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Abstract
Tunnelling nanotubes (TNTs) are an emerging route of long-range intercellular communication that mediate cell-to-cell 
exchange of cargo and organelles and contribute to maintaining cellular homeostasis by balancing diverse cellular stresses. 
Besides their role in intercellular communication, TNTs are implicated in several ways in health and disease. Transfer of 
pathogenic molecules or structures via TNTs can promote the progression of neurodegenerative diseases, cancer malignancy, 
and the spread of viral infection. Additionally, TNTs contribute to acquiring resistance to cancer therapy, probably via their 
ability to rescue cells by ameliorating various pathological stresses, such as oxidative stress, reactive oxygen species (ROS), 
mitochondrial dysfunction, and apoptotic stress. Moreover, mesenchymal stem cells play a crucial role in the rejuvenation 
of targeted cells with mitochondrial heteroplasmy and oxidative stress by transferring healthy mitochondria through TNTs. 
Recent research has focussed on uncovering the key regulatory molecules involved in the biogenesis of TNTs. However 
further work will be required to provide detailed understanding of TNT regulation. In this review, we discuss possible asso-
ciations with Rho GTPases linked to oxidative stress and apoptotic signals in biogenesis pathways of TNTs and summarize 
how intercellular trafficking of cargo and organelles, including mitochondria, via TNTs plays a crucial role in disease pro-
gression and also in rejuvenation/therapy.

Keywords  Intercellular transfer · Mitochondrial homeostasis · Reactive oxygen species (ROS) · Apoptosis · Cellular stress · 
Chemotherapy resistance · Mesenchymal stem cells · Rejuvenation

Abbreviations
ALL	� Acute lymphoblastic leukemia
AML	� Acute myeloid leukemia
BMSC	� Bone marrow stromal cells
CAD	� Catecholaminergic neuronal cells
EVs	� Extracellular vesicles
ERK	� Extracellular signal-regulated kinase
GBM	� Glioblastoma Multiforme
HIV	� Human immunodeficiency virus
HUVEC	� Human umbilical vein endothelial cells
iPSC	� Induced pluripotent stem cells

MIRO	� Mitochondrial Rho GTPase
MSCs	� Mesenchymal stem cells
mtDNA	� Mitochondrial DNA
PAK1	� P21-activated kinase 1
PC12	� Pheochromocytoma cells
Rho	� Ras homologous protein
ROS	� Reactive oxygen species
TASC	� Tumour activated stromal cells
TNTs	� Tunnelling nanotubes
TMs	� Tumour microtubes
UV	� Ultraviolet

Introduction

Cell-to-cell communication plays an important role in main-
taining tissue homeostasis. Intercellular communication can 
be facilitated by many soluble factors such as growth fac-
tors, neurotransmitters, cytokines, and extracellular vesicles 
(EVs), such as exosomes. A study in 2004 [1], first described 
intercellular transfer of molecular information directly 
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between distal cells forming f-actin containing membrane 
lipid bilayer encircled ‘tunnel’ structures. Since then, the 
term “tunnelling nanotube” (TNT) has referred to this mem-
brane f-actin conduit. Originally, the diameter of TNTs was 
reported to be 50–200 nm [1]. Later studies reported a rela-
tively thicker diameter of around 700–900 nm, using optical 
resolution limited methods [2]. Cancer cells form networks 
of TNT-like but relatively thicker membrane protrusions, 
termed as tumour microtubes (TMs), consisting of both 
f-actin and tubulin. They are closed-ended and connected 
via gap junctions at the ends to transfer electrical signals 
and small molecules [3, 4]. Several studies have also referred 
to thinner nano-scaled membrane actin closed-ended pro-
trusions as TNTs. Conventionally, f-actin containing open 
ended nanostructures are termed as TNTs. Recently, cor-
relative FIB-SEM, light- and cryo-electron microscopy of 
neuronal cells revealed that TNTs of diameter 550 nm are 
made of 2–11 bundles of thinner channels (iTNTs), where 
the average diameter of each iTNTs was 123 ± 66 nm [5]. 
TNTs allow for the intercellular transport of various cargos, 
including viruses, organelles, RNAs, proteins, and toxic 
materials such as neurodegenerative protein aggregates [6]. 
Transfer of mitochondria has been implicated in disease 
progression and also in regeneration. Several studies have 
shown that intracellular build-up of prions or prion-like 
proteins facilitate disease progression by transferring toxic 
aggregates of these proteins or stressed organelles such as 
lysosomes and mitochondria from pathological donor cells 
to healthier acceptor cells [7, 8]. On the other hand, healthy 
mitochondria from mesenchymal stem cells (MSCs) are 
transferred to targeted acceptor cells with non-functional 
mtDNA/mitochondria [6, 9, 10]

