Skip to main content

Advertisement

Log in

Modified horseshoe crab peptides target and kill bacteria inside host cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two β-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Peptide sequences are provided herein. Average data are provided, with processing and curve fits as reported for specific experiments.

Code availability

Not applicable.

References

  1. Centers for Disease Control and Prevention (2019) Antibiotic resistance threats in the United States. U.S. Department of Health and Human Services, Atlanta

    Book  Google Scholar 

  2. McDermott PF, Walker RD, White DG (2003) Antimicrobials: modes of action and mechanisms of resistance. Int J Toxicol 22:135–143. https://doi.org/10.1080/10915810305089

    Article  CAS  PubMed  Google Scholar 

  3. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4:VMBF-0016-2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

    Article  CAS  Google Scholar 

  4. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13:1057–1098. https://doi.org/10.1016/S1473-3099(13)70318-9

    Article  Google Scholar 

  5. Hancock RE, Patrzykat A (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2:79–83. https://doi.org/10.2174/1568005024605855

    Article  CAS  PubMed  Google Scholar 

  6. Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32:143–171. https://doi.org/10.3109/07388551.2011.594423

    Article  CAS  PubMed  Google Scholar 

  7. Luepke KH, Mohr JF 3rd (2017) The antibiotic pipeline: reviving research and development and speeding drugs to market. Expert Rev Anti Infect Ther 15:425–433. https://doi.org/10.1080/14787210.2017.1308251

    Article  CAS  PubMed  Google Scholar 

  8. Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330. https://doi.org/10.1038/nrmicro.2016.34

    Article  CAS  PubMed  Google Scholar 

  9. Grant SS, Hung DT (2013) Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4:273–283. https://doi.org/10.4161/viru.23987

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu Y, Jia Y, Yang K, Wang Z (2020) Heterogeneous strategies to eliminate intracellular bacterial pathogens. Front Microbiol 11:563. https://doi.org/10.3389/fmicb.2020.00563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kamaruzzaman NF, Kendall S, Good L (2017) Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol 174:2225–2236. https://doi.org/10.1111/bph.13664

    Article  CAS  PubMed  Google Scholar 

  12. Silva MT, Pestana NT (2013) The in vivo extracellular life of facultative intracellular bacterial parasites: role in pathogenesis. Immunobiology 218:325–337. https://doi.org/10.1016/j.imbio.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell G, Chen C, Portnoy DA (2016) Strategies used by bacteria to grow in macrophages. Microbiol Spectr 4:MCHD-0012-2015. https://doi.org/10.1128/microbiolspec.MCHD-0012-2015

    Article  CAS  Google Scholar 

  14. Abed N, Couvreur P (2014) Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 43:485–496. https://doi.org/10.1016/j.ijantimicag.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  15. Tulkens PM (1991) Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis 10:100–106. https://doi.org/10.1007/BF01964420

    Article  CAS  PubMed  Google Scholar 

  16. Nemeth A, Orgovan N, Sodar BW, Osteikoetxea X, Paloczi K, Szabo-Taylor KE, Vukman KV, Kittel A, Turiak L, Wiener Z, Toth S, Drahos L, Vekey K, Horvath R, Buzas EI (2017) Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep 7:8202. https://doi.org/10.1038/s41598-017-08392-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garzoni C, Kelley WL (2009) Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol 17:59–65. https://doi.org/10.1016/j.tim.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  18. Angus AA, Lee AA, Augustin DK, Lee EJ, Evans DJ, Fleiszig SMJ (2008) Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility. Infect Immun 76:1992–2001. https://doi.org/10.1128/Iai.01221-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garzoni C, Kelley WL (2011) Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus. Embo Mol Med 3:115–117. https://doi.org/10.1002/emmm.201100123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dikshit N, Bist P, Fenlon SN, Pulloor NK, Chua CEL, Scidmore MA, Carlyon JA, Tang BL, Chen SL, Sukumaran B (2015) Intracellular uropathogenic E. coli exploits host Rab35 for iron acquisition and survival within urinary bladder cells. Plos Pathog 11:1005083. https://doi.org/10.1371/journal.ppat.1005083

    Article  CAS  Google Scholar 

  21. Ronald A (2002) The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med 113:14s–19s. https://doi.org/10.1067/mda.2003.8

    Article  PubMed  Google Scholar 

  22. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284. https://doi.org/10.1038/nrmicro3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foxman B (2002) Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am J Med 113:5s–13s. https://doi.org/10.1016/s0002-9343(02)01054-9

