Skip to main content

Advertisement

Log in

Modifications of the human tRNA anticodon loop and their associations with genetic diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Transfer RNAs (tRNAs) harbor the most diverse posttranscriptional modifications. Among such modifications, those in the anticodon loop, either on nucleosides or base groups, compose over half of the identified posttranscriptional modifications. The derivatives of modified nucleotides and the crosstalk of different chemical modifications further add to the structural and functional complexity of tRNAs. These modifications play critical roles in maintaining anticodon loop conformation, wobble base pairing, efficient aminoacylation, and translation speed and fidelity as well as mediating various responses to different stress conditions. Posttranscriptional modifications of tRNA are catalyzed mainly by enzymes and/or cofactors encoded by nuclear genes, whose mutations are firmly connected with diverse human diseases involving genetic nervous system disorders and/or the onset of multisystem failure. In this review, we summarize recent studies about the mechanisms of tRNA modifications occurring at tRNA anticodon loops. In addition, the pathogenesis of related disease-causing mutations at these genes is briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Nguyen HA, Hoffer ED, Dunham CM (2019) Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNAPro(CGG) for decoding. J Biol Chem 294:5281–5291

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeng QY, Peng GX, Li G, Zhou JB, Zheng WQ, Xue MQ, Wang ED, Zhou XL (2019) The G3–U70-independent tRNA recognition by human mitochondrial alanyl-tRNA synthetase. Nucleic Acids Res 47:3072–3085

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou XL, Chen Y, Zeng QY, Ruan ZR, Fang P, Wang ED (2019) Newly acquired N-terminal extension targets threonyl-tRNA synthetase-like protein into the multiple tRNA synthetase complex. Nucleic Acids Res 47:8662–8674

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Zhou JB, Zeng QY, Wu S, Xue MQ, Fang P, Wang ED, Zhou XL (2020) Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNA(Lys). Sci China Life Sci 63:1227–1239

    CAS  PubMed  Google Scholar 

  5. Zheng WQ, Zhang Y, Yao Q, Chen Y, Qiao X, Wang ED, Chen C, Zhou XL (2020) Nitrosative stress inhibits aminoacylation and editing activities of mitochondrial threonyl-tRNA synthetase by S-nitrosation. Nucleic Acids Res 48:6799–6810

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Li G, Eriani G, Wang ED, Zhou XL (2021) Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease. Sci China Life Sci. https://doi.org/10.1007/s11427-020-1838-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hopper AK, Phizicky EM (2003) tRNA transfers to the limelight. Genes Dev 17:162–180

    CAS  PubMed  Google Scholar 

  8. Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329

    CAS  PubMed  Google Scholar 

  9. Krutyhołowa R, Zakrzewski K, Glatt S (2019) Charging the code—tRNA modification complexes. Curr Opin Struct Biol 55:138–146

    PubMed  Google Scholar 

  10. Lin H, Miyauchi K, Harada T, Okita R, Takeshita E, Komaki H, Fujioka K, Yagasaki H, Goto YI, Yanaka K, Nakagawa S, Sakaguchi Y, Suzuki T (2018) CO2-sensitive tRNA modification associated with human mitochondrial disease. Nat Commun 9:1875

    PubMed  PubMed Central  Google Scholar 

  11. Oerum S, Dégut C, Barraud P, Tisné C (2017) m1A post-transcriptional modification in tRNAs. Biomolecules 7:20. https://doi.org/10.3390/biom7010020

    Article  CAS  PubMed Central  Google Scholar 

  12. Westhof E, Liang S, Tong X, Ding X, Zheng L, Dai F (2020) Unusual tertiary pairs in eukaryotic tRNA(Ala). RNA 26:1519–1529

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolff P, Villette C, Zumsteg J, Heintz D, Antoine L, Chane-Woon-Ming B, Droogmans L, Grosjean H, Westhof E (2020) Comparative patterns of modified nucleotides in individual tRNA species from a mesophilic and two thermophilic archaea. RNA 26:1957–1975

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dai Z, Liu H, Liao J, Huang C, Ren X, Zhu W, Zhu S, Peng B, Li S, Lai J, Liang L, Xu L, Peng S, Lin S, Kuang M (2021) N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell 81:3339-3355 e8

    CAS  PubMed  Google Scholar 

  15. Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, Zhang W, Lim J, Aspris D, Sendinc E, Garyfallos DA, Gu M, Ali R, Gutierrez A, Mikutis S, Bernardes GJL, Fischer ES, Bradley A, Vassiliou GS, Slack FJ, Tzelepis K, Gregory RI (2021) METTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell 81:3323-3338 e14

