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Abstract
As a result of cross-species transmission in December 2019, the coronavirus disease 2019 (COVID-19) became a serious 
endangerment to human health and the causal agent of a global pandemic. Although the number of infected people has 
decreased due to effective management, novel methods to treat critical COVID-19 patients are still urgently required. This 
review describes the origins, pathogenesis, and clinical features of COVID-19 and the potential uses of mesenchymal stem 
cells (MSCs) in therapeutic treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients. 
MSCs have previously been shown to have positive effects in the treatment of lung diseases, such as acute lung injury, idi-
opathic pulmonary fibrosis, acute respiratory distress syndrome, lung cancer, asthma, and chronic obstructive pulmonary 
disease. MSC mechanisms of action involve differentiation potentials, immune regulation, secretion of anti-inflammatory 
factors, migration and homing, anti-apoptotic properties, antiviral effects, and extracellular vesicles. Currently, 74 clinical 
trials are investigating the use of MSCs (predominately from the umbilical cord, bone marrow, and adipose tissue) to treat 
COVID-19. Although most of these trials are still in their early stages, the preliminary data are promising. However, long-
term safety evaluations are still lacking, and large-scale and controlled trials are required for more conclusive judgments 
regarding MSC-based therapies. The main challenges and prospective directions for the use of MSCs in clinical applications 
are discussed herein. In summary, while the clinical use of MSCs to treat COVID-19 is still in the preliminary stages of 
investigation, promising results indicate that they could potentially be utilized in future treatments.
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Introduction

In December 2019, there was a global outbreak of severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
known as the coronavirus disease 2019 (COVID-19) [1, 2]. 
Cross-species transmissions lead to the outbreak, which was 
found to seriously endanger human health [3, 4]. The main 
routes of transmission were identified as respiratory drop-
lets, direct contact, fecal–oral, mother-to-child, and aerosols 
[5, 6]. On March 11, 2020, the WHO issued an early warn-
ing of the global spread of COVID-19 and increased the 
impact level from epidemic to “global pandemic” [7]. As of 
November 17, 2021, over 253, 640, 000 cases of COVID-
19 infection and 5, 104, 899 subsequent deaths were con-
firmed worldwide (https:// www. who. int/ emerg encies/ disea 
ses/ novel- coron avirus- 2019). Due to the suddenness of the 
outbreak, there were no effective antiviral drugs available 
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to immediately eliminate COVID-19. Furthermore, to date, 
effective control using drugs has not yet been achieved and is 
thus still in development. Although the spread rate of SARS-
CoV-2 infections was initially controlled, new cases and 
mortality rates are still increasing globally. Of the reported 
COVID-19 cases globally, 13.8% were classified as severe, 
6.1% were critical, and 2.3% were fatal [8, 9]. Therefore, the 
development of effective treatments for COVID-19 remains 
imperative.

Of the great efforts made worldwide to control COVID-
19 [10, 11], vaccine research has clearly been important 
in controlling infection rates [12–17]. Initially, Zhu et al. 
[18] and Folegati et al. [19] reported that in human clinical 
trials the COVID-19 vaccine had acceptable safety, toler-
ance, immunogenicity, and efficacy. Many other organiza-
tions then quickly developed effective vaccines, such as 
the BNT162 mRNA vaccine sponsored by Pfizer Inc. and 
BioNTech SE [20–22], the adenovirus ChAdOx1 nCoV-19 
(AZD1222) vaccine sponsored by AstraZeneca in the United 
Kingdom [23, 24], the mRNA-1273 vaccine co-sponsored 
by Moderna, Inc. and the National Institute of Allergy and 
Infectious Diseases of the United States of America [25, 
26], the recombinant NVX-CoV2373 vaccine developed by 
Novavax, Inc. in the United States of America [27, 28], the 
recombinant Sputnik V vaccine co-sponsored by Gamaleya 
Research Institute of Epidemiology and Microbiology and 
the Health Ministry of the Russian Federation of Russia 
[29], the recombinant adenovirus type-5 (Ad5) vectored 
vaccine co-developed by the CanSino Biologics Inc. and 
Beijing Institute of Biotechnology of China [18, 30], the 
inactivated vaccine (BBIBP-CorV) sponsored by the Beijing 
Institute of Biological Products Company Limited of China 
[31, 32], the inactivated vaccine (CoronaVac) sponsored by 
Beijing Sinovac Life Sciences of China [33, 34], and the 
inactivated vaccine (BBV152) sponsored by Bharat Bio-
tech International Limited, the Indian Council of Medical 
Research, and the National Institute of Virology of India [35, 
36]. Clinical research results found that these vaccines were 
safe and effective [21, 22, 26, 28–30, 36], and some were 
mass produced for practical application. To date, billions 
of people have now been vaccinated for COVID-19, and 
the data continue to show that they are safe without seri-
ous negative side effects [37, 38]. All approved COVID-19 
vaccines will continue to be monitored for long-term safety. 
Furthermore, some drugs (such as remdesivir, favipiravir, 
and dexamethasone) have also shown positive preliminary 
results in randomized, controlled, open-label clinical trials 
[39–41]. However, there are currently no specific drugs for 
the treatment of COVID-19, and consequently, novel meth-
ods to treat SARS-CoV-2 are urgently required.