    Article  PubMed  Google Scholar 

  24. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107. https://doi.org/10.1126/science.1084550

    Article  CAS  PubMed  Google Scholar 

  25. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ (2012) Host–pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36:616–648. https://doi.org/10.1111/j.1574-6976.2012.00339.x

    Article  CAS  PubMed  Google Scholar 

  26. Bokil NJ, Totsika M, Carey AJ, Stacey KJ, Hancock V, Saunders BM, Ravasi T, Ulett GC, Schembri MA, Sweet MJ (2011) Intramacrophage survival of uropathogenic Escherichia coli: differences between diverse clinical isolates and between mouse and human macrophages. Immunobiology 216:1164–1171. https://doi.org/10.1016/j.imbio.2011.05.011

    Article  CAS  PubMed  Google Scholar 

  27. Ingersoll MA, Kline KA, Nielsen HV, Hultgren SJ (2008) G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell Microbiol 10:2568–2578. https://doi.org/10.1111/j.1462-5822.2008.01230.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Engel DR, Maurer J, Tittel AP, Weisheit C, Cavlar T, Schumak B, Limmer A, van Rooijen N, Trautwein C, Tacke F, Kurts C (2008) CCR2 mediates homeostatic and inflammatory release of Gr1(high) monocytes from the bone marrow, but is dispensable for bladder infiltration in bacterial urinary tract infection. J Immunol 181:5579–5586. https://doi.org/10.4049/jimmunol.181.8.5579

    Article  CAS  PubMed  Google Scholar 

  29. Song J, Bishop BL, Li G, Grady R, Stapleton A, Abraham SN (2009) TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc Natl Acad Sci USA 106:14966–14971. https://doi.org/10.1073/pnas.0900527106

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tan NC, Foreman A, Jardeleza C, Douglas R, Vreugde S, Wormald PJ (2013) Intracellular Staphylococcus aureus: the Trojan horse of recalcitrant chronic rhinosinusitis? Int Forum Allergy Rhinol 3:261–266. https://doi.org/10.1002/alr.21154

    Article  PubMed  Google Scholar 

  31. Ting K, Aitken KJ, Penna F, Samiei AN, Sidler M, Jiang JX, Ibrahim F, Tolg C, Delgado-Olguin P, Rosenblum N, Bagli DJ (2016) Uropathogenic E. coli (UPEC) infection induces proliferation through enhancer of zeste homologue 2 (EZH2). PLoS ONE 11:0149118. https://doi.org/10.1371/journal.pone.0149118

    Article  CAS  Google Scholar 

  32. Al-Badr A, Al-Shaikh G (2013) Recurrent urinary tract infections management in women: a review. Sultan Qaboos Univ Med J 13:359–367. https://doi.org/10.12816/0003256

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zowawi HM, Harris PN, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, Williamson DA, Paterson DL (2015) The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol 12:570–584. https://doi.org/10.1038/nrurol.2015.199

    Article  CAS  PubMed  Google Scholar 

  34. Wagenlehner FME, Bjerklund Johansen TE, Cai T, Koves B, Kranz J, Pilatz A, Tandogdu Z (2020) Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol 17:586–600. https://doi.org/10.1038/s41585-020-0362-4

    Article  PubMed  Google Scholar 

  35. Van Bambeke F, Van Laethem Y, Courvalin P, Tulkens PM (2004) Glycopeptide antibiotics: from conventional molecules to new derivatives. Drugs 64:913–936. https://doi.org/10.2165/00003495-200464090-00001

    Article  PubMed  Google Scholar 

  36. Cui AL, Hu X-X, Chen Y, Jin J, Yi H, Wang X-K, He Q-Y, You X-F, Li Z-R (2020) Design, synthesis, and bioactivity of cyclic lipopeptide antibiotics with varied polarity, hydrophobicity, and positive charge distribution. ACS Infect Dis 6:1796–1806. https://doi.org/10.1021/acsinfecdis.0c00056

    Article  CAS  PubMed  Google Scholar 

  37. Nation RL, Rigatto MHP, Falci DR, Zavascki AP (2019) Polymyxin acute kidney injury: dosing and other strategies to reduce toxicity. Antibiotics 8:8010024. https://doi.org/10.3390/antibiotics8010024

