
[108]. Induced AP-1 upregulates the expression of genes 
coding for matrix metalloproteinases (MMP-9, MMP-2), 
thus involving ILK in pathways of invasion and metasta-
sis [109, 110]. Furthermore, inactivated GSK3β projects 
onto β-catenin stabilization and subsequent accumulation, 
which in consequence regulates proliferation, migration, 
and differentiation [109]. Moreover, ILK’s action causes 
phosphorylation of a transcriptional co-activator of AP-1, 
NAC [111].

Despite the controversies on its exact function, the 
involvement of ILK in all of the abovementioned pathways 
is indisputable, and their further exploration may poten-
tially lead to the clarification of its mechanism of action.

Adhesion and migration

Modulation of cytoskeletal organization and processes of 
cell spreading and migration through ILK action includes 
activation of a guanine-nucleotide exchange factor (GEF) 
for Rac1 and Cdc42, PAK-interactive exchange factor (PIX 
or ARHGEF6) [33]. ILK-associated c-Src activity corre-
lates with increased phosphorylation of cofilin at Serine 
in 3rd position, inhibiting its actin-severing activity and 
thus promoting actin polymerization [32]. Also, ILK-
dependent phosphorylation of MLC on Serine 18/Threo-
nine 19 regulates cell contraction, motility, and migra-
tion [96]. Although ILK lacks actin-binding properties, 
the assembly of the IPP complex triggers F-actin filament 
bundling, which generates contraction force and remains 
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a mechanical signal to promote cytoskeleton reassembly 
and cytoskeleton-dependent cell adhesive processes such 
as cell shape change, cell migration, and proliferation [97]. 
It has been proved that ILK takes part in the modulation of 
actin dynamics (for review see: [11]) through regulation 
of small GTPases such as RhoA and Rac; however, the 
molecular details of these processes still awaits clarifica-
tion [34–36].

Most of the mammalian cells are conditionally dependent 
on an interaction between integrins and ECM, and therefore 
disruption of those processes leads to apoptosis. Such type 
of programmed cell death, specifically termed anoikis [113, 
114], underlies the development of normal tissues as well as 
prevents adherent-independent cell growth and attachment 
at undesired locations, which would lead to colonizing of 
distant organs, commonly occurring in metastatic cancer 
(for review see: [115]). Integrin-mediated signal transduc-
tion involving ILK is pivotal for anoikis protection. It was 
thought to be associated with phosphorylation of PKB/Akt 

on Serine 473, thus stimulating its activity [116]. Several 
studies highlighted the contribution of ILK and guanine-
nucleotide exchange factor (GEF) to anoikis protection 
[117–120]. However, the role of ILK-mediated interplay 
with integrins in those survival pathways does not require 
FAK activity, suggesting that those two proteins modulate 
anoikis in different, parallel pathways [115, 116, 121].

Mitosis

A quite early summary of the fundamental mitotic roles of 
ILK has been already included in the review by Fielding 
et al. [12], but further molecular details have been evaluated 
since then. ILK is known to be recruited to centrosomes by 
RUVBL1/2, where it facilitates mitotic spindle assembly 
through the promotion of Aurora A kinase/TACC3/ch-TOG 
complex formation [122]. Also, centrosome clustering is 
dependent on ILK through its interaction with the microtu-
bules (MTs) regulating proteins TACC3 and ch-TOG [123, 

Fig. 4  Network of the functional protein–protein interactions of ILK. 
The in-depth literature review supports displayed genes coding for 
ILKs molecular partners. The analysis was performed by STRING 
[Search Tool for the Retrieval of Interacting Genes/Proteins (v11.0)] 
provided by the STRING Consortium (Available online: https:// 
string- db. org/) [112]. The result shows functional and physical pro-
tein associations presented in the confidence mode—the thickness 
of the lines indicates the strength of data support. Only records 
with confidence interaction mode 0.7 or higher are shown. The fig-
ure includes automatically generated connections up to  3rd level and 

records introduced manually in line with the content of this manu-
script. Textmining was excluded from interaction sources, leaving 
following: Experiments, Databases, Co-expression, Neighborhood, 
Gene Fusion, Co-occurrence. It is crucial to note that not all those 
interactions have been studied on a biochemical level. Thus, some 
strings might represent rather indirect interactions. Additionally, 
some of the automatically annotated interactors coded by the follow-
ing genes: BCAR , FOXO1/3, PDPK1, PIK3CA, PPP2CA, PTK2 and 
TSC2 have not been studied in the context of ILK as far as we know

https://string-db.org/
https://string-db.org/
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124]. Furthermore, some studies demonstrated that ILK 
takes part in the regulation of MT dynamics since pacli-
taxel resistance and a shorter duration of mitosis have been 
observed in cells overexpressing ILK. From the opposite, 
inhibition of ILK leads to suppressed MT dynamics [125]. 
The vital role of ILK in the process of mitosis was supported 
in studies on the inhibition of ILK, which caused a G2-M-
phase arrest in glioblastoma-cell lines [126, 127]. Mitotic 
spindle orientation, and therefore the axis of cell division, is 
closely dependent on the function of α-Parvin and ILK. At 
the same time, the latter serves as a linker between integrins 
and the dynactin complex. In vitro experiments on tissue-
specific ILK knockout mice confirmed those phenomena, 
which displayed disrupted spindle orientation and cell pro-
liferation in intestinal epithelial cells [128]. Recent evidence 
revealed ILKs interactor, tensin 3, to be a part of a distinct 
class of ECM adhesive structures that mediate attachment 
during mitosis, named reticular adhesions (RA). The dis-
covery of those structures shed light on cellular adhesion 
during cell division since classical adhesion complexes, such 
as FAs, disassemble to enable mitotic rounding. The forma-
tion of RAs, mediated by integrin αvβ5, occurs during inter-
phase, and after that they facilitate the cell–ECM attachment 
throughout mitotic rounding and division. Although there is 
no direct evidence of the ILKs involvement, the presence of 
the ILK interactor in those structures might indicate a new 
intriguing topic to be investigated. On the other hand, ILK 
might not be a component of RA as F-actin was not found 
in this adhesive structure [129].