    CAS  PubMed  Google Scholar 

  16. Suzuki T, Yashiro Y, Kikuchi I, Ishigami Y, Saito H, Matsuzawa I, Okada S, Mito M, Iwasaki S, Ma D, Zhao X, Asano K, Lin H, Kirino Y, Sakaguchi Y, Suzuki T (2020) Complete chemical structures of human mitochondrial tRNAs. Nat Commun 11:4269

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Machnicka MA, Olchowik A, Grosjean H, Bujnicki JM (2014) Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol 11:1619–1629

    PubMed  Google Scholar 

  18. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 41:D262–D267

    CAS  PubMed  Google Scholar 

  19. de Crécy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM, Leidel SA, Bujnicki JM (2019) Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res 47:2143–2159

    PubMed  PubMed Central  Google Scholar 

  20. de Crécy-Lagard V, Jaroch M (2021) Functions of bacterial tRNA modifications: from ubiquity to diversity. Trends Microbiol 29:41–53

    PubMed  Google Scholar 

  21. Ranjan N, Rodnina MV (2016) tRNA wobble modifications and protein homeostasis. Translation (Austin, Tex) 4:e1143076

    Google Scholar 

  22. Stuart JW, Gdaniec Z, Guenther R, Marszalek M, Sochacka E, Malkiewicz A, Agris PF (2000) Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. Biochemistry 39:13396–13404

    CAS  PubMed  Google Scholar 

  23. Murphy FVT, Ramakrishnan V, Malkiewicz A, Agris PF (2004) The role of modifications in codon discrimination by tRNA(Lys)UUU. Nat Struct Mol Biol 11:1186–91

    CAS  PubMed  Google Scholar 

  24. Zhou JB, Wang Y, Zeng QY, Meng SX, Wang ED, Zhou XL (2020) Molecular basis for t6A modification in human mitochondria. Nucleic Acids Res 48:3181–3194

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Han L, Phizicky EM (2018) A rationale for tRNA modification circuits in the anticodon loop. RNA 24:1277–1284

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Zhu WY, Yang WQ, Li CT, Liu RJ (2021) The occurrence order and cross-talk of different tRNA modifications. China Life Sci Sci. https://doi.org/10.1007/s11427-020-1906-4

    Article  Google Scholar 

  27. Torres AG, Piñeyro D, Rodríguez-Escribà M, Camacho N, Reina O, Saint-Léger A, Filonava L, Batlle E, Ribas de Pouplana L (2015) Inosine modifications in human tRNAs are incorporated at the precursor tRNA level. Nucleic Acids Res 43:5145–5157

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Auxilien S, Guérineau V, Szweykowska-Kulińska Z, Golinelli-Pimpaneau B (2012) The human tRNA m (5) C methyltransferase Misu is multisite-specific. RNA Biol 9:1331–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Karlsborn T, Tükenmez H, Mahmud AK, Xu F, Xu H, Byström AS (2014) Elongator, a conserved complex required for wobble uridine modifications in eukaryotes. RNA Biol 11:1519–1528

    PubMed  Google Scholar 

  30. Ledoux S, Olejniczak M, Uhlenbeck OC (2009) A sequence element that tunes Escherichia coli tRNA(Ala)(GGC) to ensure accurate decoding. Nat Struct Mol Biol 16:359–364

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Olejniczak M, Dale T, Fahlman RP, Uhlenbeck OC (2005) Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding. Nat Struct Mol Biol 12:788–793

    CAS  PubMed  Google Scholar 

  32. Auffinger P, Westhof E (1999) Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J Mol Biol 292:467–483

    CAS  PubMed  Google Scholar 

  33. Hall RH (1963) Isolation of 3-methyluridine and 3-methylcytidine from solubleribonucleic acid. Biochem Biophys Res Commun 12:361–364

    CAS  PubMed  Google Scholar 

  34. D’Silva S, Haider SJ, Phizicky EM (2011) A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3-methylcytidine modification in the tRNA anti-codon loop. RNA 17:1100–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Noma A, Yi S, Katoh T, Takai Y, Suzuki T, Suzuki T (2011) Actin-binding protein ABP140 is a methyltransferase for 3-methylcytidine at position 32 of tRNAs in Saccharomyces cerevisiae. RNA 17:1111–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sprinzl M, Vassilenko KS (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 33:D139–D140

    CAS  PubMed  Google Scholar 

  37. Arimbasseri AG, Iben J, Wei FY, Rijal K, Tomizawa K, Hafner M, Maraia RJ (2016) Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNASers requires N6-isopentenylation of A37. RNA 22:1400–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Clark WC, Evans ME, Dominissini D, Zheng G, Pan T (2016) tRNA base methylation identification and quantification via high-throughput sequencing. RNA 22:1771–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu L, Liu X, Sheng N, Oo KS, Liang J, Chionh YH, Xu J, Ye F, Gao YG, Dedon PC, Fu XY (2017) Three distinct 3-methylcytidine (m(3)C) methyltransferases modify tRNA and mRNA in mice and humans. J Biol Chem 292:14695–14703