In addition to mediating intercellular communication, 
TNTs rescue cells by relieving diverse cellular stresses 
caused by pathological conditions, such as oxidative stress, 
reactive oxygen species (ROS), mitochondrial heteroplasmy 
and apoptotic stress [11, 12]. Although the molecular drivers 
for the formation of TNTs under various pathophysiological 
conditions are unclear, studies over the last two decades indi-
cate that cells form direct long-range connections between 
neighbouring cells via TNTs to alleviate cellular stress. 
Cytoskeletal dynamics play a pivotal role in the formation 
of TNTs and several studies have implicated the localized 
control of Rho GTPases in TNT-linked actin polymerization 
pathways [3, 13]. It has become evident that classical Rho 
GTPases (Rac1, Cdc42, and RhoA) control the complex reg-
ulatory balance in cell cycle progression and apoptotic sig-
nalling pathways [13, 14]. The capacity of MSCs to donate 
healthy mitochondria to targeted acceptor cells via TNTs 
correlates with the activity and expression of the atypical 
mitochondrial Rho GTPases [15], Miro-1 [9] and Miro-2 
[16]. In this review, we summarize the role of TNTs in 
counteracting oxidative stress, mitochondrial heteroplasmy 

and apoptosis-related diverse cellular stresses, and the pos-
sible association of Rho GTPase-linked apoptotic signalling 
pathways in cytoskeleton remodelling and plasma membrane 
surface dynamics in the biogenesis of TNTs.

TNTs in intercellular transport

The original report [1], showed the transfer of endocytic 
vesicles and organelles as intercellular mediators between 
pheochromocytoma (PC12) cells. Subsequently, several 
studies in various cellular systems have shown the presence 
of TNTs and a range of organelles and cargo transportation 
via TNTs. These cargos include cytosolic proteins [17], ions 
[18], and miRNAs [19] that propagate between cells.

Various cellular stresses and pathological conditions pro-
mote intercellular transfer of organelles including the endo-
plasmic reticulum, golgi [12], mitochondria [20], endosomes 
[21] and lysosomes [7] via TNTs. Transfer of lysosomes 
from healthy endothelial progenitor cells to stressed human 
umbilical vein endothelial cells (HUVEC) has been reported, 
and this transfer helps to maintain lysosomal pH [22]. Oxi-
dative stress-induced transfer of aberrant mitochondria via 
TNTs helps to propagate pathology from stressed to healthy 
cells in several diseases [23]. On the other hand, the trans-
fers of healthy mitochondria from MSCs to targeted stressed 
cells is emerging as a potential therapy in regeneration [9, 
10, 24, 25]

TNTs in the spread of disease pathology

Studies in 2005–2010 reported the transfer of prion proteins 
[26], bacteria [27], and viruses [28] from cell to cell through 
nanotubes leading to the spread of pathology. Viruses such 
as human immunodeficiency virus (HIV), and herpesviruses 
use this intercellular mode of dissemination without expos-
ing themselves to the extracellular environment, thereby 
escaping the humoral immunity of the host [29, 30]. The first 
report about the propagation of virus particles from infected 
to uninfected T cells via TNTs was described for HIV [28]. 
Later, the involvement of TNTs in the spread of viruses has 
also been demonstrated for the influenza A virus [31], DNA 
viruses including alpha herpesvirus [32], bovine herpesvirus 
1 [33] and human T-cell leukemia virus type 1 [34].

Initial studies demonstrated in 2009 that prions can hijack 
TNTs to spread the prion pathology in a cell-to-cell man-
ner [26]. Subsequently, the intercellular propagation of 
amyloidogenic proteins via TNTs has been widely studied. 
Several such studies have demonstrated the spread of neu-
rodegenerative proteins such as α-synuclein [35, 36], tau 
[37, 38], amyloid β [12, 39] and huntingtin [40]. One of the 
major hallmarks of neurodegenerative diseases is insufficient 
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degradative capacity of lysosomes due to the accumulation 
of proteotoxic aggregates [41, 42], and lysosomal accumu-
lation generates mitochondrial toxicity and increased oxi-
dative stress. Evidence from several studies indicates that 
lysosomes can mediate the spread of neurodegenerative pro-
tein aggregates via TNTs [7]. It has also been demonstrated 
that α-synuclein aggregates can be transferred from cell to 
cell bound to mitochondria travelling within TNTs between 
neuronal cells [8].