Endocytosis

According to early reports, the ILK sequence contains a 
caveolin-binding motif, and the presence of ILK was con-
firmed in caveolae-enriched membranes. Taking this con-
cept further, Meyer with colleagues hypothesized that the 
caveolin-binding domain of ILK and the caveolin scaffold-
ing domain of cav-1 are involved in ILK:caveolin complex 
formation [130]. The implication of ILK in the process of 
endocytosis is associated with regulation of microtubular 
stability, which is crucial for appropriate trafficking of vesi-
cles with caveolin-1 to the cell surface. For that purpose, 
ILK recruits the scaffold protein IQGAP1 to the cell cortex, 
which, together with its downstream effector mDia locally 
stabilizes MTs and allows stable caveolae insertion into 
the plasma membrane [131]. Investigations of the estab-
lishment of cell–cell contacts in differentiating keratino-
cytes brought to light the pivotal role of ILK and Engulf-
ment and Cell Motility 2 (ELMO2) protein in positioning 
E-cadherin-containing recycling endosomes [132]. The lat-
est study also indicates the role of ILK in the endosomal 
recycling of N-cadherin [133]. The authors rightly noted 
another yet hypothetic contribution of ILK in dynamin-1 

dependent clathrin-mediated endocytosis, known to be regu-
lated through Akt/GSK3β [134], which in turn is widely 
known to be dependent on ILK in some way. In that view, 
it should be noted that many Rab proteins involved in the 
process of endocytosis participate in the regulation of the 
Akt/GSK3β signaling pathway [133, 135, 136]. Essentially, 
the level of ILK by itself might be also regulated through the 
endocytic–lysosomal pathway. The nitric oxide induction in 
endothelial cells resulted in decreased ILK protein stability, 
caused by dissociation of the complex ILK/Hsp90/endothe-
lial NO synthase (eNOS) followed by increased ILK ubiqui-
tylation mediated by the E3 ubiquitin ligase CHIP. The exact 
mechanism of ILK degradation has been positively verified 
through its colocalization with both lysosomal-associated 
membrane protein 1 (LAMP-1) and early endosome marker 
EEA1 (early endosome antigen 1). Also, the crucial role of 
dynamin in those processes has been confirmed [72].

Subcellular distribution

Sound evidence on ILK level and localization in cells and 
tissues both on protein and mRNA level is based on wide 
immunocytochemical, immunohistochemical, and RNA-seq 
studies [137–140]. As a natural consequence of its func-
tion, ILK is mainly localized to cell membrane—both on 
the peripheral and cytoplasmic sides [6], in the FA sites 
and cell junctions [6, 141, 142]. In skeletal muscle, higher 
levels of ILK are observed predominantly at myotendinous 
junctions and costameres in mice and zebrafish [143, 144]. 
When writing about submembranous localization of ILK it 
would be worth evaluating whether ILK is or is not a com-
ponent of reticular adhesion [129]. The presence of ILK in 
the cytosol is required for preassembling of the IPP complex 
before its recruitment to FAs [89]. Co-localization of ILK 
with tubulins has been observed and with centrosomal and 
mitotic spindle associated proteins at centrosomes [122].

Interestingly, some early reports declared its nuclear 
localization as well [69, 75, 145], and the process is believed 
to be dependent on ILKs phosphorylation [69, 75]. Still, to 
date, this issue has not been dealt with in-depth. Indeed, we 
observed such localization in our research on some melanoma 
cell lines (unpublished data), which corresponds with previ-
ous data reported by others on MCF-7 (epithelial-like breast 
cancer) [75] and A431 cells (epidermal carcinoma) [138]. 
Going further, it has been suggested that ILK associates with 
chromatin, thus acting as a gene repressor. Going further, ILK 
seems to play an essential role in maintaining nuclear integrity 
[75]. Lastly, a recent study has pointed out the presence of 
ILK in endothelial progenitor cell-derived exosomes [146].

What is more, the ILK’s cellular distribution pattern 
might be characteristic of the functional type of cells. 
An interesting tendency has been observed in neurons, 
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in which the distribution of ILK varies among the cell 
body, being more abundant in the axonal tips than in the 
dendritic tips [31]. Lately, our team explored ILKs distri-
bution in the chicken cells of peripheral nervous system, 
proving its localization both intracellularly and on the cell 
membrane of DRG neurons and Schwann cell precursors 
[147]. However, this observation needs to be corroborated 
with other methods. Those observations indicate the need 
for further investigations of the subcellular distribution of 
ILK and its importance for ILKs functioning in various 
types of cells and diverse cellular research models.

Tissue distribution

No evident tissue or cell line specificity has been 
described for this protein. However, a significantly ele-
vated level of ILK expression was detected in muscle 
cells, especially smooth muscle cells [6]. Various stud-
ies reported the presence of ILK in the serum of cancer 
patients; however, further investigation is needed to assess 
whether it originates from exosomes present in serum or 
is free-floating secreted ILK [148–151]. It is crucial to 
note that ILK does not possess a classical export signal 
peptide. Overview of the latest data on ILK expression in 
human tissues has been summarized in Fig. 5.