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Han L, Marcus E, D’Silva S, Phizicky EM (2017) S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates. RNA 23:406–419

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mao XL, Li ZH, Huang MH, Wang JT, Zhou JB, Li QR, Xu H, Wang XJ, Zhou XL (2021) Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6. Nucleic Acids Res 49:8309–8323

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lentini JM, Alsaif HS, Faqeih E, Alkuraya FS, Fu D (2020) DALRD3 encodes a protein mutated in epileptic encephalopathy that targets arginine tRNAs for 3-methylcytosine modification. Nat Commun 11:2510

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ignatova VV, Kaiser S, Ho JSY, Bing X, Stolz P, Tan YX, Lee CL, Gay FPH, Lastres PR, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Sanz-Moreno A, Klein-Rodewald T, Calzada-Wack J, Ibragimov E, Valenta M, Lukauskas S, Pavesi A, Marschall S, Leuchtenberger S, Fuchs H, Gailus-Durner V, de Angelis MH, Bultmann S, Rando OJ, Guccione E, Kellner SM, Schneider R (2020) METTL6 is a tRNA m(3)C methyltransferase that regulates pluripotency and tumor cell growth. Sci Adv 6:eaaz4551

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang LH, Zhang XY, Hu T, Chen XY, Li JJ, Raida M, Sun N, Luo Y, Gao X (2020) The SUMOylated METTL8 induces r-loop and tumorigenesis via m3C. iScience 23:100968

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dimitrova DG, Teysset L, Carre C (2019) RNA 2’-O-methylation (Nm) modification in human diseases. Genes (Basel) 10:117. https://doi.org/10.3390/genes10020117

    Article  CAS  Google Scholar 

  46. Vitali P, Kiss T (2019) Cooperative 2’-O-methylation of the wobble cytidine of human elongator tRNA(Met)(CAT) by a nucleolar and a Cajal body-specific box C/D RNP. Genes Dev 33:741–746

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li J, Wang YN, Xu BS, Liu YP, Zhou M, Long T, Li H, Dong H, Nie Y, Chen PR, Wang ED, Liu RJ (2020) Intellectual disability-associated gene ftsj1 is responsible for 2’-O-methylation of specific tRNAs. EMBO Rep 21:e50095

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM (2012) Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA 18:1921–1933

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hirata A, Okada K, Yoshii K, Shiraishi H, Saijo S, Yonezawa K, Shimizu N, Hori H (2019) Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a novel binding interface for tRNA recognition. Nucleic Acids Res 47:10942–10955

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Guy MP, Shaw M, Weiner CL, Hobson L, Stark Z, Rose K, Kalscheuer VM, Gecz J, Phizicky EM (2015) Defects in tRNA anticodon loop 2’-O-methylation are implicated in nonsyndromic X-linked Intellectual disability due to mutations in ftsj1. Hum Mutat 36:1176–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nagayoshi Y, Chujo T, Hirata S, Nakatsuka H, Chen CW, Takakura M, Miyauchi K, Ikeuchi Y, Carlyle BC, Kitchen RR, Suzuki T, Katsuoka F, Yamamoto M, Goto Y, Tanaka M, Natsume K, Nairn AC, Suzuki T, Tomizawa K, Wei FY (2021) Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Sci Adv 7:eabf3072. https://doi.org/10.1126/sciadv.abf3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trzaska C, Amand S, Bailly C, Leroy C, Marchand V, Duvernois-Berthet E, Saliou JM, Benhabiles H, Werkmeister E, Chassat T, Guilbert R, Hannebique D, Mouray A, Copin MC, Moreau PA, Adriaenssens E, Kulozik A, Westhof E, Tulasne D, Motorin Y, Rebuffat S, Lejeune F (2020) 2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations. Nat Commun 11:1509

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moukadiri I, Prado S, Piera J, Velázquez-Campoy A, Björk GR, Armengod ME (2009) Evolutionarily conserved proteins MnmE and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions. Nucleic Acids Res 37:7177–7193

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yim L, Moukadiri I, Björk GR, Armengod ME (2006) Further insights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli. Nucleic Acids Res 34:5892–5905

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li X, Guan MX (2002) A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation. Mol Cell Biol 22:7701–7711

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li X, Li R, Lin X, Guan MX (2002) Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem 277:27256–27264