Mesenchymal stem cells (MSCs) have the capacity to 
self-renew and differentiate, and MSC-based therapies have 
received much attention in both basic medicine and clinical 

research [42–45]. MSCs can be acquired from most human 
tissues, including but not limited to, bone marrow (BM), 
adipose tissue (AD), umbilical cord (UC), Wharton’s jelly 
(WJ), peripheral blood, menstrual blood, placenta, endo-
metrium, amniotic membrane, amniotic fluid, fetal, dental 
pulp, urine, liver, lung, spleen, intestine, muscle, and syn-
ovium [46–50]. MSC-based therapies mainly rely on their 
self-renewal ability, pluripotent differentiation, low immuno-
genicity, anti-inflammatory function, and a homing ability to 
damaged tissues [51–55]. Importantly, MSCs have a unique 
immuno-regulation mechanism for mediating innate and 
adaptive immune responses [56, 57]. An increasing num-
ber of clinical studies have shown great promise in various 
diseases through the transplantation of MSCs [42, 58–60]. 
Wilson et al. used allogeneic MSCs in patients with acute 
respiratory distress syndrome (ARDS) and found no adverse 
reactions, such as hypoxemia, arrhythmia, and ventricular 
tachycardia, and also showed good therapeutic effects [61]. 
Our group reported that menstrual blood-derived MSC 
implantation significantly reduced the mortality of ARDS 
patients induced by the influenza A (H7N9) pandemic [62]. 
Angiotensin-converting enzyme 2 (ACE2) has been verified 
as a receptor by which SARS-CoV-2 enters target cells [63, 
64]. Interestingly, researchers have shown that MSCs do not 
express ACE2 and are resistant to SARS-CoV-2 infection 
[65, 66]. Therefore, MSC-based treatments may be promis-
ing for patients with COVID-19, especially those in which 
the disease is classified as severe or critical.

This review focuses on the potential mechanisms of 
MSCs and clinical studies using MSC transplantation for 
the treatment of COVID-19. The aim is to improve under-
standing of the current MSC-based treatments for COVID-
19 and provide guidance for their further applications in 
clinical medicine.

Epidemiology of COVID‑19

Origins of SARS‑CoV‑2

Since the beginning of the twenty-first century, three 
coronaviruses have crossed the species barrier and been 
transmitted from animals to humans. These viruses 
include severe acute respiratory syndrome coronavirus 
(SARS-CoV), Middle East respiratory syndrome coro-
navirus (MERS-CoV), and SARS-CoV-2 [67, 68], all of 
which can cause fatal lung damage. Human-to-human 
transmission of SARS-CoV, MERS-CoV, and SARS-
CoV-2 mainly occurs through respiratory droplets when 
an infected person coughs/sneezes/talks [69]. The newly 
discovered coronavirus, SARS-CoV-2, is an encapsulated, 
positive sense, single-stranded RNA virus that causes 
global fulminant infections [70, 71]. SARS-CoV-2 is in 
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the Sarbecovirus subgenus of the β-coronavirus genus. 
According to genome comparisons, the similarity between 
SARS-CoV and SARS-CoV-2 at the nucleotide level is 
approximately 79% [72]. SARS-CoV and MERS-CoV 
viruses are thought to originate from bats, while civet cats 
and dromedaries are intermediate hosts of SARS-CoV and 
MERS-CoV, respectively, which cause zoonotic transmis-
sion [73, 74]. Preliminary epidemiological investigations 
have shown that the source infection for SARS-CoV-2 can 
be traced back to a live seafood wild animal market [75]. 
Genome sequence analysis showed that SARS-CoV-2 was 
very similar to a bat coronavirus (approximately 96% iden-
tical), and it is considered that SARS-CoV-2 may have 
been transmitted to humans through bats [72, 76, 77]. 

Interestingly, Lam et al. found several speculative pango-
lin coronavirus sequences that were 85.5–92.4% similar 
to SARS-CoV-2 [78]. Additional studies have shown that 
there are a variety of Malayan pangolin (Manis javanica) 
coronavirus lineages similar to SARS-CoV-2 genes, fur-
ther supporting the hypothesis that pangolins are potential 
intermediate hosts [78, 79]. Recently, researchers discov-
ered that minks, cats, and dogs are also sensitive to SARS-
CoV-2 [80–82], but whether they are intermediate hosts 
requires further investigation. While bats and pangolins 
are currently considered to be the intermediate hosts of 
SARS-CoV-2 (Fig. 1a), further investigation is required 
to identify the exact source and other intermediate hosts.

Fig. 1  Basic characteristics and entry of SARS-CoV-2 into the host 
pneumocyte. a Bats and pangolins are thought to be two of the inter-
mediate hosts of SARS-CoV-2, however, further investigation is 
required to identify other intermediate hosts. SARS-CoV-2 binds to 
ACE2 through the spike glycoprotein on the surface of the virus and 
the spike protein of SARS-CoV-2 is activated by TMPRSS2. The 
pulmonary alveoli are infected with SARS-CoV-2, leading to injury 

of the type II pneumocyte. This can lead to acute lung injury, acute 
respiratory distress syndrome, severe pneumonia, severe hypox-
emia, septic shock, and even multiple organ failure. b SARS-CoV-2 
consists of the spike glycoprotein, envelope protein, membrane gly-
coprotein, and nucleocapsid protein. The RNA contains the genetic 
information that is passed to the next generation of virions which sub-
sequently infect other host cells
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Pathogenesis of COVID‑19