Roles of ILK in physiology and disease

The last two decades have witnessed a prospective growth of 
interest in the implications of ILK in physiological and path-
ological processes, which resulted in several early reviews 
[152–158]. Here we provide a summarized and updated view 
on those issues. Apart from the topics mentioned above, 
the presumed role of ILK in organismal aging and cellular 
senescence is worth mentioning. Both topics are covered in 
a recent mini-review by Olmos et al. [17]. Thus, we do not 
address those issues in this review. We neither planned a 
separate chapter about ILKs role in apoptosis as its involve-
ment in that process is discussed in several subchapters of 
this section. However, to graphically summarize information 
included in this chapter and partly in the previous ones, we 
present major findings about ILK in Fig. 6.

Cell differentiation and embryogenesis

Apart from its valid role in cell division, ILK is clearly 
associated with cells’ differentiation and tissue devel-
opment during embryogenetic growth and adult life. 
Since the noncatalytical function of ILK is required for 
the epiblast polarization, mice devoid of Ilk expression 
die at the peri-implantation stage, unable of cavitation 
[13]. Mutagenesis studies on mice have shown that the 

Fig. 5  Expression of ILK on mRNA and protein level in human tis-
sues. Consensus Normalized eXpression (NX) levels were cre-
ated by combining the three transcriptomics datasets (HPA, 
GTEx, and FANTOM5) using the internal normalization pipe-
line. Protein level was assessed with immunofluorescent staining 

of cells and tissues. Relative expression level was marked as fol-
lows: +  +  + high, +  + medium, + low,—no expression, x—no data 
available. Color-coding is based on tissue groups. The data were col-
lected from the Human Protein Atlas (http:// www. prote inatl as. org), 
[138]. NK-cells—natural killer cells

http://www.proteinatlas.org


 A. Górska, A. J. Mazur 

1 3

100 Page 12 of 26

presumable  kinase activity of ILK is dispensable for 
mammalian development. Yet, an interaction between 
Ilk and α-Parvin emerged as critical for kidney develop-
ment [14]. Mice carrying a mutation preventing Ilk from 
binding to α-Parvin die owing to renal agenesis, and this 
effect resembles the phenotype of α-Parvin-null mice [14]. 
Depletion of the ILK ortholog in Xenopus laevis impaired 
blastospore closure and axis elongation, with no impact 
on the mesodermal specification. Going further, it was 
concluded that XeILK is essential for morphogenetic 
movements during gastrulation [15]. Noteworthy, there is 

a strong correlation between elevated ILK expression and 
enhanced differentiation in normal gastrointestinal, neural, 
bone marrow, renal tissue, and more differentiated areas 
of malignant tumors [159]. During human endometrial 
decidualization, ILK was demonstrated as pivotal for the 
morphologic transformation of endometrial stromal cells 
(ESCs) through the organization of the actin cytoskeleton. 
That was confirmed by ILK knockout, with the charac-
teristic features of abrogated polymerization and organ-
ization of actin fibers, which reverted the cells to their 
undecidualized morphology [16]. Moreover, ILK remains 

Fig. 6  ILKs activity through signaling pathways, its interactions on a 
cellular level and subcellular localization. For the details, please see 
the text. Asterisks indicate pathways that may be initiated at a focal 
adhesion (FA) site regardless of the direct or indirect way of ILKs 
docking to FA. For the sake of simplification, the impact of FA-
dependent ILK’s action on downstream effectors has been displayed 
as one of those. Please note that there are numbers in the figure, 
which refer to the issues and questions posed in Fig. 7. To highlight 
pathways related exclusively to particular isoforms of Parvin, α-, β-, 
and γ-Parvins are symbolically indicated by spheres connected to the 
silhouette of Parvin or shown in parentheses. The shape of ILK was 
modeled after the one included in the excellent review on ILK writ-
ten by Widmaier and colleagues [152]. It is crucial to mention that 
not all of the interactions shown here might be direct, especially when 

it comes to phosphorylated downstrean targets of ILK. As mentioned 
in the text, there might be a kinase/kinases which upon binding to 
ILK phosphorylate, e.g., Akt or GSK3β. Nevertheless, ILK’s action 
impacts all proteins and pathways presented in the graphic. BAX-Bcl-
2-associated protein X; BAD-Bcl-2 antagonist of cell death; Bcl2-B-
cell lymphoma 2; EVs-extracellular vesicles;  GTP—Guanosine-5′-
triphosphate; MRP1—multidrug resistance protein 1; NLS—nuclear 
localization signal; NO—nitric oxide; P-phosphorylated residues of 
ILK;  TFs—transcription factors, U-ubiquitin. Color coding: ILK’s 
interactors—green, downstream targets—turquoise, transcription fac-
tors—grey; in the apoptotic pathway: pro-apoptotic proteins—red, 
anti-apoptotic proteins—yellow; some selected proteins have been 
highlighted in other colors
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a vital component of keratinocyte differentiation programs 
triggered by increased extracellular  Ca2+, concentration 
projecting on epidermal integrity, and the establishment 
of barrier properties of the epidermis [160]. Signal trans-
duction orchestrated by ILK is also necessary for TGF-
β1 triggered dermal fibroblast transition to myofibroblast 
(Dermal Myofibroblast Differentiation, DMD) [161].

Epithelial to mesenchymal transition

Epithelial to mesenchymal transition underlies the invasive 
and migratory abilities of cells, therefore participating in 
tumor progression and metastasis and fibrosis. ILK has 
been demonstrated to promote lung cancer cell migration 
and invasion through the induction of the EMT process 
[162]. Moreover, ILK emerged as a therapeutic target in 
neoplastic transformation and EMT induced by expres-
sion of v-ets erythroblastosis virus E26 oncogene-like 
(avian) gene and prostate cancer [163] as well as in the 
high glucose-induced EMT of renal tubular cell [164]. 
An increase in ILKs level correlates with a decrease 
of E-cadherin (known as epithelial cell marker) and an 
increase of vimentin and N-cadherin (mesenchymal mark-
ers) amounts. This transition, called a “cadherin switch,” 
is a significant hallmark of EMT [110, 165]. Essentially, 
ILK has been proven to orchestrate endosomal recycling 
of N-cadherin and E-cadherin [132, 133].