    CAS  PubMed  Google Scholar 

  57. Asano K, Suzuki T, Saito A, Wei FY, Ikeuchi Y, Numata T, Tanaka R, Yamane Y, Yamamoto T, Goto T, Kishita Y, Murayama K, Ohtake A, Okazaki Y, Tomizawa K, Sakaguchi Y, Suzuki T (2018) Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease. Nucleic Acids Res 46:1565–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurata S, Weixlbaumer A, Ohtsuki T, Shimazaki T, Wada T, Kirino Y, Takai K, Watanabe K, Ramakrishnan V, Suzuki T (2008) Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U.G wobble pairing during decoding. J Biol Chem 283:18801–18811

    CAS  PubMed  Google Scholar 

  59. Peng GX, Zhang Y, Wang QQ, Li QR, Xu H, Wang ED, Zhou XL (2021) The human tRNA taurine modification enzyme GTPBP3 is an active GTPase linked to mitochondrial diseases. Nucleic Acids Res 49:2816–2834

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fakruddin M, Wei FY, Suzuki T, Asano K, Kaieda T, Omori A, Izumi R, Fujimura A, Kaitsuka T, Miyata K, Araki K, Oike Y, Scorrano L, Suzuki T, Tomizawa K (2018) Defective mitochondrial trna taurine modification activates global proteostress and leads to mitochondrial disease. Cell Rep 22:482–496

    CAS  PubMed  Google Scholar 

  61. Kopajtich R, Nicholls TJ, Rorbach J, Metodiev MD, Freisinger P, Mandel H, Vanlander A, Ghezzi D, Carrozzo R, Taylor RW, Marquard K, Murayama K, Wieland T, Schwarzmayr T, Mayr JA, Pearce SF, Powell CA, Saada A, Ohtake A, Invernizzi F, Lamantea E, Sommerville EW, Pyle A, Chinnery PF, Crushell E, Okazaki Y, Kohda M, Kishita Y, Tokuzawa Y, Assouline Z, Rio M, Feillet F, Mousson de Camaret B, Chretien D, Munnich A, Menten B, Sante T, Smet J, Régal L, Lorber A, Khoury A, Zeviani M, Strom TM, Meitinger T, Bertini ES, Van Coster R, Klopstock T, Rötig A, Haack TB, Minczuk M, Prokisch H (2014) Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet 95:708–720

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ghezzi D, Baruffini E, Haack TB, Invernizzi F, Melchionda L, Dallabona C, Strom TM, Parini R, Burlina AB, Meitinger T, Prokisch H, Ferrero I, Zeviani M (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen D, Zhang Z, Chen C, Yao S, Yang Q, Li F, He X, Ai C, Wang M, Guan MX (2019) Deletion of Gtpbp3 in zebrafish revealed the hypertrophic cardiomyopathy manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res 47:5341–5355

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu Y, Wei FY, Kawarada L, Suzuki T, Araki K, Komohara Y, Fujimura A, Kaitsuka T, Takeya M, Oike Y, Suzuki T, Tomizawa K (2016) Mtu1-mediated thiouridine formation of mitochondrial tRNAs is required for mitochondrial translation and is involved in reversible infantile liver injury. PLoS Genet 12:e1006355

    PubMed  PubMed Central  Google Scholar 

  65. Goto Y, Nonaka I, Horai S (1991) A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Biochim Biophys Acta 1097:238–240

    CAS  PubMed  Google Scholar 

  66. Kobayashi Y, Momoi MY, Tominaga K, Momoi T, Nihei K, Yanagisawa M, Kagawa Y, Ohta S (1990) A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun 173:816–822

    CAS  PubMed  Google Scholar 

  67. Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–653

    CAS  PubMed  Google Scholar 

  68. Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61:931–937

    CAS  PubMed  Google Scholar 

  69. Yasukawa T, Suzuki T, Ueda T, Ohta S, Watanabe K (2000) Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem 275:4251–4257

    CAS  PubMed  Google Scholar 

  70. Yasukawa T, Suzuki T, Ishii N, Ueda T, Ohta S, Watanabe K (2000) Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNA(Lys) with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett 467:175–178

    CAS  PubMed  Google Scholar 

  71. Wei FY, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, Fujimura A, Matsui H, Atta M, Michiue H, Fontecave M, Yamagata K, Suzuki T, Tomizawa K (2011) Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J Clin Invest 121:3598–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Songe-Møller L, van den Born E, Leihne V, Vågbø CB, Kristoffersen T, Krokan HE, Kirpekar F, Falnes P, Klungland A (2010) Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol 30:1814–1827

    PubMed  PubMed Central  Google Scholar 

  73. Moustafa ME, Carlson BA, El-Saadani MA, Kryukov GV, Sun QA, Harney JW, Hill KE, Combs GF, Feigenbaum L, Mansur DB, Burk RF, Berry MJ, Diamond AM, Lee BJ, Gladyshev VN, Hatfield DL (2001) Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA. Mol Cell Biol 21:3840–3852