    Article  CAS  Google Scholar 

  38. Cisneros JM, Rosso-Fernandez CM, Roca-Oporto C, De Pascale G, Jimenez-Jorge S, Fernandez-Hinojosa E, Matthaiou DK, Ramirez P, Diaz-Miguel RO, Estella A, Antonelli M, Dimopoulos G, Garnacho-Montero J, Magic Bullet Working Group WP (2019) Colistin versus meropenem in the empirical treatment of ventilator-associated pneumonia (Magic Bullet study): an investigator-driven, open-label, randomized, noninferiority controlled trial. Crit Care 23:383. https://doi.org/10.1186/s13054-019-2627-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. Neundorf I (2019) Antimicrobial and cell-penetrating peptides: how to understand two distinct functions despite similar physicochemical properties. Adv Exp Med Biol 1117:93–109. https://doi.org/10.1007/978-981-13-3588-4_7

    Article  CAS  PubMed  Google Scholar 

  40. Henriques ST, Melo MN, Castanho MA (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399:1–7. https://doi.org/10.1042/BJ20061100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41:1738–1742. https://doi.org/10.1128/AAC.41.8.1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vernen F, Harvey PJ, Dias SA, Veiga AS, Huang YH, Craik DJ, Lawrence N, Henriques ST (2019) Characterization of tachyplesin peptides and their cyclized analogues to improve antimicrobial and anticancer properties. Int J Mol Sci 20:4184. https://doi.org/10.3390/ijms20174184

    Article  CAS  PubMed Central  Google Scholar 

  43. Guidotti G, Brambilla L, Rossi D (2017) Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci 38:406–424. https://doi.org/10.1016/j.tips.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  44. Murzyn K, Rog T, Pasenkiewicz-Gierula M (2005) Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys J 88:1091–1103. https://doi.org/10.1529/biophysj.104.048835

    Article  CAS  PubMed  Google Scholar 

  45. Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177. https://doi.org/10.1016/j.plipres.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  46. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375. https://doi.org/10.1016/j.bbamem.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  47. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286. https://doi.org/10.3390/molecules171012276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. von Pein JB, Stocks CJ, Schembri MA, Kapetanovic R, Sweet MJ (2021) An alloy of zinc and innate immunity: galvanising host defence against infection. Cell Microbiol 23:e13268. https://doi.org/10.1111/cmi.13268

    Article  CAS  Google Scholar 

  49. Bohlmann L, De Oliveira DMP, El-Deeb IM, Brazel EB, Harbison-Price N, Ong CY, Rivera-Hernandez T, Ferguson SA, Cork AJ, Phan MD, Soderholm AT, Davies MR, Nimmo GR, Dougan G, Schembri MA, Cook GM, McEwan AG, von Itzstein M, McDevitt CA, Walker MJ (2018) Chemical synergy between ionophore PBT2 and zinc reverses antibiotic resistance. MBio 9:e02391. https://doi.org/10.1128/mBio.02391-18

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stocks CJ, Phan MD, Achard MES, Nhu NTK, Condon ND, Gawthorne JA, Lo AW, Peters KM, McEwan AG, Kapetanovic R, Schembri MA, Sweet MJ (2019) Uropathogenic Escherichia coli employs both evasion and resistance to subvert innate immune-mediated zinc toxicity for dissemination. Proc Natl Acad Sci USA 116:6341–6350. https://doi.org/10.1073/pnas.1820870116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kapetanovic R, Bokil NJ, Achard ME, Ong CL, Peters KM, Stocks CJ, Phan MD, Monteleone M, Schroder K, Irvine KM, Saunders BM, Walker MJ, Stacey KJ, McEwan AG, Schembri MA, Sweet MJ (2016) Salmonella employs multiple mechanisms to subvert the TLR-inducible zinc-mediated antimicrobial response of human macrophages. FASEB J 30:1901–1912. https://doi.org/10.1096/fj.201500061

    Article  CAS  PubMed  Google Scholar 

  52. Amiss AS, Webb JR, Mayo M, Currie BJ, Craik DJ, Henriques ST, Lawrence N (2020) Safer in vitro drug screening models for melioidosis therapy development. Am J Trop Med Hyg 103:1846–1851. https://doi.org/10.4269/ajtmh.20-0248

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, Jones BD, Warren JW (1990) Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58:1281–1289. https://doi.org/10.1128/iai.58.5.1281-1289.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bachmann B (1996) Derivations and genotypes of some mutant derivatives of Escherichia coli K12. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 2460–2488