TNTs in cancer malignancy

TNTs that are formed between malignant cells or between 
malignant cells and other cells in the tumour matrix are 
known to initiate tumour formation and metastasis [43]. 
Cell-to-cell transfer of mitochondria via TNTs plays a cru-
cial role in maintaining metabolic homeostasis in cancer 
cells [44]. Below we discuss several key reports regarding 
cancer malignancy and TNTs.

Tumour cells network via nano-sized actin membrane 
open-ended conduits (TNTs proper) or by relatively thicker 
closed-ended micro-sized tubes (TMs) containing tubulin 
to transport organelles. The initial study [45], first dem-
onstrated TNT like structures in intact solid tumours dis-
sected from patients with lung adenocarcinoma and pleural 
mesothelioma malignant tissues. More recently, tumour 
cell-derived networks of membrane-tubes were observed in 
animal models of astrocytic brain tumours, including glio-
blastomas (GBM tumours) [46]. The structures are longer 
and thicker in diameter, and referred to as TMs. Intercellu-
lar transfer of mitochondria from tumour-activated stromal 
cells (TASC) by means of TNTs, EVs or cannibalism pro-
motes proliferation of patient derived primary cultures of 
GBM cells in a 3D environment [47]. GBM stem-like cells 
(GSLCs) used in 2D culture and 3D organoid culture showed 
mitochondrial transfer via TNTs. These studies proposed a 
role of TNTs and TMs in the context of malignancy spread 
in organoid tumour models [48].

Mitochondrial transfer by means of TNTs from non-
malignant bone marrow stromal cells to multiple myeloma 
cells resulted in tumour progression [49]. The same study 
also showed that shRNA-mediated CD38 knockdown inhib-
ited mitochondrial transfer in vivo. The same knockdown in 
the in vivo model resulted in attenuation of tumour growth 
and improved survival rate of animal. In addition, hypoxia 
elevated the formation of TNTs and malignancy in ovarian 
and colon cancer [50]. This state of oxygen insufficiency 
results in increased levels of ROS in tumour cells, which 
leads to increased metabolic rate, gene expression, mito-
chondrial peroxidation, cellular stress and apoptotic stress 
[51, 52]. Cancer cells can counteract ROS induced apoptosis 
by enzymatic and non-enzymatic antioxidant defences, and 

it is now well accepted that moderate levels of ROS contrib-
utes to tumour progression by promoting several signalling 
pathways and gene mutations [53]. Several recent studies 
have shown that ROS promotes formation of TNTs and 
TNTs contribute in developing malignancy and resistance 
to cancer therapy [54].

Bcl-2, a highly conserved anti-apoptotic protein plays 
a central role in acquiring resistance to cancer therapy. A 
recent study [55] has shown that TNTs contribute to the pro-
gression of colorectal cancer by upregulating ERK (extracel-
lular signal regulated kinase) expression in recipient cells 
by transferring mutant KRAS to these cells. They tend to 
develop TNTs as a part of their invasion and migration pro-
cesses, and to transfer miRNAs as regulators of signalling 
pathways [56–58]. All these recent reports and several other 
studies (summarized in the Table 1) document that TNT 
formation is directly related to tumour malignancy and plays 
a significant role in tumour adaptation.

TNTs in drug resistance

Intercellular communications were suggested as a potential 
target for anti-cancer therapies as early as 2004 [70]. Several 
recent studies have demonstrated that TNT and TM networks 
play crucial roles in making these tumours exceptionally 
resistant to therapy [48]. Mitochondrial transfer from tumour 
activated stromal cells (TASC) to glioblastoma (GBM) cells 
was observed via TNTs, and the process provided chemo- 
and radio-resistance of the GBM [47]. Another study around 
the same time showed, GBM cells import the DNA repair 
enzyme O6-methylguanine-DNA methyltransferase via 
TNTs, thus enhancing resistance to temozolomide [71]. A 
self-repair mechanism of laser irradiated brain tumour cells 
was observed, and it involved formation of a network of 
TNTs and TMs [46]. Furthermore, GBM cells irradiated 
with α- particles establish a network of TNTs more rapidly 
compared to control irradiated cells in vitro within 24 h [72].