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim LK, Matsufuji T, Matsufuji S, Carlson BA, Kim SS, Hatfield DL, Lee BJ (2000) Methylation of the ribosyl moiety at position 34 of selenocysteine tRNA[Ser]Sec is governed by both primary and tertiary structure. RNA 6:1306–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lentini JM, Ramos J, Fu D (2018) Monitoring the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification in eukaryotic tRNAs via the γ-toxin endonuclease. RNA 24:749–758

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mazauric MH, Dirick L, Purushothaman SK, Björk GR, Lapeyre B (2010) Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. J Biol Chem 285:18505–18515

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kalhor HR, Clarke S (2003) Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 23:9283–9292

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Noma A, Sakaguchi Y, Suzuki T (2009) Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res 37:1335–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang B, Lu J, Byström AS (2008) A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14:2183–2194

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ikeuchi Y, Shigi N, Kato J, Nishimura A, Suzuki T (2006) Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol Cell 21:97–108

    CAS  PubMed  Google Scholar 

  81. Huang B, Johansson MJ, Byström AS (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11:424–436

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yarian C, Townsend H, Czestkowski W, Sochacka E, Malkiewicz AJ, Guenther R, Miskiewicz A, Agris PF (2002) Accurate translation of the genetic code depends on tRNA modified nucleosides. J Biol Chem 277:16391–16395

    CAS  PubMed  Google Scholar 

  83. Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, Conklin DS, Zitomer RS, Begley TJ (2007) Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell 28:860–870

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chan CT, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ (2010) A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet 6:e1001247

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fu D, Brophy JA, Chan CT, Atmore KA, Begley U, Paules RS, Dedon PC, Begley TJ, Samson LD (2010) Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol Cell Biol 30:2449–2459

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen C, Huang B, Eliasson M, Rydén P, Byström AS (2011) Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 7:e1002258

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Begley U, Sosa MS, Avivar-Valderas A, Patil A, Endres L, Estrada Y, Chan CT, Su D, Dedon PC, Aguirre-Ghiso JA, Begley T (2013) A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. EMBO Mol Med 5:366–383

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fernández-Vázquez J, Vargas-Pérez I, Sansó M, Buhne K, Carmona M, Paulo E, Hermand D, Rodríguez-Gabriel M, Ayté J, Leidel S, Hidalgo E (2013) Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet 9:e1003647

    PubMed  PubMed Central  Google Scholar 

  89. Endres L, Begley U, Clark R, Gu C, Dziergowska A, Małkiewicz A, Melendez JA, Dedon PC, Begley TJ (2015) Alkbh8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PloS One 10:e0131335

    PubMed  PubMed Central  Google Scholar 

  90. Zinshteyn B, Gilbert WV (2013) Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet 9:e1003675

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, van Vught PW, Landers JE, Sapp P, Van Den Bosch L, Knight J, Neale BM, Turner MR, Veldink JH, Ophoff RA, Tripathi VB, Beleza A, Shah MN, Proitsi P, Van Hoecke A, Carmeliet P, Horvitz HR, Leigh PN, Shaw CE, van den Berg LH, Sham PC, Powell JF, Verstreken P, Brown RH Jr, Robberecht W, Al-Chalabi A (2009) Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 18:472–481

    CAS  PubMed  Google Scholar 

  92. Rubin BY, Anderson SL (2008) The molecular basis of familial dysautonomia: overview, new discoveries and implications for directed therapies. Neuromolecular Med 10:148–156

    CAS  PubMed  Google Scholar 

  93. Hawer H, Hammermeister A, Ravichandran KE, Glatt S, Schaffrath R, Klassen R (2018) Roles of elongator dependent tRNA modification pathways in neurodegeneration and cancer. Genes (Basel) 10:19

    Google Scholar 

  94. Moriya J, Yokogawa T, Wakita K, Ueda T, Nishikawa K, Crain PF, Hashizume T, Pomerantz SC, McCloskey JA, Kawai G, &, et al (1994) A novel modified nucleoside found at the first position of the anticodon of methionine tRNA from bovine liver mitochondria. Biochemistry 33:2234–2239

    CAS  PubMed  Google Scholar 

  95. Cantara WA, Murphy FV, t., Demirci, H. & Agris, P. F. (2013) Expanded use of sense codons is regulated by modified cytidines in tRNA. Proc Natl Acad Sci U S A 110:10964–10969

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bilbille Y, Gustilo EM, Harris KA, Jones CN, Lusic H, Kaiser RJ, Delaney MO, Spremulli LL, Deiters A, Agris PF (2011) The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J Mol Biol 406:257–274