    Google Scholar 

  55. Cheneval O, Schroeder CI, Durek T, Walsh P, Huang YH, Liras S, Price DA, Craik DJ (2014) Fmoc-based synthesis of disulfide-rich cyclic peptides. J Org Chem 79:5538–5544. https://doi.org/10.1021/jo500699m

    Article  CAS  PubMed  Google Scholar 

  56. Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326. https://doi.org/10.1016/0003-2697(89)90602-7

    Article  CAS  PubMed  Google Scholar 

  57. R_package (2021) hmoment: compute the hydrophobic moment of a protein sequence. https://rdrr.io/cran/Peptides/man/hmoment.html. Accessed 18 Mar 2021

  58. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas P, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. https://doi.org/10.1002/prot.20449

    Article  CAS  PubMed  Google Scholar 

  59. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81. https://doi.org/10.1007/BF00227471

    Article  CAS  PubMed  Google Scholar 

  60. Cockerill F, Wikler M, Alder J, Dudley M, Eliopoulos G, Ferraro M, Hardy D, Hecht D, Hindler J, Patel J (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. Clin Lab Stand Inst 32:M07-A09

    Google Scholar 

  61. Ravasi T, Mavromatis CH, Bokil NJ, Schembri MA, Sweet MJ (2016) Co-transcriptomic analysis by RNA sequencing to simultaneously measure regulated gene expression in host and bacterial pathogen. Methods Mol Biol 1390:145–158. https://doi.org/10.1007/978-1-4939-3335-8_10

    Article  CAS  PubMed  Google Scholar 

  62. Torcato IM, Huang YH, Franquelim HG, Gaspar D, Craik DJ, Castanho MA, Henriques ST (2013) Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochim Biophys Acta 1828:944–955. https://doi.org/10.1016/j.bbamem.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  63. Lawrence N, Philippe GJB, Harvey PJ, Condon ND, Benfield AH, Cheneval O, Craik DJ, Troeira HS (2020) Cyclic peptide scaffold with ability to stabilize and deliver a helical cell-impermeable cargo across membranes of cultured cancer cells. RSC Chem Biol 1:405–420. https://doi.org/10.1039/D0CB00099J

    Article  PubMed  PubMed Central  Google Scholar 

  64. Henriques ST, Pattenden LK, Aguilar M-I, Castanho MARB (2008) PrP(106–126) does not interact with membranes under physiological conditions. Biophys J 95:1877–1889. https://doi.org/10.1529/biophysj.108.131458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Young RSE, Bowman AP, Williams ED, Tousignant KD, Bidgood CL, Narreddula VR, Gupta R, Marshall DL, Poad BLJ, Nelson CC, Ellis SR, Heeren RMA, Sadowski MC, Blanksby SJ (2021) Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep 34:108738. https://doi.org/10.1016/j.celrep.2021.108738

    Article  CAS  PubMed  Google Scholar 

  66. Henriques ST, Huang Y-H, Rosengren KJ, Franquelim HG, Carvalho FA, Johnson A, Sonza S, Tachedjian G, Castanho MARB, Daly NL, Craik DJ (2011) Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J Biol Chem 286:24231–24241. https://doi.org/10.1074/jbc.M111.253393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Henriques ST, Huang Y-H, Chaousis S, Sani M-A, Poth AG, Separovic F, Craik DJ (2015) The prototypic cyclotide kalata B1 has a unique mechanism of entering cells. Chem Biol 22:1087–1097. https://doi.org/10.1016/j.chembiol.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  68. Henriques ST, Peacock H, Benfield AH, Wang CK, Craik DJ (2019) Is the mirror image a true reflection? Intrinsic membrane chirality modulates peptide binding. JACS 141:20460–20469. https://doi.org/10.1021/jacs.9b11194

    Article  CAS  Google Scholar 

  69. Figueira TN, Freire JM, Cunha-Santos C, Heras M, Goncalves J, Moscona A, Porotto M, Veiga AS, Castanho MARB (2017) Quantitative analysis of molecular partition towards lipid membranes using surface plasmon resonance. Sci Rep. https://doi.org/10.1038/srep45647

    Article  PubMed  PubMed Central  Google Scholar 

  70. Benfield AH, Defaus S, Lawrence N, Chaousis S, Condon N, Cheneval O, Huang Y-H, Chan LY, Andreu D, Craik DJ, Henriques ST (2021) Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells. BBA Biomembranes 1863:183480. https://doi.org/10.1016/j.bbamem.2020.183480