TNT-mediated cancer drug resistance and rescue from 
apoptotic cell death is a great challenge in cancer treatment. 
Acquisition of mitochondria in cancer cells (MCF-7) from 
endothelial cells through TNTs resulted in doxorubicin 
resistance in MCF-7 cells [63]. Later, in 2015 [73], it was 
shown that disruption of TNTs decreased the resistance of 
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) 
cell to antileukemic drug prednisolone. A study in pancreatic 
cancer cells showed, doxorubicin increased the formation 
of TNTs in vitro in a dose-dependent manner and the bio-
genesis of TNTs promotes resistance to chemotherapy. The 
observation of drug resistance was also demonstrated in vivo 
in tumour specimens from patients diagnosed with pancre-
atic adenocarcinoma and neuroendocrine carcinoma [74]. 
The study by Wang et al. [66], showed that mitochondrial 
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exchange through TNTs from Jurkat cells to MSCs by 
ICAM-1 mediated cell adhesion led to chemoresistance (Ara 
C and Methotrexate) in Jurkat cells. They also showed inhi-
bition of TNT formation led to reduced chemoresistance in 
primary T-ALL cells (T cell acute lymphoblastic leukemia). 
Chemotherapy drugs, cytarabine (Ara-C) and doxorubicin 
(DNR), activated MSCs to disseminate mitochondria to sur-
rounding ALL cells, and as a result chemoresistance devel-
oped [65]. Moreover, transfer of myosin containing cellular 
vesicles from stromal cells to chronic myeloid leukemia cells 
resulted in increased resistance of leukemic cells to imatinib 
which is a tyrosine kinase inhibitor [75].

Mitochondrial transfer from mesenchymal 
stem cells via TNTs

From a therapeutic point of view, TNTs can play a signifi-
cant role in stem cell therapy, while the same cellular pro-
cesses can be detrimental in certain pathological conditions. 
Several studies have shown that the transfer of mitochondria 
primarily depends on the communication between MSCs 
and target cells, and this communication is governed by 
several mechanisms. They include EVs, gap junctions, cell 
fusions, and TNTs [76]. Mitochondria provide the capacity 
for aerobic respiration, play important roles in aging and 
dysfunction in various heritable and acquired diseases. The 
human mitochondrial genome has 16,568 bp and encodes for 
only a small set of mitochondria-specific proteins, rRNAs 
and tRNAs, while majority of proteins are encoded by the 
nucleus [77]. The mutation rate in the mtDNA genome is 
high because it is not protected by histones and has low-
efficiency nucleotide repair mechanisms [78].The first report 
of mitochondrial transfer from MSCs was published in 2006, 
and showed rescue of aerobic respiration by transferring 
functioning mitochondria via TNTs to cancer cells devoid 
of mtDNA [10]. Following this, several studies reported a 
high propensity of mitochondrial propagation and dynamics 
through TNTs extended from MSCs to the targeted somatic 
cells [20, 79–81]. Researchers have documented transfer of 
mitochondria from MSCs to the HUVEC, which are initially 
subject to ischemia–reperfusion injury [82]. A study in a 
mouse model of lung injury showed transfer of mitochon-
dria from bone marrow-derived stromal cells to pulmonary 
alveoli caused alleviation of respiratory damage [83].

