Skip to main content

Advertisement

Log in

DHX9 contributes to the malignant phenotypes of colorectal cancer via activating NF-κB signaling pathway

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the leading cause of cancer-related mortality worldwide, which makes it urgent to identify novel therapeutic targets for CRC treatment. In this study, DHX9 was filtered out as the prominent proliferation promoters of CRC by siRNA screening. Moreover, DHX9 was overexpressed in CRC cell lines, clinical CRC tissues and colitis-associated colorectal cancer (CAC) mouse model. The upregulation of DHX9 was positively correlated with poor prognosis in patients with CRC. Through gain- and loss-of function experiments, we found that DHX9 promoted CRC cell proliferation, colony formation, apoptosis resistance, migration and invasion in vitro. Furthermore, a xenograft mouse model and a hepatic metastasis mouse model were utilized to confirm that forced overexpression of DHX9 enhanced CRC outgrowth and metastasis in vivo, while DHX9 ablation produced the opposite effect. Mechanistically, from one aspect, DHX9 enhances p65 phosphorylation, promotes p65 nuclear translocation to facilitate NF-κB-mediated transcriptional activity. From another aspect, DHX9 interacts with p65 and RNA polymerase II (RNA Pol II) to enhance the downstream targets of NF-κB (e.g., Survivin, Snail) expression to potentiate the malignant phenotypes of CRC. Together, our results suggest that DHX9 may be a potential therapeutic target for prevention and treatment of CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author (Zhiping.Liu@gmu.edu.cn) on reasonable request.

References

  1. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. The Lancet 394:1467–1480

    Article  Google Scholar 

  2. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: a cancer journal for clinicians, 68 (2018) 394–424.

  3. He L, Chen Y, Wu Y, Xu Y, Zhang Z, Liu Z (2017) Nucleic acid sensing pattern recognition receptors in the development of colorectal cancer and colitis. Cell Mol Life Sci 74:2395–2411

    Article  CAS  PubMed  Google Scholar 

  4. He L, Liu Y, Lai W, Tian H, Chen L, Xie L, Liu Z (2020) DNA sensors, crucial receptors to resist pathogens, are deregulated in colorectal cancer and associated with initiation and progression of the disease, Journal of. Cancer 11:893–905

    Article  CAS  Google Scholar 

  5. He L, Xiao X, Yang X, Zhang Z, Wu L, Liu Z (2017) STING signaling in tumorigenesis and cancer therapy: a friend or foe? Cancer Lett 402:203–212

    Article  CAS  PubMed  Google Scholar 

  6. Jain A, Bacolla A, Chakraborty P, Grosse F, Vasquez KM (2010) Human DHX9 helicase unwinds triple-helical DNA structures. Biochemistry 49:6992–6999

    Article  CAS  PubMed  Google Scholar 

  7. Fuller-Pace FV (2006) DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34:4206–4215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim S, Kang N, Park SH, Wells J, Hwang T, Ryu E, Kim BG, Hwang S, Kim SJ, Kang S, Lee S, Stirling P, Myung K, Lee KY (2020) ATAD5 restricts R-loop formation through PCNA unloading and RNA helicase maintenance at the replication fork. Nucleic Acids Res 48:7218–7238

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin YC, Yu YS, Lin HH, Hsiao KY (2020) Oxaliplatin-induced DHX9 phosphorylation promotes oncogenic circular RNA CCDC66 expression and development of chemoresistance. Cancers 12:697

    Article  CAS  PubMed Central  Google Scholar 

  10. Lee T, Pelletier J (2016) The biology of DHX9 and its potential as a therapeutic target. Oncotarget 7:42716–42739

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee T, Paquet M, Larsson O, Pelletier J (2016) Tumor cell survival dependence on the DHX9 DExH-box helicase. Oncogene 35:5093–5105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B. Shen, Y. Chen, J. Hu, M. Qiao, J. Ren, J. Hu, J. Chen, N. Tang, A. Huang, Y. Hu, Hepatitis B virus X protein modulates upregulation of DHX9 to promote viral DNA replication, Cellular microbiology, 22 (2020) e13148.