    Article  CAS  PubMed  Google Scholar 

  71. Henriques ST, Lawrence N, Chaousis S, Ravipati AS, Cheneval O, Benfield AH, Elliott AG, Kavanagh AM, Cooper MA, Chan LY, Huang YH, Craik DJ (2017) Redesigned spider peptide with improved antimicrobial and anticancer properties. ACS Chem Biol 12:2324–2334. https://doi.org/10.1021/acschembio.7b00459

    Article  CAS  Google Scholar 

  72. Vernen F, Craik DJ, Lawrence N, Henriques ST (2019) Cyclic analogues of horseshoe crab peptide tachyplesin I with anticancer and cell penetrating properties. ACS Chem Biol 14:2895–2908. https://doi.org/10.1021/acschembio.9b00782

    Article  CAS  PubMed  Google Scholar 

  73. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  74. Schembri MA, Sokurenko EV, Klemm P (2000) Functional flexibility of the FimH adhesin: insights from a random mutant library. Infect Immun 68:2638–2646. https://doi.org/10.1128/IAI.68.5.2638-2646.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Edwards IA, Elliott AG, Kavanagh AM, Zuegg J, Blaskovich MA, Cooper MA (2016) Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of beta-hairpin peptides. ACS Infect Dis 2:442–450. https://doi.org/10.1021/acsinfecdis.6b00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Edwards IA, Elliott AG, Kavanagh AM, Blaskovich MAT, Cooper MA (2017) Structure-activity and -toxicity relationships of the antimicrobial peptide tachyplesin-1. ACS Infect Dis 3:917–926. https://doi.org/10.1021/acsinfecdis.7b00123

    Article  CAS  PubMed  Google Scholar 

  77. Torcato IM, Huang YH, Franquelim HG, Gaspar DD, Craik DJ, Castanho MA, Henriques ST (2013) The antimicrobial activity of Sub3 is dependent on membrane binding and cell-penetrating ability. ChemBioChem 14:2013–2022. https://doi.org/10.1002/cbic.201300274

    Article  CAS  PubMed  Google Scholar 

  78. Kumar P, Kizhakkedathu JN, Straus SK (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8:8010004. https://doi.org/10.3390/biom8010004

    Article  CAS  Google Scholar 

  79. Ulett GC, Totsika M, Schaale K, Carey AJ, Sweet MJ, Schembri MA (2013) Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr Opin Microbiol 16:100–107. https://doi.org/10.1016/j.mib.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  80. Schaale K, Peters KM, Murthy AM, Fritzsche AK, Phan MD, Totsika M, Robertson AA, Nichols KB, Cooper MA, Stacey KJ, Ulett GC, Schroder K, Schembri MA, Sweet MJ (2016) Strain- and host species-specific inflammasome activation, IL-1β release, and cell death in macrophages infected with uropathogenic Escherichia coli. Mucosal Immunol 9:124–136. https://doi.org/10.1038/mi.2015.44

    Article  CAS  PubMed  Google Scholar 

  81. Murthy AMV, Sullivan MJ, Nhu NTK, Lo AW, Phan MD, Peters KM, Boucher D, Schroder K, Beatson SA, Ulett GC, Schembri MA, Sweet MJ (2019) Variation in hemolysin A expression between uropathogenic Escherichia coli isolates determines NLRP3-dependent vs. -independent macrophage cell death and host colonization. Faseb J 33:7437–7450. https://doi.org/10.1096/fj.201802100R

    Article  CAS  PubMed  Google Scholar 

  82. Silverman BD (2001) Hydrophobic moments of protein structures: spatially profiling the distribution. Proc Natl Acad Sci USA 98:4996–5001. https://doi.org/10.1073/pnas.081086198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marggraf MB, Panteleev PV, Emelianova AA, Sorokin MI, Bolosov IA, Buzdin AA, Kuzmin DV, Ovchinnikova TV (2018) Cytotoxic potential of the novel horseshoe crab peptide polyphemusin III. Mar Drugs. https://doi.org/10.3390/md16120466

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang L, Scott MG, Yan H, Mayer LD, Hancock RE (2000) Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. Biochemistry 39:14504–14514. https://doi.org/10.1021/bi0011173

    Article  CAS  PubMed  Google Scholar 

  85. Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10:525–537. https://doi.org/10.1038/nrmicro2836