Recent research has shown that MSCs from tissue of 
divers origins, such as bone marrow, Wharton's jelly, adi-
pose, and dental pulp play a role in protecting damaged cells 
from oxidative stress by donating mitochondria [84]. Stud-
ies have also demonstrated that MSCs play a crucial role in 
reducing mitochondrial ROS levels during repair pathways 
[9, 85]. However, it is not clear why MSCs exclusively form 
TNTs to targeted cells and what signal stimulates healthy Ta
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MSCs to induce TNTs and transfer functional mitochon-
dria. Paracrine factors released from neighbouring stressed 
cells modulate MSCs to initiate its action of damage repair. 
One study has shown that phosphatidylserine externalized 
on the surface of damaged cells (apoptotic epithelial cell) 
prompted MSCs to form TNTs [80]. In another study, it has 
been shown that connexin 43 plays a vital role in the regu-
lation of TNT formation [86]. The same study has shown 
that iPSC derived MSCs transfer mitochondria via TNTs 
to rescue injured lung epithelial cells in a mouse model as 
well as in an in vitro model. This “donation” of mitochon-
dria helped in alleviating asthma-related inflammation levels 
due to hypoxic conditions, and also prevented apoptosis of 
epithelial cells. One study [87] has shown that transfer of 
mitochondria via TNTs from MSCs to ocular cells helped 
in increasing the aerobic capacity and upregulation of mito-
chondrial genes. The work [88] suggested that both parac-
rine factors and mitochondrial transfer protect cardiomyo-
cytes against stress, independent of each other.

In the last 15 years, several studies have documented 
transfer of mitochondria from different types of MSCs to 
aberrant cells via TNTs. In Table 2, we have summarized 
these studies, most of which have shown the involvement of 
oxidative stress, mitochondrial stress, ROS and/or apoptotic 
stress in the biogenesis of TNTs or cell-to-cell transfer via 
TNTs. Transfer of mtDNA and healthy mitochondria from 
MSCs via TNTs can be a potential remedy.

However, a deeper understanding is needed to implement 
the transfer of mitochondria as a therapy, and focus should 
be given to unravelling various stress signals that could 
affect transcellular trafficking of mitochondria via TNTs, 
both in diseases and in rejuvenation [3, 107, 108].

Association of tunnelling nanotubes 
with oxidative stress, apoptosis, 
and mitochondrial homeostasis

Mitochondria play an important role in oxidative phospho-
rylation, aerobic metabolism, calcium signalling, and apop-
tosis [109]. Mitochondrial dysfunction-related oxidative 
stress is associated with diseases such as cardiomyopathy, 
ischemic heart diseases, lung disorders, brain injury, stroke, 
and neurodegenerative diseases like Alzheimer’s and Parkin-
son’s disease. Exchange of mtDNA between cells via transfer 
of mitochondria could modulate respiration and cell cycle 
arrest. Levels and homoplasmic polymorphism of mtDNA 
regulate mtDNA-processing enzymes, replication, and tran-
scription of mtDNA and respiratory complexes. Dysfunction 
of these processes can result in aberrant mitochondria with 
formation of ROS and also cell cycle arrest due to impaired 
function of the respiration-linked enzyme dihydroorotate 
dehydrogenase [110]. Melanoma cancer cells devoid of 

mtDNA injected in to syngeneic C57BL/6Nsu9-DsRed2 mice 
expressed with red fluorescent mitochondrial protein can 
recover to form tumours after import of mtDNA by acquir-
ing whole mitochondria from neighbouring healthy cells 
[81]. Oxidative stress and ROS promote the biogenesis of 
TNTs in several pathological conditions [54]. Hydrogen 
peroxide (H2O2) treatment in the primary hippocampal rat 
astrocytes and neurons promotes the biogenesis of TNTs, at 
the same time the induced cellular stress activates tumour 
suppressor protein p53 [12]. However, later studies were 
reported that p53 is not the key element for TNT formation, 
and the effect of H2O2 on TNTs is cell type-specific [111].

The crucial role of intercellular, horizontal transfer of 
mitochondria demonstrated recently under various patho-
physiological conditions, primarily in rescuing tumouri-
genesis and bioenergetic deficiencies. Tan et al. [108] have 
shown that the mtDNA-deficient cells acquired functional 
mitochondrial genome from the surrounding tumour micro-
environment or MSCs to regulate many factors related to 
mitochondrial respiration. In cancer cells, delaying apopto-
sis resulted in the restoration of cell survival and enhance-
ment of tumourigenicity or metastasis. MSCs from differ-
ent sources exert different rescue capacities against aerobic 
respiration ability and postpone apoptosis of the recipient 
cells [23, 107]. It is possible that paracrine factors related 
to oxidative stress and/or ROS sent from stressed cells trig-
ger MSCs to make cellular bridges via TNT structures for 
transferring mitochondria.