By infecting human bronchial epithelial cells, lung cells, 
and upper respiratory tract (URT) cells, SARS-CoV-2 can 
develop into a serious life-threatening respiratory disease, 
resulting in severe ARDS and permanent lung injury [70, 
83]. Studies have found that the host receptor by which 
SARS-CoV-2 enters is the same as the host receptor for 
ACE2 [84]. SARS-CoV-2 consists of a spike glycoprotein, 
membrane glycoprotein, envelope protein, and nucleocapsid 
protein (Fig. 1b). SARS-CoV-2 binds to ACE2 through the 
spike glycoprotein on its surface (Fig. 1a, b), which can be 
modulated by transmembrane protease serine 2 (TMPRSS2) 
[85–87]. The symptoms of COVID-19 are generally divided 
into three stages: (1) the asymptomatic stage, which lasts 
for one to two days after infection, during which the virus 
attaches to the ACE2 receptor and starts to replicate. Innate 
immunity is lacking at this stage. (2) The URT infection 
stage, during which the virus migrates into the respiratory 
tract, triggering innate immunity. For most SARS-CoV-2 
infected people, the infection is limited to URT. (3) The third 
and final stages involves ARDS and hypoxia, as the virus 
stresses and damages the alveoli. The alveoli release inter-
feron (IFN), which sends signals to nearby unaffected cells 
to release antiviral peptides. These signal peptides cause 
resistance to the virus, and damaged cells release damage-
associated molecular patterns, pathogen-associated molecu-
lar patterns, and secrete a series of cytokines that activate 
the innate immune response [88]. Macrophages respond to 
these signals by releasing more inflammatory factors, caus-
ing fluid filling between the capillaries and alveoli. In the 
process of killing the virus, neutrophils are recruited to 
the site of infection, possibly damaging healthy lung cells. 
During this period, the surfactants present in the alveoli are 
reduced. Phagocytes also release inflammatory cytokines, 
such as interleukin (IL)-1, IL-2, IL-6, IL-8, IL-12, tumor 
necrosis factor (TNF)-α, granulocyte colony-stimulating 
factor (G-CSF), transforming growth factor-β1 (TGF-β1), 
and monocyte chemoattractant protein-1 (MCP-1), which 
can cause an inflammatory response and subsequent lung 
infections [89, 90]. These cytokines also lead to increased 
levels of procoagulants.

Clinical features of COVID‑19

The most significant feature of the disease is its heterogeneity, 
as it ranges from asymptomatic infections to inducing critically 
ill symptoms [91, 92]. The incubation period of COVID-19 is 
calculated to be two weeks, and the median time is thought 
to be 4–5 days [1, 93]. A research report showed that 97.5% 
of COVID-19 patients developed symptoms within 11.5 days 
of SARS-CoV-2 infection [94]. Autopsy results have shown 
micro-thrombosis in multiple organ systems, such as the lung, 

heart, and kidney, which indicates that thrombosis precedes 
multiple organ dysfunction in severe cases [95]. Xu et al. found 
that patients with severe COVID-19 had respiratory failure 
and acute bilateral lung infiltration [96]. Hariri et al. further 
compared SARS-CoV-2 with SARS-CoV and H1N1 influenza 
and found that 88% of COVID-19 patients had acute diffuse 
alveolar damage, which is comparable to H1N1 (90%) and 
SARS (98%). Pulmonary micro-thrombosis was reported in 
57%, 58%, and 24% of the SARS-CoV-2, SARS-CoV, and 
H1N1 infected patients, respectively [97]. In short, the main 
symptoms of COVID-19 include fever, headache, dry cough, 
chest tightness, sore throat, adverse gastrointestinal reactions, 
abdominal pain, diarrhea, hypoxemia, systemic muscle and 
joint aches, nasal congestion, rhinorrhea, liver damage, acute 
lung injury (ALI), metabolic acidosis, conjunctival congestion, 
ARDS, and severe pneumonia [98–100].

Main treatment strategies for COVID‑19

Researchers are continuing to explore various methods to 
treat COVID-19. At present, large-scale drug screening, in-
depth exploration of viral pathogenesis, application of rapid 
detection kits, and anti-inflammatory and antiviral therapies 
have been widely applied to prevent further spread of the dis-
ease [20, 56, 101, 102]. Extracorporeal membrane oxygena-
tion (ECMO) is an invasive mechanical ventilation strategy 
mainly used to support continuous external breathing and 
circulation in critically ill patients with critical cardiopulmo-
nary failure [103]. However, these devices are often expensive, 
and resources of ECMO are limited globally. It is urgent that 
effective treatments to reduce mortality and improve clinical 
outcomes are developed, especially for severe and critically ill 
patients. The main measures to alleviate COVID-19 in patients 
(especially severe patients) include: (1) plasma therapy for 
convalescent patients; (2) antiviral drug therapy; (3) immune-
mediated therapy; (4) glucocorticoid therapy; (5) inhibition of 
the binding of human cell surface receptor ACE2 protein to the 
virus; (6) inhibition of key enzymes in the virus; (7) metabolic 
support and nutrition therapy; (8) stem cell therapy; (9) inte-
grated Chinese and Western medical therapies; (10) probiotic 
therapy; (11) artificial liver therapy; and (12) lung transplanta-
tion [104–112]. In addition, blood purification systems have 
also been investigated. These studies speed up the screening of 
effective drugs to prevent mild cases of the disease from devel-
oping into severe cases, and improve the treatment regimens 
for severe and critically ill COVID-19 patients.
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Underlying mechanisms of the MSCs used 
to treat COVID‑19

Rapid developments in regenerative medicine have led sci-
entists to study and isolate MSCs from different human tis-
sues, and they have been utilized for a variety of purposes 
such as the repair of lung tissues [113–115]. MSCs can be 
utilized to treat many common lung diseases, such as ALI 
[116–118], idiopathic pulmonary fibrosis [119–121], ARDS 
[122–124], lung cancer [125–127], asthma [128, 129], and 
chronic obstructive pulmonary disease (COPD) [130, 131]. 
A schematic diagram of this process is shown in Fig. 2.

Early reports indicated that MSCs could be used to treat 
various lung diseases by promoting repair and regulating 
inflammation in the lung [132–134]. While there are differ-
ences in the mechanism of different lung diseases, MSCs 
have shown positive effects in preclinical studies. Recently, 
clinical studies have found that the cytokine profile of 
COVID-19 patients undergoes great changes after treatments 
with MSCs [135–138], which may lead to immune imbal-
ances and multiple lung dysfunctions. The main mechanisms 
of action for MSCs in the treatment of COVID-19 are shown 
in Fig. 3.