Going further, ILK is crucial for TGF-β1-induced EMT 
[28, 166] through a Snail and Slug mechanism [39]. Sig-
nificantly, an increase in ILK level lowers the amount of 
E-cadherin through upregulation of its repressor Snail, 
which promotes EMT leading to invasion and metastasis 
[39, 110]. On the contrary, siRNA-mediated silencing of 
ILK expression significantly reduced the nuclear presence of 
proteins like Snail, Twist, Zeb, and β-catenin and reversed 
the “cadherin switch” [165]. More recent evidence from 
studies on patients and chemoresistant colon cancers further 
evaluated the correlation of ILK expression and the level of 
a wide range of EMT markers [167]. Targeting this path-
way seems to be a promising approach for the treatment of 
fibrotic kidney [166], lung [168], prostate [169], or bladder 
cancer [170]. Interaction between ILK and Rictor seems to 
be crucial in TGF-β-mediated EMT, since its prevention, 
either by silencing of ILK expression or by applying the 
ILK inhibitor, blocks this process and even partially reverses 
the mesenchymal phenotype in breast cancer cell lines 
[106]. More recent evidence highlights NF-κB as another 
molecular player modulated by ILK in EMT promotion 
[27, 28]. Finally, ILK plays a crucial role in Twist-induced 
EMT, as a part of the Twist-integrin β1-FAK/ILK pathway 
[171]. Expression of ITGB1, gene encoding integrin β1, is 
positively regulated by Twist on the transcriptional level. 

Followingly, integrin β1 activates both FAK and ILK sign-
aling axes through phosphorylating FAK and upregulating 
ILK expression [171, 172], which are both necessary for 
activating essential for EMT MAPK/ERK, PI3K/Akt, and 
WNT signaling [171].

Nervous system

Along with its downstream targets, such as Akt and GSK3β, 
ILK was implicated in the development and function of 
neurons, especially dendritic morphogenesis and neur-
ite outgrowth [29–31]. For instance, downregulation of 
ILKs expression leads to inhibited axonal growth, causing 
either length reduction or elimination of the axon, whereas 
“hyperactivation” of ILK promotes the formation of mul-
tiple axons [31]. Another approach in the contribution of 
ILK in axon formation might be related to inactivation of 
the MYPT1 leading to accumulation of MLC phospho-
rylation or phosphorylation of MLC [96, 173]. The latter 
was confirmed to be implicated in multiple axons forma-
tion [174]. ILK is involved in cytoskeleton and adhesion 
dynamics in oligodendrocytes, which are associated with 
its role in growth cone maturation through MTs regulation. 
Moreover, cells with ILK depletion displayed decreased 
process length and myelin production capacity [175]. The 
latest studies conducted in our lab proved ILKs involve-
ment in the chicken peripheral nervous system development 
dependent on laminin-1 via modulating axonal outgrowth, 
sensory neuron morphology, and Schwann cell precursors 
number [147]. A study on embryonic hippocampal neurons 
suggested the role of ILK in neuroprotection through the 
Akt-dependent integrin survival signaling pathway [176]. 
A more recent paper evaluated the ILK-mediated survival 
pathway stimulated by insulin, projecting on the regulation 
of survival kinases such as Akt and GSK3β and to inhibition 
of caspase-3 activity. Those observations were in line with 
ILK expression knockdown and ILK inhibition experiments, 
which resulted in decreased insulin-mediated neuroprotec-
tion [177]. In vivo experiments on a rat model of Fetal Alco-
hol Spectrum Disorder (FASD) revealed a close association 
of impaired ILK pathway and synaptic plasticity, leading 
to FASD-related memory alterations [178]. Following the 
observation of significantly decreased ILK protein levels in 
streptozotocin (STZ) mice, a model for Alzheimer’s Disease 
(AD), it has been also suggested that ILK may participate in 
the pathogenesis of AD [179]. Taking this concept further, 
the latest evidence has shown reversion of the hippocam-
pus-dependent neurogenesis and memory deficits in APP/
PS1 mice, another AD model, via the Akt–GSK3β pathway 
triggered by increasing the level of ILK. What is more, the 
application of the serotonin reuptake inhibitor improved the 
impaired hippocampal neurogenesis and memory by enhanc-
ing activation of the ILK–Akt–GSK3β axis, suggesting ILK 
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as a promising therapeutic target for AD prevention and 
treatment [180]. On the other hand, targeted deletion of the 
Ilk gene in the central nervous system in the mice model 
caused cortical–lamination defects typical for Cobblestone 
lissencephaly [181] as well as loss of nerve growth factor 
(NGF) signaling [182]. Interestingly, depletion of ILK had 
no direct effect on cell survival. However, the reduced pro-
liferation rates of granule-cell precursors have been observed 
in both studies [181, 182]. The growth-suppressive func-
tion of ILK was also concluded from studies on the neural 
stem and progenitor cells, describing a signaling cascade 
controlled by IPP complex through RSU-1 (Ras suppressor 
protein 1) mediated regulation of JNK activity projecting on 
proliferation both in vitro and in vivo [183]. Those and many 
other observations largely resemble the phenotype of central 
nervous system-restricted integrin-β1-knockout mice [184], 
which supports the claim that ILK is the leading player of 
integrin-β1-dependent processes in the brain [158].