    CAS  PubMed  Google Scholar 

  97. Takemoto C, Spremulli LL, Benkowski LA, Ueda T, Yokogawa T, Watanabe K (2009) Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system. Nucleic Acids Res 37:1616–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nakano S, Suzuki T, Kawarada L, Iwata H, Asano K, Suzuki T (2016) NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat Chem Biol 12:546–551

    CAS  PubMed  Google Scholar 

  99. Kawarada L, Suzuki T, Ohira T, Hirata S, Miyauchi K, Suzuki T (2017) ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Res 45:7401–7415

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Van Haute L, Dietmann S, Kremer L, Hussain S, Pearce SF, Powell CA, Rorbach J, Lantaff R, Blanco S, Sauer S, Kotzaeridou U, Hoffmann GF, Memari Y, Kolb-Kokocinski A, Durbin R, Mayr JA, Frye M, Prokisch H, Minczuk M (2016) Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun 7:12039

    PubMed  PubMed Central  Google Scholar 

  101. Harada F, Nishimura S (1972) Possible anticodon sequences of tRNA His, tRNA Asm, and tRNAAsp from Escherichia coli B Universal presence of nucleoside Q in the first postion of the anticondons of these transfer ribonucleic acids. Biochemistry 11:301–308

    CAS  PubMed  Google Scholar 

  102. Fergus C, Barnes D, Alqasem MA, Kelly VP (2015) The queuine micronutrient: charting a course from microbe to man. Nutrients 7:2897–2929

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang X, Matuszek Z, Huang Y, Parisien M, Dai Q, Clark W, Schwartz MH, Pan T (2018) Queuosine modification protects cognate tRNAs against ribonuclease cleavage. RNA 24:1305–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Müller M, Ehrenhofer-Murray AE, Dittmar G, Gröne HJ, Lyko F (2018) Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J 37:e99777

    PubMed  PubMed Central  Google Scholar 

  105. Zhang J, Lu R, Zhang Y, Matuszek Ż, Zhang W, Xia Y, Pan T, Sun J (2020) tRNA Queuosine modification enzyme modulates the growth and microbiome recruitment to breast tumors. Cancers 12:628. https://doi.org/10.3390/cancers12030628

    Article  CAS  PubMed Central  Google Scholar 

  106. Thumbs P, Ensfelder TT, Hillmeier M, Wagner M, Heiss M, Scheel C, Schön A, Müller M, Michalakis S, Kellner S, Carell T (2020) Synthesis of Galactosyl-Queuosine and distribution of hypermodified Q-nucleosides in mouse tissues. Angew Chem 59:12352–12356

    CAS  Google Scholar 

  107. Kessler AC, Kulkarni SS, Paulines MJ, Rubio MAT, Limbach PA, Paris Z, Alfonzo JD (2018) Retrograde nuclear transport from the cytoplasm is required for tRNA(Tyr) maturation in T. brucei. RNA Biol 15:528–536

    PubMed  Google Scholar 

  108. Rubio MA, Paris Z, Gaston KW, Fleming IM, Sample P, Trotta CR, Alfonzo JD (2013) Unusual noncanonical intron editing is important for tRNA splicing in Trypanosoma brucei. Mol Cell 52:184–192

    CAS  PubMed  Google Scholar 

  109. Rakovich T, Boland C, Bernstein I, Chikwana VM, Iwata-Reuyl D, Kelly VP (2011) Queuosine deficiency in eukaryotes compromises tyrosine production through increased tetrahydrobiopterin oxidation. J Biol Chem 286:19354–19363

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ehrenhofer-Murray AE (2017) Cross-talk between Dnmt2-dependent trna methylation and queuosine modification. Biomolecules 7:14. https://doi.org/10.3390/biom7010014

    Article  CAS  PubMed Central  Google Scholar 

  111. Okada N, Shindo-Okada N, Nishimura S (1977) Isolation of mammalian tRNAAsp and tRNATyr by lectin-Sepharose affinity column chromatography. Nucleic Acids Res 4:415–423

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Okada N, Nishimura S (1977) Enzymatic synthesis of Q nucleoside containing mannose in the anticodon of tRNA: isolation of a novel mannosyltransferase from a cell-free extract of rat liver. Nucleic Acids Res 4:2931–2938

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A (1965) Structure of a ribonucleic acid. Science 147:1462–1465

    CAS  PubMed  Google Scholar 

  114. Torres AG, Rodríguez-Escribà M, Marcet-Houben M, Santos Vieira HG, Camacho N, Catena H, Murillo Recio M, Rafels-Ybern À, Reina O, Torres FM, Pardo-Saganta A, Gabaldón T, Novoa EM, Ribas de Pouplana L (2021) Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res 49:7011–7034

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gerber AP, Keller W (1999) An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science 286:1146–1149