Differentiation potential

Under certain conditions, the addition of special induc-
ing factors can guide MSCs to differentiate into nerve, 
muscle, and epithelial cells, thus proving their differentia-
tion potential into endodermal and neuro-dermal tissues 
[139]. Previous studies have shown that MSCs may have 
the ability to transdifferentiate into alveolar epithelial cells 
[115, 140]. Furthermore, transplanted MSCs were found 
to differentiate into respiratory epithelial cells to compen-
sate for the functional alveolar epithelial cell barrier in 
diseased tissues and improve local damage. Recently, Liu 
et al. induced the differentiation of hUC-MSCs into type 
2 alveolar epithelial cells and transplanted differentiated 
cells into pulmonary fibrosis mice. They found that dif-
ferentiated cells could reduce the mortality of bleomycin-
induced pulmonary fibrosis mice [141]. Therefore, it was 
determined that MSCs could be applied to treat various 
lung diseases, including lung injury and inflammation 
caused by SARS-CoV-2 infection, due to their potential 
to differentiate into alveolar epithelial cells.

Fig. 2  MSC-based therapies for pre-clinical studies in lung diseases. 
MSCs can be obtained from most human tissues, including bone mar-
row (BM), adipose tissue (AD), umbilical cord (UC), Wharton’s jelly 
(WJ), menstrual blood, placenta, dental pulp, and lung. MSCs can 

treat many lung diseases, such as acute lung injury, idiopathic pulmo-
nary fibrosis (IPF), acute respiratory distress syndrome (ARDS), lung 
cancer, asthma, and chronic obstructive pulmonary disease (COPD)
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Immune regulation

The role of MSCs in immune regulation has been exten-
sively studied. MSCs can regulate both innate and adaptive 
immunity by interacting with various immune cells [56, 58, 
142, 143]. MSCs can also regulate innate immune responses 
by targeting DCs, natural killer (NK) cells, innate T helper 
17 cells, neutrophils, mast cells, and macrophages [56]. 
Due to the immune escape mechanism of SARS-CoV-2, the 
virus partly evades the recognition and attack of the innate 
immune system, causing adaptive immunity to play a key 
role. MSCs mainly regulate adaptive immunity by target-
ing T lymphocytes, B lymphocytes, antigen-presenting 
cells (APCs), DCs, NK cells, and regulatory T cells (Tregs) 
[58]. In addition, the local immunity of the lung is medi-
ated by  CD4+ T cells and  CD8+ T cells, which can quickly 
kill foreign viruses during infection [144], implying that the 
adaptive immunity regulation mechanism by MSCs may be 
applied in the treatment of COVID-19. Although the human 
body’s dual immune system can mostly prevent the virus 
from invading, SARS-CoV-2 has an escape mechanism. 
After MSCs are injected into the body, the immune regula-
tion mechanism allows additional mobilization of various 

immune cells, which further prevents the invasion of SARS-
CoV-2. As a response to inflammatory mediators, MSCs 
mainly produce a variety of soluble factors that regulate the 
immune response, including PGE2, TGF-β1, indoleamine 
2,3-dioxygenase (IDO), nitric oxide (NO), HGF, and IL-10 
[143].

Secretion of anti‑inflammatory factors

The inhibition of inflammation is another important func-
tion of MSCs. MSCs secrete a variety of soluble factors 
through paracrine action, collectively called secretory bod-
ies. Studies have found that many inflammatory factors 
were increased in the blood of COVID-19 patients, such as 
IFN-γ, IFN inducible protein-10, and MCP-1. In addition, 
the concentration of inflammatory factors, such as G-CSF, 
MCP-1, and TNF-α, in intensive care unit (ICU) patients 
have been shown to be significantly higher than in non-ICU 
patients [145]. Several studies have shown that the thera-
peutic effect of MSCs is mainly mediated by the secretion 
of paracrine factors, including growth factors, chemokines, 
and cytokines [146, 147]. The cytokine storm in patients 
with severe COVID-19 causes the release of nitric oxide, 

Fig. 3  The main mechanisms 
of action for MSCs in the treat-
ment of COVID-19. The main 
mechanisms by which MSCs 
exert their effect in the treat-
ment of lung-related diseases 
is through their differentiation 
potential, immune regulation, 
secretion of anti-inflammatory 
factors, migration and hom-
ing, anti-apoptotic properties, 
antiviral effects, and through 
extracellular vesicles
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which affects the normal contraction and diastolic func-
tions of the blood vessels, resulting in hypotension, multiple 
organ hypoxia, and ARDS [148, 149]. SARS-CoV-2 causes 
a cytokine storm and secretes high levels of pro-inflam-
matory cytokines, such as IL-1β, IL-1RA, and IL-2, in the 
lungs. As well as, IL-6, IL-7, G-CSF, IFN, TNF, PI3-K/
AKT, Rac1, alveolar cavity neutrophils, and infiltration of 
macrophages [145, 150, 151]. Ellison-Hughes et al. sum-
marized how MSCs potentially alleviate damage caused 
by COVID-19-induced cytokine storms, and explored how 
MSC transplantation facilitated the reduction of long-term 
complications in COVID-19 patients, including lung injury 
repair and partial functional lung cell regeneration [152]. In 
addition, our group has found that menstrual blood-derived 
MSCs improve lung function by secreting anti-inflammatory 
cytokines both in ALI and pulmonary fibrosis mouse models 
[153, 154]. The main mechanism of MSC-based therapy for 
COVID-19 is mediated by the production of anti-inflamma-
tory molecules and reductions in the secretion of inflamma-
tory factors. In summary, inflammatory factors are reduced, 
and anti-inflammatory factors are increased by MSC infu-
sion. Therefore, the anti-inflammatory effects of MSCs can 
be utilized in the treatment of COVID-19.