Dermal and musculoskeletal system

ILK is involved in various cellular processes in keratino-
cytes, such as proliferation, adhesion, spreading, and migra-
tion [69, 185]. Depletion of ILK in the skin leads to skin 
blistering and impaired hair follicle development [69, 185]. 
It has been suggested that ILK modulates epidermal regen-
eration following injury [186], which corresponds well with 
delayed wound closure in skin observed in ILK-deficient 
mice [187]. Integrin-linked kinase is indispensable for devel-
oping epidermis and hair follicles, because ILK-deficient 
melanoblast displayed in vivo abnormalities in forming 
long pseudopods and thus resulted in impaired migration. 
Moreover, their proliferation was affected. Those effects 
were observed also in mature melanoblasts, accompanied 
by disruptions in cell responses to the extracellular matrix 
substrates collagen I and laminin 332 [188]. Adverse effects 
of the ILK inactivation are partially restored by the Rac1 
activity, which points out the potential importance of integ-
rin-linked kinase-Rac1 nexus in melanocytic cell establish-
ment, dendricity, and functions in the skin [188].

During skeletal development, ILK-induced pathways are 
crucial for the proliferation and differentiation of chondro-
cytes within the growth plate, while depletion of ILK in 
chondrocytes causes dwarfism and chondrodysplasia [189, 
190]. An in vivo study has shown that the ILK-nascent 
polypeptide-associated complex and Coregulator alpha 
cascade (αNAC) reduce the pace of osteoblast maturation 
and downregulates its mineralization [191]. Also, mecha-
nosensing and signaling in vertebrate skeletal muscle 
depend on ILK proper functioning but not on its presumed 
kinase activity [144]. ILK has been found to participate in 
 Ca2+-independent smooth muscle contraction via inhibition 

of myosin light chain phosphatase and thus increased myosin 
phosphorylation [96]. ILK is implicated in negative regu-
lation of skeletal muscle proliferation through muscle cell 
enhancement factor 2C influencing phosphorylation activity 
and muscle creatine kinase (MCK) mRNA level. Such regu-
lation occurs independently of PI3K [192]. It is known that 
phosphorylation of Akt, a downstream target of ILK, plays a 
substantial role in the regeneration of skeletal muscle.

What is more, the integrin β1-ILK complex is recognized 
as an essential component of IGF-1R/insulin receptor sub-
strate signal transduction to Akt during mechanical stress 
in skeletal muscle. Mice with a skeletal muscle-restricted 
knockout of Ilk suffer from a mild progressive muscular dys-
trophy, mainly within the area of myotendinous junctions, 
co-occurring with a detachment of basement membranes 
from the sarcolemma and accumulation of ECM in myoten-
dinous junctions [143]. Postel et al. investigated the role of 
ILK in muscles, proving that it is recruited to the myotendi-
nous junctions, and the presence of laminin and itgα7 is nec-
essary for this process. Although ILK occurred to be crucial 
for mechanical stability in skeletal muscles in zebrafish, its 
participation in dystrophin/dystroglycan adhesion complex 
is not necessary in that process. Suprisingly, ILK did not 
seem to be required for formation of the adhesion complex, 
but still it improves strengthening the adhesion of the mus-
cle fibre with the ECM, which is dependent on the presence 
of the pseudokinase domain [144]. It has been pointed out, 
that diet-induced muscle insulin resistance shall relate to 
ILK through the interaction with collagen-binding integ-
rin which participates in the expansion of ECM. Further 
evidence suggested a cause–effect relationship between Ilk 
expression in muscle and impairment of insulin signaling 
and insulin perfusion through capillaries [193].

Kidney

Formation and phosphorylation of the PINCH1-integrin-
linked kinase-α-Parvin (IPP) complex was proved to be 
crucial for controlling podocyte adhesion, morphology, 
and survival. Not only cellular levels of PINCH1, ILK, and 
α-Parvin, cytoplasmic components of cell–ECM adhesion 
complexes, were elevated throughout podocyte differen-
tiation but an increased amount of the PINCH1–ILK–α-
Parvin complex was detected in differentiated podocytes 
as well [194]. Essentially, ILK is required to maintain the 
glomerular filtration barrier and might be involved in the 
progression of the glomerular dysfunction. It is associated 
with ILKs pivotal antiapoptotic role in human mesangial 
cells through a mechanism involving integrin β1/ILK/Akt-
dependent NF-κB activation causing overexpression of an 
antiapoptotic protein, Bcl-xL, which in turn counteracts 
ILK/GSK3β-dependent expression of proapoptotic factor, 
Bim [195]. The ILK-regulated NF-κB pathway is implicated 
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in renal inflammation processes and thus might be consid-
ered as a possible therapeutic target for inflammatory renal 
diseases [196]. ILK is involved in proteinuria and has also 
been implicated in podocyte cell–matrix interaction and the 
distribution of nephrin and α-actinin [197, 198]. Specific 
renal Ilk ablation in mice caused progressive focal segmen-
tal glomerulosclerosis, leading to death in terminal renal 
failure [198]. The phenotype of Ilk knockout mice resem-
bled alterations observed in chronic renal diseases, such as 
the impaired urine concentration or tubulointerstitial fibro-
sis of the kidney. It therefore may constitute a nephrogenic 
diabetes insipidus model (NDI) [199]. Going further, ILK 
has been suggested as a therapeutic target in NDIs since it 
regulates the level and localization of tubular water chan-
nel aquaporin-2 (AQP2) which directly affects renal reab-
sorption [199]. Another study on mice demonstrated that 
Ilk controls branching morphogenesis by regulating the 
expression of dual-specificity phosphatase 8, which inhib-
its p38 MAPK activity resulting in a decrease of branching 
morphogenesis [200]. A recent study has shown that the 
expression of Ilk in renal stroma is essential for multiple 
aspects of renal development. Mice with kidney-specific Ilk 
depletion exhibited a considerable decrease in ureteric bud 
branching and defected collecting duct formation. Those 
mice displayed renal vasculature mispatterning and impaired 
glomerular vascular differentiation, which was caused by 
the disruption of several key signaling pathways required 
for kidney morphogenesis, including PI3K/Akt and MAPK/
ERK [201]. Going further, mice with specific depletion of 
Ilk in collecting duct (CD) principal cells (PCs) demonstrate 
interstitial fibrosis and inflammation associated with activat-
ing the canonical TGF-β signaling cascade. Ilk-deficient CD 
PCs died by necroptosis through activation of the Receptor 
Interacting Serine/Threonine Kinase 3 (RIPK3) and mixed 
lineage kinase domain like pseudokinase (MLKL) pathways, 
highlighting the critical involvement of Ilk in this process 
[202].