  13. Yan X, Chang J, Sun R, Meng X, Wang W, Zeng L, Liu B, Li W, Yan X, Huang C, Zhao Y, Li Z, Yang S (2019) DHX9 inhibits epithelial-mesenchymal transition in human lung adenocarcinoma cells by regulating STAT3. Am J Trans Res 11:4881–4894

    CAS  Google Scholar 

  14. M. Vázquez-Del Mercado, C.A. Palafox-Sánchez, J.F. Muñoz-Valle, G. Orozco-Barocio, E. Oregon-Romero, R.E. Navarro-Hernández, M. Salazar-Páramo, J. Armendariz-Borunda, J.I. Gámez-Nava, L. Gonzalez-Lopez, J.Y. Chan, E.K. Chan, M. Satoh, High prevalence of autoantibodies to RNA helicase A in Mexican patients with systemic lupus erythematosus, Arthritis research & therapy, 12 (2010) R6.

  15. Koirala P, Huang J, Ho TT, Wu F, Ding X, Mo YY (2017) LncRNA AK023948 is a positive regulator of AKT. Nat Commun 8:14422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Hong, O. An, T.H.M. Chan, V.H.E. Ng, H.S. Kwok, J.S. Lin, L. Qi, J. Han, D.J.T. Tay, S.J. Tang, H. Yang, Y. Song, F. Bellido Molias, D.G. Tenen, L. Chen, Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer, Nucleic acids research, 46 (2018) 7953–7969.

  17. Mineo M, Ricklefs F, Rooj AK, Lyons SM, Ivanov P, Ansari KI, Nakano I, Chiocca EA, Godlewski J, Bronisz A (2016) The long non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep 15:2500–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Närvä E, Rahkonen N, Emani MR, Lund R, Pursiheimo JP, Nästi J, Autio R, Rasool O, Denessiouk K, Lähdesmäki H, Rao A, Lahesmaa R (2012) RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem cells (Dayton, Ohio) 30:452–460

    Article  PubMed Central  Google Scholar 

  19. Myöhänen S, Baylin SB (2001) Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter. J Biol Chem 276:1634–1642

    Article  PubMed  Google Scholar 

  20. Kawai S, Amano A (2012) BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol 197:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halaby MJ, Harris BR, Miskimins WK, Cleary MP, Yang DQ (2015) Deregulation of internal ribosome entry site-mediated p53 translation in cancer cells with defective p53 response to DNA damage. Mol Cell Biol 35:4006–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    Article  CAS  PubMed  Google Scholar 

  23. Sakamoto K, Maeda S (2010) Targeting NF-kappaB for colorectal cancer. Expert Opin Ther Targets 14:593–601

    Article  CAS  PubMed  Google Scholar 

  24. Patel M, Horgan PG, McMillan DC, Edwards J (2018) NF-kappaB pathways in the development and progression of colorectal cancer. Trans Res 197:43–56

    Article  CAS  Google Scholar 

  25. Pahlavan Y, Kahroba H, Samadi N (2019) Survivin modulatory role in autoimmune and autoinflammatory diseases. J Cell Physiol 234:19440–19450

    Article  CAS  PubMed  Google Scholar 

  26. L. Mei, Y.M. Zheng, T. Song, V.R. Yadav, L.C. Joseph, L. Truong, S. Kandhi, Rieske iron-sulfur protein induces FKBP12.6/RyR2 complex remodeling and subsequent pulmonary hypertension through NF-κB/cyclin D1 pathway, Nature communications, 11 (2020) 3527.

  27. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  CAS  PubMed  Google Scholar 

  28. Wu TJ, Chang SS, Li CW, Hsu YH, Chen TC, Lee WC, Yeh CT, Hung MC (2016) Severe hepatitis promotes hepatocellular carcinoma recurrence via NF-κB pathway-mediated epithelial-mesenchymal transition after resection, clinical cancer research : an official journal of the American association for. Can Res 22:1800–1812

    CAS  Google Scholar 

  29. Tetsuka T, Uranishi H, Sanda T, Asamitsu K, Yang JP, Wong-Staal F, Okamoto T (2004) RNA helicase A interacts with nuclear factor kappaB p65 and functions as a transcriptional coactivator. Eur J Biochem 271:3741–3751