The role of TNTs in rescue from apoptotic cell death has 
also been demonstrated in neuronal cells [25]. This study 
showed that PC12 cells that were treated with UV light were 
rescued by non-cancer cells by transfer of mitochondria via 
TNT-like structures when compared with untreated cells. 
The UV treated cells that had lost cytochrome C formed 
TNTs but did not enter the apoptotic cascade. The study 
suggests that transfer of mitochondria from healthy cells via 
TNTs reverses the cellular stress in early stage of apoptosis. 
A recent work [112] has shown that α-synuclein protofi-
bril-induced defects in cellular degradation machineries in 
microglia enhance cell to cell networks via TNTs to transfer 
the burden of proteotoxic aggregates to neighbouring cells. 
The study has also shown that mitochondrial shuffling and 
sharing of proteotoxic burdens via TNTs alleviate ROS lev-
els and rescue cells from ROS-induced apoptosis.

Rho GTPase related signals counteract 
apoptosis via tunnelling nanotubes

TNTs mediate direct intercellular transport between 
neighbouring cells and, structurally, they are open-ended 
membrane actin conduits. Thus, modulation of membrane 
and cytoskeleton dynamics may play a major role in the 
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biogenesis of TNTs. Several studies have shown that actin-
depolymerizing agents such as cytochalasin B and latruncu-
lin B inhibit TNT formation [1, 113]. The master regulators 
of the cytoskeleton, Rho family of GTPases (Rac1, Cdc42, 
and RhoA), are implicated in TNT formation by many stud-
ies [13]. The localized control of Rho GTPase regulators, the 
GTPase activating proteins (GAPs) and guanine nucleotide 
exchange factors 42 (GEFs) have been proposed to play a 
role in TNT assembly. One study [114] in immune cells has 
reported that Cdc42 and Rac1, and their respective effector 
molecules WASP and WAVE2, are involved in the biogen-
esis of TNTs by modulating actin polymerization via the 
Arp2/3 complex. Using FRET-based biosensors, the study 
has demonstrated that Rac1 stays distributed throughout the 
TNT structures, while Cdc42 is involved in initiating the 
biogenesis of TNTs. Transfer of oncogenic KRAS promotes 
formation of TNTs by regulating the ERK pathway in colo-
rectal cancer. It is thus important to note that Rho GTPase-
regulated ERK signalling pathway controls the expression of 
pro-survival or anti-apoptotic Bcl-2 family of proteins [55].

Two actin regulators downstream of Rho GTPases, 
βCamKII and cofilin, have recently been demonstrated to 
play a role in the biogenesis of TNTs. Cross-talk between the 
signalling cascades of Rho GTPases with the actin regula-
tory molecules βCamKII, cofilin and Arp2/3 is well docu-
mented in the early development of the dendritic spine [115]. 
Vargas et al. [116], showed that stability of TNTs depends 
on the activation of the Wnt/Ca2+ signal-dependent modu-
lation of βCamKII in the CAD (mouse catecholaminergic 
neuronal cell line) cells and primary neurons. The actin-
binding ability of the protein is modulated by phosphoryla-
tion of βCamKII [117]. Inactivation of cofilin by the RNA-
binding protein nucleolin induces TNT biogenesis [118]. In 
addition, the alphaherpesvirus-induced biogenesis of TNTs 
depends on the US3 protein kinase-mediated activation of 
p21-activated kinases (PAKs) apparently by activation of 
Cdc42/Rac1 and Rho signalling axis, within a poorly under-
stood complex mechanism [32]. PAK kinases are considered 
primarily the effector of the Rho family GTPases Cdc42 and 
Rac1. Additionally, studies have shown that PAK1 inhibi-
tor IPA-3 attenuates alpha herpes virus-induced TNT-like 
membrane actin projections [32, 119]. PAK2 has also been 
reported in HIV-1 Nef protein-mediated TNT formation 
[120].

In our recent study, we have observed that Alzheimer’s 
pathogenesis, the amyloid-β oligomers internalize via PAK1 
dependent actin mediated endocytic pathway, and the inter-
nalization process promotes formation of TNT-like struc-
tures and direct cell-to-cell transfer of oligomers in neuronal 
cells [39]. The study has also shown colocalization of acti-
vated PAK1 with f-actin throughout the TNT network.