Heart

The integrin β1/ILK/β-Parvin network has been proposed 
as a mechanosensor for stretching forces in the heart [203]. 
Deleting Ilk distorts adhesion signaling through the integrin 
β1/FAK complex resulting in the disaggregation of cardio-
myocytes [21]. Not only do mutations in ILK contribute to 
cardiac hypertrophy and contractility, but ILK is a novel car-
diotropic factor promoting the transformation of human fetal 
heart cells to a cardiomyogenic fate as well [18]. It also has 
a protective role against cardiomyopathy and heart failure in 
mammals as activated by thymosin β4, actin sequestrating 
protein, and it stimulates the function of cardiomyocytes 
and healing after infarction [204–206]. Curiously, we have 
shown recently that thymosin β4 locates to FAs in melanoma 

cells, where ILK is found [207] pointing at ILKs and thymo-
sin β4 potential interaction in melanoma cells. Tantos with 
colleagues found out that thymosin β4 interacts directly with 
both the 4th and 5th LIM domains (amino acids 189–325) of 
human PINCH1 and the N-terminal Ankyrin repeat domain 
(amino acids 1–160) of human ILK [208]. Those interac-
tions are weak and transient and reflect the nature of thymo-
sin β4, i.e., being an intrinsically disordered protein, which 
explains the moonlighting character of thymosin β4. Intrinsi-
cally disordered proteins might interact with other proteins 
without changing their conformation. That phenomenon is 
called “binding without induced folding,” and though such 
interactions are weak, they are specific and essential for cel-
lular processes [209].

Point mutations in ILK and LAMA4 coding for laminin 
α4 have been suggested as a direct cause of dilated cardio-
myopathy (DCM) in humans through simultaneous defects 
in endothelial cells and cardiomyocytes [22]. It was further 
investigated on rats that upregulation of integrin-linked 
kinase ameliorates the severity of DCM in a rat model, 
improving cardiac function, and decreasing mortality [210]. 
What is more, ILK acts as a mechanosensory element in the 
human heart, mediating cardiomyocyte force transduction 
through regulation of the vital calcium regulatory protein 
sarcoplasmic/endoplasmic reticulum  Ca2+ATPase isoform 
2a (SERCA-2a) and phosphorylation of phospholamban 
(PLN), which provides additional support for the link of ILK 
with DCM and highlights its potential role as the therapeu-
tic target [20]. In general, increasing the level of ILK has a 
cardioprotective role [211]. The role of ILK in the reparative 
properties of endothelial progenitor cells (EPCs) and their 
exosomes on the myocardial repair was concluded from the 
study on mouse model mimicking systemic inflammation 
condition (interleukin-10 gene knockout). The high amount 
of ILK in exosomes caused a blunted therapeutic effect, 
while reducing ILKs level in those extracellular vesicles 
recovered inflammatory response, indicating ILK as a target 
protein for improving progenitor cell exosomes-based car-
diac therapies [146]. A particularly interesting recent study 
employing rats’ hearts as an ischemia–reperfusion (I/R)-
induced arrhythmia ex vivo model showed that ILKs action 
prevented those rats from arrhythmia, potentially through the 
inhibition of connexin remodeling via Akt activation [212].

Vascular system

Stimulated by vascular endothelial growth factor (VEGF) 
ILK has been found to upregulate VEGF-mediated endothe-
lial cell migration, capillary formation in vitro, and angio-
genesis in vivo [213]. ILK is essential for postnatal vasculo-
genesis, supporting the recruitment of endothelial progenitor 
cells to ischemic tissue [214]. A study on mice has shown 
that Ilk participates in eNOS regulation, preventing it from 
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uncoupling and, therefore, may be regarded as a therapeu-
tic target for preventing endothelial dysfunction related to 
shear stress-induced vascular diseases [215]. While ILK is 
vital in regulating vasomotor tone, its decreased level has 
been observed in atherosclerosis. Data collected from stud-
ies on a mouse model of vascular remodeling (carotid artery 
ligation and human atherosclerotic artery samples) indicate 
a correlation between increased levels of inducible nitric 
oxide and decreased ILK levels. Those effects are depend-
ent on enhanced degradation of ILK through endocytosis, 
triggered by an overload of inducible NO. Further inhibition 
of that pathway may represent a therapeutic target for athero-
sclerotic disease [72]. A recent RNA sequencing study has 
provided evidence on the crucial role of dysregulated cell 
adhesion and ILK signaling in pathogenesis of arrhythmo-
genic cardiomyopathy (ACM). That mechanism seems to be 
characteristic for ACM caused by disruptions in the FLNC 
gene encoding filamin C, a major cardiac structural protein, 
differing from already described pathological mechanisms 
underlying classic arrhythmogenic right ventricular cardio-
myopathy caused by desmosomal genes mutations [216]. 
ILK also regulates endothelial proliferation, migration, and 
tube formation in the retina, and therefore may be further 
investigated for therapeutic purposes in ocular neovascu-
larization [217]. Ilk-deprived mice had increased vascular 
content as well as elevated activity of soluble Guanylyl 
Cyclase (sGC) and Protein Kinase G (PKG), which in turn 
led to intensified vasodilatory response to NO donors [218]. 
Integrin-linked kinase is responsible for  Ca2+-independent 
diphosphorylation of MLC20 [219], and negatively regulates 
Rho/ Rho-associated protein kinase (ROCK)–mediated sign-
aling, leading to vascular smooth muscle cell (SMC) con-
traction, which in turn contributes to the control of vascular 
wall formation [36]. In the vessel wall, ILK is crucial for 
maintaining SMCs in a stationary phenotype but also medi-
ates the response to injury. Abrasion of the vessel triggers a 
decrease in ILK expression resulting in SMC migration and 
proliferation that establishes a thickened neointima. Subse-
quent fibronectin deposition at the luminal edge of the vessel 
is associated with an increase in ILK expression, which pro-
motes adhesion of SMCs, contributing to the arrest of cell 
migration and proliferation at this location [220]. Finally, 
ILK was found to mechanically regulate vascular endothelial 
growth factor receptor 3 (VEGFR3) signaling, impeding its 
interaction with integrin β1, ensuring the proper develop-
ment of lymphatic vessels in vitro and in vivo [221].