    Article  CAS  PubMed  Google Scholar 

  30. Ng YC, Chung WC, Kang HR, Cho HJ, Park EB, Kang SJ, Song MJ (2018) A DNA-sensing-independent role of a nuclear RNA helicase, DHX9, in stimulation of NF-κB-mediated innate immunity against DNA virus infection. Nucleic Acids Res 46:9011–9026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Mi, P. Ray, J. Liu, C.T. Kuan, J. Xu, D. Hsu, B.A. Sullenger, R.R. White, B.M. Clary, In Vivo Selection Against Human Colorectal Cancer Xenografts Identifies an Aptamer That Targets RNA Helicase Protein DHX9, Molecular therapy. Nucleic acids, 5 (2016) e315.

  32. Meier R, Franceschini A, Horvath P, Tetard M, Mancini R, von Mering C, Helenius A, Lozach PY (2014) Genome-wide small interfering RNA screens reveal VAMP3 as a novel host factor required for Uukuniemi virus late penetration. J Virol 88:8565–8578

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jin Y, Zhang P, Wang Y, Jin B, Zhou J, Zhang J, Pan J (2018) Neddylation blockade diminishes hepatic metastasis by dampening cancer stem-like cells and angiogenesis in uveal melanoma, clinical cancer research : an official journal of the American association for. Can Res 24:3741–3754

    CAS  Google Scholar 

  34. Man SM, Zhu Q, Zhu L, Liu Z, Karki R, Malik A, Sharma D, Li L, Malireddi RK, Gurung P, Neale G, Olsen SR, Carter RA, McGoldrick DJ, Wu G, Finkelstein D, Vogel P, Gilbertson RJ, Kanneganti TD (2015) Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162:45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Liu S, Ye Q, Pan J (2019) Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene addiction and reduces liver metastasis in uveal melanoma. Mol Cancer 18:140

    Article  PubMed  PubMed Central  Google Scholar 

  36. J. Zhou, S. Liu, Y. Wang, W. Dai, H. Zou, S. Wang, J. Zhang, J. Pan, Salinomycin effectively eliminates cancer stem-like cells and obviates hepatic metastasis in uveal melanoma, Molecular Cancer, 18 (2019).

  37. Li Y, Chen F, Shen W, Li B, Xiang R, Qu L, Zhang C, Li G, Xie H, Katanaev VL, Jia L (2020) WDR74 induces nuclear beta-catenin accumulation and activates Wnt-responsive genes to promote lung cancer growth and metastasis. Cancer Lett 471:103–115

    Article  CAS  PubMed  Google Scholar 

  38. Jiang YY, Lin DC, Mayakonda A, Hazawa M, Ding LW, Chien WW, Xu L, Chen Y, Xiao JF, Senapedis W, Baloglu E, Kanojia D, Shang L, Xu X, Yang H, Tyner JW, Wang MR, Koeffler HP (2017) Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut 66:1358–1368

    Article  CAS  PubMed  Google Scholar 

  39. Liu C, Nie D, Li J, Du X, Lu Y, Li Y, Zhou J, Jin Y, Pan J (2018) Antitumor effects of blocking protein neddylation in T315I-BCR-ABL leukemia cells and leukemia stem cells. Can Res 78:1522–1536

    Article  CAS  Google Scholar 

  40. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava SK, Bhardwaj A, Arora S, Singh S, Azim S, Tyagi N, Carter JE, Wang B, Singh AP (2015) MYB is a novel regulator of pancreatic tumour growth and metastasis. Br J Cancer 113:1694–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Y, Zhou Y, Li B, Chen F, Shen W, Lu Y, Zhong C, Zhang C, Xie H, Katanaev VL, Jia L (2020) WDR74 modulates melanoma tumorigenesis and metastasis through the RPL5-MDM2-p53 pathway. Oncogene 39:2741–2755

    Article  CAS  PubMed  Google Scholar 

  43. Ceelen W, Ramsay RG, Narasimhan V, Heriot AG, De Wever O (2020) Targeting the tumor microenvironment in colorectal peritoneal metastases. Trends in cancer 6:236–246

    Article  PubMed  Google Scholar 

  44. D.K. Filippiadis, G. Velonakis, The Role of Percutaneous Ablation in the Management of Colorectal Cancer Liver Metastatic Disease, Diagnostics (Basel, Switzerland), 11 (2021).