    Article  CAS  PubMed  Google Scholar 

  86. Stafford SL, Bokil NJ, Achard MES, Kapetanovic R, Schembri MA, McEwan AG, Sweet MJ (2013) Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Bioscience Rep 33:541–554. https://doi.org/10.1042/BSR20130014

    Article  CAS  Google Scholar 

  87. Schaible ME, Kaufmann SHE (2004) Iron and microbial infection. Nat Rev Microbiol 2:946–953. https://doi.org/10.1038/nrmicro1046

    Article  CAS  PubMed  Google Scholar 

  88. Andreini C, Bertini I (2012) A bioinformatics view of zinc enzymes. J Inorg Biochem 111:150–156. https://doi.org/10.1016/j.jinorgbio.2011.11.020

    Article  CAS  PubMed  Google Scholar 

  89. Haase H, Rink L (2007) Signal transduction in monocytes: the role of zinc ions. Biometals 20:579. https://doi.org/10.1007/s10534-006-9029-8

    Article  CAS  PubMed  Google Scholar 

  90. Lonergan ZR, Skaar EP (2019) Nutrient zinc at the host–pathogen interface. Trends Biochem Sci 44:1041–1056. https://doi.org/10.1016/j.tibs.2019.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. https://doi.org/10.1016/S0168-6445(03)00055-X

    Article  CAS  PubMed  Google Scholar 

  92. Park S, Imlay JA (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J Bacteriol 185:1942–1950. https://doi.org/10.1128/Jb.185.6.1942-1950.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chamnongpol S, Dodson W, Cromie MJ, Harris ZL, Groisman EA (2002) Fe(III)-mediated cellular toxicity. Mol Microbiol 45:711–719. https://doi.org/10.1046/j.1365-2958.2002.03041.x

    Article  CAS  PubMed  Google Scholar 

  94. Schroder K, Irvine KM, Taylor MS, Bokil NJ, Le Cao K-A, Masterman K-A, Labzin LI, Semple CA, Kapetanovic R, Fairbairn L, Akalin A, Faulkner GJ, Baillie JK, Gongora M, Daub CO, Kawaji H, McLachlan GJ, Goldman N, Grimmond SM, Carninci P, Suzuki H, Hayashizaki Y, Lenhard B, Hume DA, Sweet MJ (2012) Conservation and divergence in toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci USA 109:E944. https://doi.org/10.1073/pnas.1110156109

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Australian Government scholarships (ASA. Research Training Program Scholarship), the Australian Research Council (Centre of Excellence for Innovations in Peptide and Protein Science CE200100012; DJC. Laureate Fellowship FL150100146; STH. Future Fellowship FT150100398), the National Health and Medical Research Council grants (NL. 1183927; JRW. and BJC. 1098337). NDC is supported as a CZI Imaging Scientist by grant number 2020-225648 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation.

Author information

Authors and Affiliations

Authors

Contributions

AA, NL, STH, and RK contributed to the study conception and design. Material preparation, data collection and analysis were performed by AA, JP, JW, NL, STH, NC, and PH. Funding and resources were provided by NL, STH, DC, BC, MS, and MS. The manuscript was written by AA, NL, STH, and RK. All authors commented on the previous versions of the manuscript and read and approved the final manuscript. The authors would like to thank Dr Kaustav Gupta at The Institute for Molecular Bioscience, Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, for harvesting and culturing bone marrow macrophages.

Corresponding authors

Correspondence to Ronan Kapetanovic, Sónia Troeira Henriques or Nicole Lawrence.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts or competing interests.

Ethical approval

The University of Queensland Institutional animal ethics committee approved the use of primary mouse cells, herein referred to as BMM cells (IMB/123/18). RBCs were collected from healthy adult donors following protocols approved by the Human Research Ethics Committees (University of Queensland approval number 2013000582) Identity of human blood donors was not recorded or reported.

Consent to participate

Human donors consented to use of their blood for research purposes.

Consent for publication

Human donors consented to publication of research using their blood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 3604 KB)

Supplementary file2 (PDF 2948 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiss, A.S., von Pein, J.B., Webb, J.R. et al. Modified horseshoe crab peptides target and kill bacteria inside host cells. Cell. Mol. Life Sci. 79, 38 (2022). https://doi.org/10.1007/s00018-021-04041-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04041-z

Keywords

Navigation