Conversely, the Cdc42/IRSp53/VASP system plays a 
role in the filopodia-promoting network, being negatively 

correlated with formation of TNTs in neuronal cells [121]. 
Recently, another study has reported that Arp2/3 negatively 
regulates biogenesis of TNTs in CAD cells [5]. Another 
recent study [112] has shown that inhibition of ROCK (using 
chemical inhibitor Y-27632), a downstream signalling mol-
ecule of Rho/Rac/Cdc42, promotes biogenesis of TNTs. The 
study has indicated that ROCK inhibition promotes TNT 
formation via Myosin II regulated f-actin modulation. Alto-
gether, these studies suggest a complex regulatory mecha-
nism of Rho GTPases in TNT biogenesis. A further recent 
report [118], has also shown that M-sec regulated exocyst 
complex needs to function together with actin polymeri-
zation by inhibiting activity of cofilin in the biogenesis of 
TNTs in multiple mammalian cellular models. The study 
suggests that in addition to actin polymerization, M-Sec-
dependent plasma membrane (PM) re-modelling is a neces-
sary step in formation of TNTs.

The rescue capacity of MSCs mediated via TNTs corre-
lates with the Miro-1 expression, as shown for the transfer 
capacity of mitochondria from MSCs to stressed alveolar 
epithelial cells via TNTs [9]. Miro-1 and -2 belong to a 
class of novel Rho-GTPase, amino acid sequence revealed 
GTPases domain homolog to the classical Rho-GTPases in 
the N-terminal part of the protein [16]. Interestingly, Miro 
proteins lack the membrane-binding motif CAAX in their 
C-terminal domains, unlike small GTPases but contain a 
second GTP-binding domain without homology to typical 
Rho-GTPases [15]. Studies have shown that overexpression 
of Miro-1 protein leads to an increase in the mitochondrial 
transfer capacity and, hence, there is a decrease in the apop-
tosis level and mitochondrial ROS production, and allevia-
tion of respiratory dysfunction [122]. A recent study has 
shown that the monooxygenase domain of MICAL2PV, 
a spliced isoform product of the neuronal guidance gene 
MICAL2, interacts with Miro-2, inhibiting TNT formation 
by depolymerization of f-actin. MICAL2PV plays crucial 
role in cell survival and down-regulation of MICAL2PV, 
and protect lung cancer cells treated with chemotherapeutic 
drugs [123].

Rho GTPases in cell surface dynamics 
and TNT biogenesis

Several cytoskeleton remodelling signals are correlated 
with cell surface dynamics and PM remodelling [124]. 
Small GTPases Arf and Rab regulate exocytosis of specific 
vesicles to discrete sites of the PM. Rho GTPases and their 
regulatory factors contribute to the process by modulating 
the tethering and subsequent fusion of exocytic vesicles. One 
study [125], showed that formation of TNTs is regulated by 
the exocyst complex protein M-Sec in HeLa cells, which is 
involved in exosome fusion and membrane expansion. The 
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exocyst complex contributes to PM recruitment of the actin 
remodelling proteins Ral-GTPase and filamin to promote 
TNTs. The regulatory molecules associated with the recy-
cling of endocytic vesicles and vesicle trafficking, which reg-
ulates PM surface dynamics, have also been implicated by 
several studies in the biogenesis of TNTs. Rab class of small 
GTPases, Rab8a, Rab11a, and Rab35 are implicated in TNT 
formation by regulating membrane recycling in neuronal and 
cancer cells [126, 127]. Rab35-GTP, ACAP2, ARF6-GDP, 
and EHD1 promote TNT formation in a cascade-like man-
ner in neuronal cells. It may therefore be that modulation of 
cytoskeleton remodelling via actin polymerization signalling 
cascades is linked to cell membrane surface dynamics to 
induce formation of membrane actin-derived TNTs.