Migration and homing

Migration and homing are unique characteristics of MSCs. 
Although not a direct effect of MSCs, their chemotaxis ena-
bles them to target injured lung tissues [155, 156], allow-
ing a further exertion of their therapeutic effects. MSCs 
can migrate to the site of injury after intravenous or local 
injection. Migration and homing is a multi-step process that 
includes three different stages: (1) direct administration 
or cell recruitment and entering the blood circulation; (2) 
extravasation through the concentration gradient of lympho-
cytes near the lesion; and (3) migration to the damaged inter-
stitium of the lung [157]. This process is mainly induced by 
chemokines released from injured or inflamed lung tissues, 
which triggers the migration and homing of MSCs [156, 
158]. G-CSF is a common pharmacological agent used to 
induce mobilization, which acts through the expansion of 
the medullary compartment, activity of neutrophil elastase, 
release of cathepsin G, and reduction of stromal cell-derived 
factor-1 (SDF-1) levels. Stabilization of hypoxia-inducible 
factor-1 α (HIF-1α) increases mobilization by sinus-shaped 
vasodilatation caused by an increase in VEGF levels. In 
short, the main factors for MSC migration and homing 
include SDF-1, CXCR4, G-CSF, HIF-1α, PGE2, peroxisome 
proliferator-activated receptor (PPAR)-γ, MCP-1, CXCR7, 
CCR2, α4/β1 integrin, and CD44 molecules [158]. In addi-
tion, MSCs can recognize some endothelial cell adhesion 
molecules, including palmitate G protein, vascular cell 

adhesion molecule-1, and intercellular adhesion molecule-1, 
thereby mediating migration and homing.

Anti‑apoptotic properties

Apoptosis is a defense mechanism of the host against the 
source of infection, and it plays a vital role in the interactions 
between the host and pathogen. MSCs, however, have the 
ability to resist apoptosis. Studies of SARS-CoV-2 patients 
have observed different degrees of apoptosis during the viral 
infection stage [159]. Lymphopenia caused by immune cell 
failure due to T cell exhaustion and apoptosis has also been 
observed in the same patient population [160]. Therefore, it 
is particularly important to effectively control apoptosis in 
COVID-19 patients. MSCs inhibit cell apoptosis resulting 
from hypoxia, chemical stimulation, mechanical damage, 
and radiation. The anti-apoptotic effect of MSCs has been 
fully demonstrated in cardiac ischemia and neurological and 
pulmonary diseases [161]. Bernard et al. found that HGF and 
KGF released by MSCs protected alveolar epithelial cells 
from apoptosis by increasing B-cell leukemia/lymphoma-2 
(Bcl-2) expression and inhibiting HIF-1α expression [162]. 
In hypoxia-induced apoptosis, MSCs induced the expression 
of several factors, including VEGF, TGF-β1, and HGF, to 
reduce the apoptosis of endothelial cells. The anti-apoptotic 
properties of MSCs against lung diseases mean that MSCs 
could potentially be used as a treatment for COVID-19.

Antiviral effects

Antiviral effects are another feature of MSCs. MSCs inhibit 
virus replication, virus shedding, and virus-induced lung 
epithelial cell damage [163]. IDO [164] and antimicrobial 
peptide LL37 [165] produced by MSCs have been shown to 
inhibit influenza virus replication through viral membrane 
degradation. Khatri et al. studied the swine influenza virus 
pneumonia model and showed that intra-tracheal adminis-
tration of MSC-derived EVs could effectively reduce virus 
replication in lung epithelial cells [163]. Additional stud-
ies have shown that SARS-CoV2 enters cells through the 
widely distributed ACE2 receptors, including alveolar and 
capillary endothelial cells. RNA-sequence analysis has 
found that transplanted MSCs are ACE2 negative and can 
therefore resist SARS-CoV-2 infection [166]. In addition, 
MSCs retained their immunomodulatory potential, which 
supports their potential applicability for treating COVID-
19 [65]. Recently, Avanzani et al. demonstrated the role 
of SARS-CoV-2 infection in MSCs derived from various 
human tissues. These findings support the use of MSCs 
as a potential method by which to downregulate immune 
over-activation in COVID-19 patients and reduce fibrosis 
in patients recovering from acute SARS-CoV-2 infections 
[66]. The mechanisms by which MSCs inhibit the replication 
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and infection of SARS-CoV-2, however, are unknown and 
require further investigation.

MSC‑EVs

EVs are mainly divided into extracellular bodies, microvesi-
cles, and apoptotic bodies [167]. As a medium for cell-to-
cell communication, EVs play a vital role in cell-to-cell 
transmission under pathophysiological conditions, includ-
ing the transmission of RNAs, antigen presentation, tumor 
immune regulation, and drug loading [168–170]. This strat-
egy bypasses most of the safety issues related to cell ther-
apy, such as cancer cell contamination and cell proliferation 
hazards. Recent studies have shown that EVs derived from 
MSCs can improve bronchopulmonary dysplasia, ARDS, 
COPD, idiopathic pulmonary fibrosis, COVID-19, and pul-
monary hypertension [171–173]. Morrison et al. showed 
that MSCs regulate macrophages in ALI through EV-medi-
ated mitochondrial transfer [174]. Functional mitochondria 
transferred through MSC-EVs enhanced the mitochondrial 
function of primary human alveolar cells and their ability to 
repair lung injury [163]. EVs can reduce pulmonary inflam-
mation by reducing the recruitment of neutrophils and mac-
rophages and the level of MIP-2 [175]. At the same time, 
EVs can reduce pulmonary edema and endothelial permea-
bility. In a mouse model of lung ischemia/reperfusion injury, 
the anti-apoptotic molecule miR-21-5p was found to be the 
main link to the protective effect of the MSC-EVs [176]. 
Specifically, exogenous miR-21-5p reduces lung tissue oxi-
dative stress-induced apoptosis by targeting the phosphatase 
and tensin homolog (PTEN) and programmed cell death 4 
(PDCD4) [176]. These findings strongly support the use of 
MSC-derived EVs as a treatment for COVID-19.