  45. Lo MC, Yip TC, Ngan KC, Cheng WW, Law CK, Chan PS, Chan KC, Wong CK, Wong RN, Lo KW, Ng WT, Lee WM, Tsao SW, Kwong LW, Lung ML, Mak NK (2013) Role of MIF/CXCL8/CXCR2 signaling in the growth of nasopharyngeal carcinoma tumor spheres. Cancer Lett 335:81–92

    Article  CAS  PubMed  Google Scholar 

  46. Zhang S, Grosse F (1997) Domain structure of human nuclear DNA helicase II (RNA helicase A). J Biol Chem 272:11487–11494

    Article  CAS  PubMed  Google Scholar 

  47. Cao S, Sun R, Wang W, Meng X, Zhang Y, Zhang N, Yang S (2017) RNA helicase DHX9 may be a therapeutic target in lung cancer and inhibited by enoxacin. Am J Trans Res 9:674–682

    CAS  Google Scholar 

  48. Y.L. Wang, J.Y. Liu, J.E. Yang, X.M. Yu, Z.L. Chen, Y.J. Chen, M. Kuang, Y. Zhu, S.M. Zhuang, Lnc-UCID Promotes G1/S Transition and Hepatoma Growth by Preventing DHX9-Mediated CDK6 Down-regulation, Hepatology (Baltimore, Md.), 70 (2019) 259–275.

  49. Sun Z, Wang L, Eckloff BW, Deng B, Wang Y, Wampfler JA, Jang J, Wieben ED, Jen J, You M, Yang P (2014) Conserved recurrent gene mutations correlate with pathway deregulation and clinical outcomes of lung adenocarcinoma in never-smokers. BMC Med Genomics 7:32

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  51. Mills JR, Malina A, Lee T, Di Paola D, Larsson O, Miething C, Grosse F, Tang H, Zannis-Hadjopoulos M, Lowe SW, Pelletier J (2013) RNAi screening uncovers Dhx9 as a modifier of ABT-737 resistance in an Eμ-myc/Bcl-2 mouse model. Blood 121:3402–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Natoli G, Saccani S, Bosisio D, Marazzi I (2005) Interactions of NF-kappaB with chromatin: the art of being at the right place at the right time. Nat Immunol 6:439–445

    Article  CAS  PubMed  Google Scholar 

  53. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  CAS  PubMed  Google Scholar 

  54. Wan F, Anderson DE, Barnitz RA, Snow A, Bidere N, Zheng L, Hegde V, Lam LT, Staudt LM, Levens D, Deutsch WA, Lenardo MJ (2007) Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell 131:927–939

    Article  CAS  PubMed  Google Scholar 

  55. Tartey S, Matsushita K, Vandenbon A, Ori D, Imamura T, Mino T, Standley DM, Hoffmann JA, Reichhart JM, Akira S, Takeuchi O (2014) Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex. EMBO J 33:2332–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from National Natural Science Foundation of China (31560260 and 31960163 to Zhiping Liu, Youth Project 82003801 to Shenglan Liu), The Jinggang Scholar Program in Jiangxi Province (to Zhiping Liu), Natural Science Foundation of Jiangxi Province (20171ACB20024 and 20181BAB205032 to Zhiping Liu) and Technological Innovation Team Project of Gannan Medical University (TD201703 to Zhiping Liu).

Author information

Authors and Affiliations

Authors

Contributions

ZL and FX developed the hypothesis, designed, guided research, and revised manuscript. SL performed the experiments, analyzed data, and wrote the manuscript. LH performed the experiments and analyzed data. JW, XW, LX, WD and LC assisted the experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fuhua Xie or Zhiping Liu.

Ethics declarations

Conflict of interest

All authors have no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., He, L., Wu, J. et al. DHX9 contributes to the malignant phenotypes of colorectal cancer via activating NF-κB signaling pathway. Cell. Mol. Life Sci. 78, 8261–8281 (2021). https://doi.org/10.1007/s00018-021-04013-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-04013-3

Keywords

Navigation