The role of ILK in cancer

One of the most explored and reviewed topics associated 
with ILK covers a widely studied role in tumor development, 
prevention, and treatment. Such an important role of ILK 

in tumorigenesis stems from the abovementioned implica-
tions in cell differentiation, mitosis, apoptosis, angiogen-
esis, EMT, and migration. Although that pivotal issue should 
not be overlooked in this paper, a significant part of it was 
already covered by others in reviews on roles of integrin-
linked kinase in tumor signaling [158] and its perspectives as 
a therapeutic target [40, 153, 155, 157, 158, 222] or referring 
to specific types of cancers: hormonal [223], breast [224] or 
rhabdomyosarcoma [225].

In general, most of the currently available evidence sug-
gests a pro-oncogenic function of ILK in tumorigenesis. ILK 
is frequently overexpressed in a broad spectrum of human 
tumors and has been connected with unfavorable progno-
sis in patients’ survival and treatment [148, 162, 226–236]. 
Much work on the therapeutic potential of genetic or phar-
macological inhibition of ILK has been carried out, dem-
onstrating significant downregulation of various oncogenic 
signaling pathways and thus suppression of tumor develop-
ment and progression in several cancer types upon ILK’s 
“deactivation” [100, 101, 126, 237–244]. Curiously, the 
elevated ILK level in serum might be considered as a marker 
of various cancers, such as malignant pleural mesothelioma 
[148], non-small cell lung cancer [149], esophageal squa-
mous cell carcinoma [150], and ovarian carcinoma [151]. 
Cancer patients had strikingly higher ILK levels in serum 
compared to a barely detectable level in healthy volunteers. 
The level of ILK was also negatively correlated with chemo-
therapy efficiency [150] and postoperative survival [149], 
while positively correlated with the progression of malig-
nancy [148, 151] 

ILK and multidrug resistance of tumor cells

In the latest advance, an increasing number of studies have 
highlighted a link between ILK-related pathways and mul-
tidrug resistance (MDR), especially to platinum drugs. The 
elevated level of ILK promoted the proliferation of human 
glioma cells, leading to escape from apoptosis, and lowered 
sensitivity to temozolomide via decreasing the activity of 
caspase-3. Corroborating those results it was shown that 
RNA silencing of ILK expression increased the sensitivity 
of the lung cancer cells to cisplatin, enhancing its apoptotic 
action [245]. Interestingly, ILKAP has been suggested as a 
regulatory hub of ovarian cancer cell susceptibility to plati-
num drugs [246]. Coleman with colleagues further investi-
gated the molecular and biological effects of targeting ILK 
in cisplatin-resistant ovarian cancer and identified multiple 
target genes involved in cell growth, apoptosis, invasion, 
and metastasis, including those encoding noncoding RNAs. 
Researchers also observed reduced cisplatin-resistant cell 
growth and invasion ability and increased apoptotic response 
after siRNA-mediated silencing of ILK expression in ovar-
ian cancer cells [247]. The most recent study showed that 
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treatment with a small molecule inhibitor of ILK, QLT0267, 
may reduce acquired resistance to 5-fluorouracil of human 
colon cancer cells [167].

A growing body of literature emphasizes the multi-
dimensional role of ILK in the MDR phenomena. It has 
been found that ILK mediates activation of YAP/TAZ, 
a co-transcriptional activator involved in the develop-
ment of drug resistance, and thereby promotes tolerance 
to doxorubicin of breast cancer cells. What is more, cell 
resistance of the cells varied depending on the stiffness of 
the matrix, suggesting that MDR is affected as a result of 
the transduction of the mechanical signal to the interior 
of the cell through ILK-mediated YAP activation [248]. 
Increased levels of ILK protein have been as well associ-
ated with gemcitabine resistance of A549 cells because 
silencing of the ILK expression partially reversed that drug 
resistance. One of the possible reasons for that phenom-
enon is explained with evidence: ILK regulates MRP1, 
a multidrug resistance protein 1, critical for the efflux of 
gemcitabine, and that ILK’s action is possibly dependent 
on epithelial–mesenchymal transition [249]. In chronic 
myeloid leukemia (CML) therapy with tyrosine kinase 
inhibitors (TKIs), genetic and pharmacological inhibition 

of ILK has been found to sensitize resistant leukemic stem 
cells (LSCs). It was noted that only TKI-refractory LSCs 
from patients, but not normal hematopoietic stem cells 
were eliminated following ILK inhibition [48].

Summary, conclusions, and open questions

Based on studied for this review literature, we identified sev-
eral gaps in knowledge about ILK. Thus, we decided to pose 
some important questions that future studies should address. 
Those questions are shown in Fig. 7.