Clinical studies of MSC transplantation 
to treat COVID‑19

At present, there are no effective treatments available for 
COVID-19 patients who are classified as critically ill. How-
ever, stem cell transplantation is an emergency treatment 
method that could be used to address this, and is currently 
being tested in clinical trials in research institutions around 
the world [177–179]. As of Nov 17, 2021, according to 
Clinicaltrials.gov (https:// www. clini caltr ials. gov/; search 
for “COVID-19” and “mesenchymal stem cell”), a total 
of 74 MSCs are currently being verified in clinical trials 
to treat COVID-19 (Table 1). Among these MSC clinical 
trials (Table 1), 22 were using UC-MSCs, 15 AD-MSCs, 
and 11 BM-MSCs. There were also 7 WJ, 2 dental pulp, 1 
cord blood, 1 menstrual blood, 1 placental, and 1 mucosal-
derived MSC clinical trials. In addition to those using known 
sources for the MSCs, there were also 14 clinical trials using 

MSCs from unknown tissue sources. At present, UC, BM, 
and AD are the major sources of MSCs used in the clinical 
trials for the treatment of COVID-19. Most trials were in 
their early stages, as 19 were phase 1, 25 were phase 1/2, 24 
were phase 2, 1 was a phase 2/3 combined trial, 1 was phase 
3, and 4 were unspecified.

Since most of these clinical trials are ongoing, the 
available clinical research results are currently limited. 
Leng et al. used MSCs to treat COVID-19 patients [180] 
and investigated the inflammation, immune function, and 
adverse reactions of seven patients within 14 days after 
MSC transplantation. Expression of TNF-α was reduced, 
and the expression of IL-10 was enhanced. They further 
reported the absence of any adverse events and concluded 
that MSCs effectively ameliorated the functional out-
comes of all seven patients. In addition, our group studied 
the therapeutic effects of menstrual blood-derived MSCs 
in treating COVID-19 in a multicenter, open-label, non-
randomized, parallel-controlled exploratory trial [181]. 
The mortality of patients in the MSC group was signifi-
cantly lower (7.69% in the MSC group and 33.33% in 
the control group). The dyspnea and SpO2 significantly 
improved after MSC infusion on days 1, 3, and 5. Chest 
imaging results of the experimental group also showed 
improvement within 1 month of the MSC treatment. The 
incidence of most adverse events did not differ between 
the MSC and control groups [181]. Another study con-
ducted by Meng et al. included 18 patients with moderate 
to severe COVID-19, nine of whom received UC-MSC 
infusion therapy [182]. From their results, two patients 
who received UC-MSCs experienced transient facial 
flushing and fever 12 h after infusion, and one patient 
experienced transient hypoxia. Recently, the same group 
conducted a phase 2 study and found that when com-
pared with the placebo group, UC-MSCs significantly 
decreased the proportion of solid component lesion 
volume [183]. Lanzoni et al. conducted a double-blind, 
phase 1/2a randomized controlled trial in which 24 sub-
jects receiving UC-MSC treatment were followed up for 
COVID-19 and ARDS for 1 month [184]. They found 
that the UC-MSC infusion consistently and effectively 
reduced a group of inflammatory cytokines related to 
COVID-19 “cytokine storms”, thus improving patients’ 
survival and recovery time [184]. Shu et al. studied the 
possible impact of intravenous UC-MSCs on COVID-19 
patients and showed that the transplantation of human 
UC-MSCs shortened the time for clinical improvement 
when compared to the placebo group. The incidence of 
critically ill progression after UC-MSC treatment was 0, 
and the 28-day mortality rate was 0. In the control group, 
four critically ill patients were treated with invasive ven-
tilation, of which 3 died, and the 28-day mortality rate 
was 10.34%. At the same time, the clinical symptoms of 

https://www.clinicaltrials.gov/
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fatigue, weakness, and respiratory distress were signifi-
cantly reduced after UC-MSC treatment [185]. Sánchez-
Guijo et al. demonstrated the safety of AD-MSCs with the 
transplantation of 1 ×  106/kg of AD-MSCs 1–3 times in 
13 patients with severe COVID-19 [186]. The study found 
that the clinical symptoms of 9 patients (70%) improved 
at a median follow-up of 16 days after the first AD-MSC 
administration. Feng et al. reported that the mortality 
rate of COVID-19 patients was 6.25% after UC-MSC 
infusion. The estimated cytokine levels changed within 
the normal range, the radiological appearance (ground 
glass opacity) was improved, and the lymphocyte count 
and lymphocyte subpopulation  (CD4+ T cells,  CD8+ T 
cells, and NK cells) counts were restored after trans-
plantation [187]. Hashemian et al. proved that no serious 
adverse reactions occurred 24–48 h after transplantation 
of the UC-MSCs or placental MSCs [188]. They further 
observed that 48–96 h after the first infusion in 7 patients, 
dyspnea eased and SpO2 increased. Of these 7 patients, 
5 were discharged from the ICU within 2–7 days (aver-
age of 4 days). The serum levels of the TNF-α, IL-8, and 
C-reactive protein (CRP) were significantly reduced in 
all six survivors. The six survivors had no symptoms of 
dyspnea 60 days post infusion. The radiological param-
eters of the lung CT showed clear signs of recovery [188].