    CAS  PubMed  Google Scholar 

  116. Crick FH (1966) Codon–anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    CAS  PubMed  Google Scholar 

  117. Grosjean H, de Crécy-Lagard V, Marck C (2010) Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584:252–264

    CAS  PubMed  Google Scholar 

  118. Alazami AM, Hijazi H, Al-Dosari MS, Shaheen R, Hashem A, Aldahmesh MA, Mohamed JY, Kentab A, Salih MA, Awaji A, Masoodi TA, Alkuraya FS (2013) Mutation in ADAT3, encoding adenosine deaminase acting on transfer RNA, causes intellectual disability and strabismus. J Med Genet 50:425–430

    CAS  PubMed  Google Scholar 

  119. El-Hattab AW, Saleh MA, Hashem A, Al-Owain M, Asmari AA, Rabei H, Abdelraouf H, Hashem M, Alazami AM, Patel N, Shaheen R, Faqeih EA, Alkuraya FS (2016) ADAT3-related intellectual disability: further delineation of the phenotype. Am J Med Genet A 170:1142–7

    CAS  Google Scholar 

  120. Sharkia R, Zalan A, Jabareen-Masri A, Zahalka H, Mahajnah M (2019) A new case confirming and expanding the phenotype spectrum of ADAT3-related intellectual disability syndrome. Eur J Med Genet 62:103549

    PubMed  Google Scholar 

  121. Gerber AP, Keller W (2001) RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci 26:376–384

    CAS  PubMed  Google Scholar 

  122. Björk GR, Jacobsson K, Nilsson K, Johansson MJ, Byström AS, Persson OP (2001) A primordial tRNA modification required for the evolution of life? EMBO J 20:231–239

    PubMed  PubMed Central  Google Scholar 

  123. Grosjean H, Auxilien S, Constantinesco F, Simon C, Corda Y, Becker HF, Foiret D, Morin A, Jin YX, Fournier M, Fourrey JL (1996) Enzymatic conversion of adenosine to inosine and to N1-methylinosine in transfer RNAs: a review. Biochimie 78:488–501

    CAS  PubMed  Google Scholar 

  124. Grosjean H, Constantinesco F, Foiret D, Benachenhou N (1995) A novel enzymatic pathway leading to 1-methylinosine modification in Haloferax volcanii tRNA. Nucleic Acids Res 23:4312–4319

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Srinivasan S, Torres AG, Ribas de Pouplana L (2021) Inosine in biology and disease. Genes (Basel) 12:600. https://doi.org/10.3390/genes12040600

    Article  CAS  Google Scholar 

  126. Wan LC, Mao DY, Neculai D, Strecker J, Chiovitti D, Kurinov I, Poda G, Thevakumaran N, Yuan F, Szilard RK, Lissina E, Nislow C, Caudy AA, Durocher D, Sicheri F (2013) Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system. Nucleic Acids Res 41:6332–6346

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Luthra A, Swinehart W, Bayooz S, Phan P, Stec B, Iwata-Reuyl D, Swairjo MA (2018) Structure and mechanism of a bacterial t6A biosynthesis system. Nucleic Acids Res 46:1395–1411

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351:391–396

    CAS  PubMed  Google Scholar 

  129. Edvardson S, Prunetti L, Arraf A, Haas D, Bacusmo JM, Hu JF, Ta-Shma A, Dedon PC, de Crécy-Lagard V, Elpeleg O (2017) tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy. Eur J Hum Genet 25:545–551

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Arrondel C, Missoury S, Snoek R, Patat J, Menara G, Collinet B, Liger D, Durand D, Gribouval O, Boyer O, Buscara L, Martin G, Machuca E, Nevo F, Lescop E, Braun DA, Boschat AC, Sanquer S, Guerrera IC, Revy P, Parisot M, Masson C, Boddaert N, Charbit M, Decramer S, Novo R, Macher MA, Ranchin B, Bacchetta J, Laurent A, Collardeau-Frachon S, van Eerde AM, Hildebrandt F, Magen D, Antignac C, van Tilbeurgh H, Mollet G (2019) Defects in t(6)A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun 10:3967