Rho GTPases in cell cycle progression, 
apoptosis, and TNT biogenesis

RhoA, Rac1, and Cdc42 are the most studied typical Rho 
GTPases, not only involved in the regulation of distinct actin 
cytoskeleton and PM structures, they are also interlinked via 
complex molecular signalling events to regulate cell cycle 
progressions and apoptosis [128]. Rac1-regulated oxidase 
was reported to modulate acute cellular necrosis, apopto-
sis, and acute inflammatory response in hepatic ischemia. 
Rac1-induced production of ROS by an NADPH oxidase 
was also reported in both phagocytic and non-phagocytic 
cells [129]. Rac1 can also activate signalling downstream 
of NFκB, PAK, and ERK by ROS-mediated pathways in 
neuronal cells to counteract apoptosis. Neuronal cells have 
limited regenerative capability, and continuous ‘fitness’ 
of these cells is vital; these cells possess intrinsic compe-
tence to attenuate apoptosis [130]. Instead, apoptosis due 
to elevated stress/ROS levels in neuronal cells may induce 
formation of TNTs to ameliorate cellular stress [54]. In can-
cer cells, Rac1-mediated MAPK/ERK and Akt signalling 
involves the upregulation of the pro-survival or anti-apop-
totic Bcl-2 family of proteins [131]. The pro-survival signal-
ling of MAPK/ERK involving formation of TNTs occurs in 
various cancer cells [132], and TNTs promote cell prolifera-
tion and cancer malignancy levels [48]. In addition, TNTs 
are involved in transfer of apoptosis regulators from healthy 
cells to diseased cells. Several studies have also shown that 
the pro-apoptotic Fas ligand is transferred via TNTs to T 
lymphocytes to induce cell death [133, 134].

Conclusions

The discovery of TNTs in 2004, opened up a novel mecha-
nism of long-range intercellular communication. TNTs are 
actin-membrane conduits, thereby, actin regulation together 

with dynamic PM modulatory cellular events play major 
roles in their biogenesis. The complex functions of Rho 
GTPase signalling cascades have been implicated by several 
studies in TNT biogenesis. However, some contradictions 
exist in the literature and there may be some variability in 
TNT regulation in different cell types. Moreover, discrepan-
cies also exist in the definition of supercellularity of TNT 
structures in different studies. It is challenging to resolve 
TNTs and TMs in ex vivo organoid models or in vivo animal 
models. Detection methods using advanced imaging tools or 
exclusive markers need to be explored to make advancement 
in the field.

Rho GTPase signalling cascades, that are not only 
related to the regulation of distinct actin cytoskeleton and 
PM dynamics, downstream of their linear axis are inter-
linked via complex molecular signalling events to regulate 
cell cycle progression and apoptosis (Fig. 1) [128, 131]. 
Direct cell-to-cell transfer of organelles or cargo via TNTs 
has emerged as an important mechanism for maintaining 
cellular homeostasis, and this process has been implicated 
in disease spread and disease resistance [1]. The wide-
spread association of oxidative stress, apoptosis, mito-
chondrial homeostasis, and mitochondrial heteroplasmy 
with the biogenesis of TNTs has been established by sev-
eral studies [1, 113]. Cell types that possess an inherent 
mechanism to resist apoptosis, such as neuronal cells and 
cancer cells, promote the biogenesis of TNTs possibly to 
maintain cell survival under pathological stress. Some 
studies for example [10], have shown that ROS and apop-
totic stress promotes the biogenesis of TNTs, however, the 
molecular events associated with apoptosis signalling or 
oxidative stresses are not the primary regulatory elements. 
Biogenesis of TNTs increases the survival of cancer cells 
treated with chemotherapy, radiotherapy, UV radiation, 
and laser-induced phototoxicity. MSCs rescue cells from 
apoptotic death triggered by oxidative stress or mitochon-
drial heteroplasmy. Therefore, MSC-mediated transfer of 
mitochondria could have therapeutic potential, for exam-
ple, by promoting wound healing in response to mitochon-
drial import [135]. On the other hand, transfer of healthy 
mitochondria rescues ROS-induced apoptosis in cancer 
cells and promotes cancer malignancies. It is unclear to 
what extent damage to mitochondria triggers the formation 
of TNTs. Do damaged recipient cells actively form TNTs 
to healthy neighbouring cells? If not then, what signal trig-
gers healthy cells to make direct connections via TNTs to 
transfer mitochondria. Several articles have shown that the 
atypical Rho GTPases, Miro 1 and Miro 2, play significant 
roles in cell to cell transfer of mitochondria from MSCs. 
Classical Rho GTPases are implicated in other cell types, 
such as neuronal cells, immune cells and in the transfer of 
virus spreading. Structurally and functionally these two 
types of Rho GTPases are distinct, although they do share 
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several homologous domains and may have overlapping 
functions in TNT signalling pathways. Thus, future stud-
ies are required to investigate the emerging role of Rho 
GTPase signalling cascades in TNT biogenesis and in the 
formation of supercellular structures with potential impor-
tance in maintaining tissue homeostasis and pathophysi-
ological conditions.
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