Clinical data increasingly show that “not all MSCs are 
equal” as MSCs from different tissues express different 
factors at different levels and have different functions 
(Table 2). However, regardless of the MSC type, they 
were all found to exert a significant improvement in lung 
function or reduced mortality when intravenously trans-
planted. Although there are many types of MSC injection, 
the most popular method is intravenous infusion. When 
compared with different sources of MSC-based therapies 
in COVID-19, the initial results mainly rely on improving 
lung function, serum indexes, and inflammation indexes. 
Currently, there is still no systematic contrast regarding 
treatment differences with various MSCs. For example, 
menstrual blood MSCs were used, and a total of 9 ×  107 
cells showed a rapid improvement in breathing difficul-
ties [181]. AD-MSCs were used in a total of 1–3 ×  106 /
kg cells to treat COVID-19 [186]. The UC-MSCs used 
a range from a total of 9 ×  107 cells [182] to a total of 
4 ×  108 cells [187]. Generally, MSCs should be injected 
2–4 times to persistently exert their function. In addition 
to the above clinical studies, some case reports have shown 
that MSCs (including UC-MSCs, menstrual blood MSCs, 
and WJ-MSCs) are a promising method for the treatment 
of COVID-19, especially critically ill patients [189–192]. 
Although these preliminary clinical results are encourag-
ing, more clinical data are required to further clarify the 
underlying mechanisms and potential targets to improve 
clinical applications.

Current challenges for MSC‑based COVID‑19 
therapies

Currently, there is a large amount of active clinical research 
occurring in relation to MSCs for the treatment of various 
diseases. In particular, the clinical research of MSCs for the 
treatment of COVID-19 has seen explosive developments. 
However, in addition to the evaluation of the therapeutic 
effects of MSCs, more in-depth problems require clarifica-
tion [193]. The main clinical challenges relating to the use 
of MSCs to treat COVID-19 are presented in Fig. 4.

First, thrombosis is common in COVID-19, particularly 
in critically ill patients [194, 195]. COVID-19-specific coag-
ulopathy is caused by increased levels of fibrinogen, von 
Willebrand factor (vWF), fibrin degradation product, and 
d-dimer in the blood [196]. SARS-CoV-2 infection induces 
an inflammatory process called immuno-thrombosis, which 
activates the interaction of monocytes and neutrophils with 
platelets and the coagulation cascade, resulting in the for-
mation of intravascular thrombi in small and large blood 
vessels [196, 197]. During immuno-thrombosis, neutrophils 
and monocytes can secrete tissue factors and regulate the 
extracellular nucleosomes to degrade endogenous anticoagu-
lants, thereby promoting inflammation-induced coagulation 
activation. When immuno-thrombosis is not controlled, it 
leads to the unregulated activation of the coagulation cas-
cade, which in turn leads to micro-thrombosis and inflamma-
tion, creating a positive-feedback-like cycle, which eventu-
ally may develop into thrombosis (thrombotic inflammation) 
and diffuse intravascular coagulation [198]. Thus, thrombo-
prophylaxis and immuno-thrombosis must be monitored in 
hospitalized COVID-19 patients in the absence of contrain-
dications. Different MSC products show different levels of 
high procoagulant tissue factor and may have adverse effects 
on the immediate blood-mediated inflammatory response 
(IBMIR). Appropriate strategies for evaluating and control-
ling blood compatibility and optimizing cell delivery are 
critical for the development of safer and more effective MSC 
therapies [199].

Second, we should emphasize that due to the unique 
nature of the COVID-19 outbreak and the ethical restric-
tions on treating severe COVID-19 patients, not all clini-
cal trials used a standard design. From the perspective 
of safety and effectiveness, the clinical use of autologous 
MSCs is the best method to treat COVID-19. However, 
the production of a clinically relevant number of MSCs 
requires a significant amount of time, which is not always 
the case in the current COVID-19 emergency. A large 
number of MSCs are urgently needed, and the correspond-
ing quality of MSCs must also be strictly controlled.

Third, there is concern regarding the use of fresh and 
frozen MSCs due to their different therapeutic roles. Moll 
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et al. found that the difference between using fresh and 
frozen MSCs was significant [200, 201]. In six published 
clinical reports, allogeneic sources were used, of which 
only two studies used freshly cultured BM-MSCs [202, 
203] and the other studies used previously cryopreserved 
BM-MSCs [61, 204], which can play a certain therapeu-
tic effect in terms of curative effect using cryopreserved 
MSCs. Undoubtedly, fresh MSCs were the best choice. 
However, due to the COVID-19 outbreak, there is cur-
rently an insufficient number of donors available to pro-
vide fresh tissue samples. In addition, growth in a short 
period of time is difficult, and access to cell processing 
facilities may also be limited. Therefore, when conditions 

permit, fresh MSCs are the first choice, but in emergency 
situations, frozen MSCs can be utilized. More studies 
comparing the differences between fresh and frozen MSCs 
and interpreting existing preclinical data are required to 
increase our understanding and provide a higher standard 
of care.

Fourth, regardless of which part of the human body 
the MSCs were obtained and isolated from, they must be 
processed in a facility that follows a good manufacturing 
practice (GMP) and can ensure that the MSCs meet clinical 
quality standards. Although the effectiveness of MSCs from 
different sources in the treatment of COVID-19 has been 
studied, more optimized treatment strategies for evaluating 

Fig. 4  The main challenges and corresponding strategies of MSC-
based therapies in clinical applications. There are three steps for the 
clinical application of MSCs in COVID-19. The first is the collection 
of MSCs from different sources, then the isolation, identification, and 

multiplication of MSCs in  vitro, and finally, the infusion of MSCs 
into COVID-19 patients. The challenges faced in each step and their 
corresponding strategies to overcome these challenges are summa-
rized
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and controlling hemocompatibility, optimizing cell infusion, 
and monitoring the real-time dynamics of cells in the body 
are essential for the development of safer and more effective 
MSC therapies [199]. In theory, MSCs can be isolated from 
most tissues of the human body but are very restricted clini-
cally due to the limited availability of the source tissues, the 
invasiveness of the procedure, and the general conditions 
of the donor. It is important to select a suitable cell source, 
evaluate the difficulties in obtaining samples, and consider 
the possible adverse effects of the procedure. In summary, 
although MSCs isolated from different tissues show differ-
ent common characteristics, their biological functions and 
markers can differ depending on the tissue source. For many 
countries, especially developing and underdeveloped coun-
tries, the availability of such GMP-compliant cell processing 
facilities and ensuring the provision of clinical-grade MSCs 
are major challenges [205]. Even within the same organiza-
tion, each country may have certain differences and hetero-
geneity in the production processes with different patient 
groups using MSCs from different sources.