While many researchers unambiguously classify ILK as 
bona fide pseudokinase, it raises a fundamental question: 
what is ILK’s precise role and mechanism of action in vari-
ous cellular processes without kinase activity? Still, the issue 
that leaves no doubt is that ILK is essential for described in 
this work signaling events, which was already supported by 
multiple evidence from in vitro and in vivo experiments.

Because of relatively low costs and simple procedures, 
bacteria remain the most common expression system 
employed in studies on recombinant proteins [250]. How-
ever, some researchers express doubts on the reliability 

Fig. 7  Graphical summary of the most important issues and questions 
which have to be addressed in future studies on ILK. The majority of 
the points have been elaborated in the text. Some of the questions/

issues are annotated in Fig. 6. In such cases, next to them, there are 
numbers to be found in Fig. 6
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of that system, as it may be imprecise due to the loss in 
the post-translational modifications required for biologi-
cal activity or proper protein folding. In the light of all 
controversies surrounding ILKs activity, structural studies 
of wild-type ILK expressed in mammalian cells could pro-
vide conclusive evidence. Going further, once a structur-
ally stable ILK mutant devoid of  Mg2+-ATP binding prop-
erties has been obtained [97], it could be a valuable tool in 
the further investigation on noncatalytic signal transduc-
tion or even shed light on controversies in ILKs kinase 
activity. Alternatively, finding a kinase or kinases which 
would act downstream from ILK on such ILKs targets as 
Akt or GSK3β would be a finding bringing together seem-
ingly contradictory data on ILKs mode of action. Interac-
tion of ILK with such hypothetical kinase/kinases might 
be weak and transient, which could explain why it has 
not been discovered yet. That kind of interaction could be 
similar to that between thymosin β4 and ILK or PINCH1.

Despite growing high-throughput evidence on the pres-
ence of diverse PTMs of ILK, the investigation of their 
functions is neglected in the current literature. Fourteen 
residues of ILK are known to be ubiquitylated, and it is the 
most common post-transcriptional modification of ILK. 
On the functional level, only recently, a crucial role of 
those modifications has been confirmed in diverse path-
ways of degradation of ILK. However, it is still necessary 
to narrow down our knowledge to precise sites of those 
modifications on ILK, which probably differ in each path-
way. Essentially, the function of acetylation and sumoyla-
tion of ILK remains unsolved.

Moreover, among twelve phosphorylation sites, the 
function of only four of them, namely of Serine 246, 
Threonine 173, Threonine 181, and Serine 343, have been 
addressed in the literature but still not in-depth. Two of 
them are probably crucial in the regulation of nuclear shut-
tling and subcellular localization of ILK. Still, this issue 
has not been dealt in-depth and the last investigations in 
that topic have been published in the previous decade. 
Although the role of Threonine 173 and Serine 246 phos-
phorylation in nuclear shuttling seems to be confirmed in 
human cells, some concerns may arise from mice studies. 
Interestingly, mouse sequence of ILK overlaps with the 
human ILK in approximately 98%. At the same time, both 
of those residues are conserved and have been confirmed 
by high-throughput evidence to be phosphorylated in mice 
[49, 50], yet still, no nuclear localization of ILK has been 
reported in murine cells [138].

Among the most interesting yet still unexplored areas of 
ILK is the issue of its diverse isoforms. Based on current 
data, it might be assumed that structural differences between 
them may be associated with differential subcellular locali-
zation as the 192 N-terminal residues crucial for the nuclear 
localization [113, 116] are truncated in ILK2 and utterly 

absent in ILK3. While ILK1 and ILK3 have the conserved 
pseudokinase fragment, ILK2 lacks an ATP binding frag-
ment but at this place, contains a 28aa unique fragment of 
unknown function. Today’s proteomic data on the ILK1 and 
theoretical knowledge on ILK2 and ILK3 let us presume 
their diverse functional characteristics.

Although embryonic lethality of Ilk knockout model 
organisms initially impeded comprehensive in vivo experi-
ments [13, 15, 23, 24], the development of tissue-specific 
ILK knockouts [128] or experiments involving ILK-specific 
molecular inhibitors [106, 167] turned out to be a promis-
ing solution for this issue. Establishing whether QLT267 is 
indeed a specific ILK inhibitor is important, as the number 
of studies employing this compound is growing. Moreover, 
obtaining new inhibitors of ILK is desirable. For instance, 
an inhibitor targeting the interaction interface of ILK:Parvin 
complex could be highly appreciated because IPP complex 
formation seems to be essential for the well-being of tumor 
cells. On the other hand, such compound should be precisely 
delivered to tumor tissue as ILK and IPP are important for 
normal cells' proper functioning.

It should be noted that the majority of the research on 
the cellular cascades involving ILK has been performed on 
transformed or tumor cells, which might have its limitations 
in the extrapolation of these data on the ILK activity and 
function in nontransformed cells or organisms. Thus, more 
research on normal cells is needed.

Finally, ILK has been widely suggested as a potential 
therapeutic target not only in human malignancies [40, 153, 
155, 157, 158, 222], but also in fibrosis of kidney [166], 
lung [168], prostate [169], or bladder cancer [170]; Alz-
heimer disease [180]; inflammatory renal diseases [196]; 
nephrogenic diabetes insipidus (NDI) [199] or cardiovas-
cular diseases [20, 72, 146]. Henceforward, the general 
issue for further studies is to evaluate if—and how—either 
genetic or pharmacological regulation of ILK might be suc-
cessfully implemented in therapies of human diseases. The 
next intriguing aspect of being explored is ILK’s presence 
and role in the extracellular space.

In conclusion, though we already know a lot about ILKs 
functions in both physiological and pathological conditions, 
there is still a wide range of topics that have to be addressed 
(Fig. 7). Altogether, that makes ILK an intriguing topic to 
study.
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