Then, the high cost of MSC products is an ongoing issue 
that hinders their large-scale application in the treatment of 
COVID-19 [206]. Unlike conventional therapeutic methods, 
MSCs can be collected from both autologous and alloge-
neic organisms. Standard protocols must be followed when 
collecting MSCs from the various different sources [207]. 
Highly specialized technical staff, time costs, technical costs, 
material costs, testing equipment, quality control costs, cell 
preservation, and cell transportation costs all require strict 
maintenance and management by specialized personnel. 
These personalized procedures make stem cell therapy very 
expensive. Further investigations into how to effectively con-
trol these costs must be conducted in future.

Finally, there is a lack of long-term follow-up data on 
the tolerance and safety of MSC infusions. Meng et al. con-
ducted a study that included 18 patients with moderate to 
severe COVID-19, nine of whom received UC-MSC infu-
sion therapy [182]. Based on their results, intravenous infu-
sions of UC-MSCs were found to be safe and well tolerated 
during the one-month follow-up period. Clinical studies have 
shown that MSCs have a good therapeutic effect, but some 
studies have reported that allogeneic AD-MSC infusions 
are ineffective at improving immune recovery or reducing 
immune activation and inflammation in patients with an 
immune response [44]. Our study found that a small number 
of patients still had adverse events greater than grade 3 at 
the one-month follow-up period after post-menstrual blood-
derived MSC transplantation [181]. Although these adverse 
events are not considered to be a direct effect of the MSC 
treatment itself, further verification is still required. Moreo-
ver, these clinical studies are currently based on a small sam-
ple of participants. Therefore, although MSC transplantation 
is an effective method for treating COVID-19, particularly 

critically ill patients, further large-scale clinical studies, 
potential treatment mechanisms, and long-term safety stud-
ies are still required.

Prospective directions for MSC‑based 
COVID‑19 therapies

It is worth noting that intravenous infusions of convales-
cent plasma can currently be used treat patients with severe 
COVID-19 and could easily be combined in future with 
MSC transplants to inhibit cytokine storms, promote lung 
injury repair, and the recovery of lung function [208]. It is 
also important to consider that MSCs derived from differ-
ent tissue sources have phenotypic heterogeneity and exhibit 
different differentiation possibilities and the release of differ-
ent biologically active factors [209]. Thus, selecting source 
MSCs with specific biological properties will help to enable 
precision therapies in future [210]. For critically ill elderly 
patients with COVID-19, ready-made sources of allogeneic 
cells are the best choice. However, for younger patients who 
are likely to develop COVID-19, autologous sources, such as 
AD-MSCs, can be used. Furthermore, autologous menstrual 
blood MSCs may be a good choice for women. Selecting a 
suitable source for MSCs is vital for the effective treatment 
of COVID-19. As MSC sources have different quality cri-
teria and researchers have different clinical grades for MSC 
products, regulations from authorities and clinical guidelines 
are necessary [211, 212]. To achieve global consensus, some 
specialists have already proposed therapeutic guidelines for 
MSC COVID-19 treatments [213, 214].

Understanding the origin of the global COVID-19 pan-
demic and public health emergency is an ongoing process. 
It is clear, however, that we must develop a better under-
standing of how animal viruses can jump species bound-
aries and effectively infect humans to help prevent future 
zoonotic events [215]. Some studies have found that bats 
and pangolins were the intermediate hosts for SARS-CoV-2 
[72, 76–79], while other recent studies have found that pets, 
including cats and dogs, are also susceptible [81, 82]. There-
fore, it is possible that the virus infected humans indirectly 
via transmission from wild animals to domestic pets. How-
ever, these are conjectures. The true origins and the process 
of how viruses infect specific animals and subsequently pass 
to humans should be explored from all angles in future.

Due to a lack of studies comparing the efficacy of MSCs 
and MSC-derived EVs, it is currently unclear which treat-
ment should be used. Current reports of MSC-derived EVs 
for the treatment of COVID-19 are continuous and effec-
tive [216–220]. However, since some studies have verified 
the importance of direct cell contact to the success of treat-
ment and considering the urgency of treatment, it makes 
sense to use MSCs directly. Nevertheless, both therapies 
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are likely to be accepted, as evidenced by clinical stud-
ies with COVID-19 patients. Based on this evidence, we 
hypothesize that MSCs in the form of a freeze-dried pow-
der, administered by intravenous transplant (or inhalation, 
etc.), may be a suitable method for treating COVID-19 in 
future, particularly critically ill patients. Further analysis 
of MSCs and MSC-EVs will help to further understand 
the differences and respective advantages of these treat-
ment methods.

Conclusion

Clinical studies have indicated that MSCs from various 
sources could be utilized in future treatment methods for 
patients with COVID-19 (especially critically ill patients). 
MSCs have already shown potential as adjuvant treatments 
for COVID-19 in preliminary studies. However, MSC treat-
ments for COVID-19 are currently lacking important long-
term safety information and data from large-scale controlled 
trials, which is required to make conclusive judgments. With 
the continuous development of new technologies, we have 
come to understand that combined treatments can be more 
effective and advantageous, and that we should keep this in 
mind when considering treatments for COVID-19 in future. 
Thus, MSC-based treatments combined with other treatment 
methods could play a powerful role in developing effective 
strategies to combat COVID-19.
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