    PubMed  PubMed Central  Google Scholar 

  131. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, Gribouval O, Boyer O, Revy P, Jobst-Schwan T, Schmidt JM, Lawson JA, Schanze D, Ashraf S, Ullmann JFP, Hoogstraten CA, Boddaert N, Collinet B, Martin G, Liger D, Lovric S, Furlano M, Guerrera IC, Sanchez-Ferras O, Hu JF, Boschat AC, Sanquer S, Menten B, Vergult SD, Rocker N, Airik M, Hermle T, Shril S, Widmeier E, Gee HY, Choi WI, Sadowski CE, Pabst WL, Warejko JK, Daga A, Basta T, Matejas V, Scharmann K, Kienast SD, Behnam B, Beeson B, Begtrup A, Bruce M, Ch’ng GS, Lin SP, Chang JH, Chen CH, Cho MT, Gaffney PM, Gipson PE, Hsu CH, Kari JA, Ke YY, Kiraly-Borri C, Lai WM, Lemyre E, Littlejohn RO, Masri A, Moghtaderi M, Nakamura K, Ozaltin F, Praet M, Prasad C, Prytula A, Roeder ER, Rump P, Schnur RE, Shiihara T, Sinha MD, Soliman NA, Soulami K, Sweetser DA, Tsai WH, Tsai JD, Topaloglu R, Vester U, Viskochil DH, Vatanavicharn N, Waxler JL, Wierenga KJ, Wolf MTF, Wong SN, Leidel SA, Truglio G, Dedon PC, Poduri A, Mane S, Lifton RP, Bouchard M, Kannu P, Chitayat D, Magen D, Callewaert van Tilbeurgh Zenker BHM et al (2017) Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet 49:1529–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Donner I, Katainen R, Kaasinen E, Aavikko M, Sipila LJ, Pukkala E, Aaltonen LA (2019) Candidate susceptibility variants in angioimmunoblastic T-cell lymphoma. Fam Cancer 18:113–119

    CAS  PubMed  Google Scholar 

  133. Miyauchi K, Kimura S, Suzuki T (2013) A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Nat Chem Biol 9:105–111

    CAS  PubMed  Google Scholar 

  134. Kang BI, Miyauchi K, Matuszewski M, D’Almeida GS, Rubio MAT, Alfonzo JD, Inoue K, Sakaguchi Y, Suzuki T, Sochacka E, Suzuki T (2017) Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs. Nucleic Acids Res 45:2124–2136

    CAS  PubMed  Google Scholar 

  135. Landgraf BJ, McCarthy EL, Booker SJ (2016) Radical S-adenosylmethionine enzymes in human health and disease. Annu Rev Biochem 85:485–514

    CAS  PubMed  Google Scholar 

  136. Kimura S, Miyauchi K, Ikeuchi Y, Thiaville PC, Crécy-Lagard V, Suzuki T (2014) Discovery of the β-barrel-type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs. Nucleic Acids Res 42:9350–9365

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Gu C, Shi X, Dai C, Shen F, Rocco G, Chen J, Huang Z, Chen C, He C, Huang T, Chen C (2020) RNA m6A modification in cancers: molecular mechanisms and potential clinical applications. Innovation 1:100066. https://doi.org/10.1016/j.xinn.2020.100066

    Article  Google Scholar 

  138. Santos M, Anderson CP, Neschen S, Zumbrennen-Bullough KB, Romney SJ, Kahle-Stephan M, Rathkolb B, Gailus-Durner V, Fuchs H, Wolf E, Rozman J, de Angelis MH, Cai WM, Rajan M, Hu J, Dedon PC, Leibold EA (2020) Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat Commun 11:296

    PubMed  PubMed Central  Google Scholar 

  139. Persson BC, Esberg B, Olafsson O, Björk GR (1994) Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 76:1152–1160

    CAS  PubMed  Google Scholar 

  140. Schweizer U, Bohleber S, Fradejas-Villar N (2017) The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol 14:1197–1208

    PubMed  PubMed Central  Google Scholar 

  141. Chou HJ, Donnard E, Gustafsson HT, Garber M, Rando OJ (2017) Transcriptome-wide analysis of roles for trna modifications in translational regulation. Mol Cell 68:978-992.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Srinivasan M, Mehta P, Yu Y, Prugar E, Koonin EV, Karzai AW, Sternglanz R (2011) The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A. EMBO J 30:873–881

    CAS  PubMed  Google Scholar 

  143. Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ (2020) Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 16:e1008330

    PubMed  PubMed Central  Google Scholar 

  144. Fradejas N, Carlson BA, Rijntjes E, Becker NP, Tobe R, Schweizer U (2013) Mammalian Trit1 is a tRNA([Ser]Sec)-isopentenyl transferase required for full selenoprotein expression. Biochem J 450:427–432

    CAS  PubMed  Google Scholar 

  145. Lamichhane TN, Mattijssen S, Maraia RJ (2013) Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor. Mol Cell Biol 33:4900–4908

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Fakruddin M, Wei FY, Emura S, Matsuda S, Yasukawa T, Kang D, Tomizawa K (2017) Cdk5rap1-mediated 2-methylthio-N6-isopentenyladenosine modification is absent from nuclear-derived RNA species. Nucleic Acids Res 45:11954–11961

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Bidooki S, Jackson MJ, Johnson MA, Chrzanowska-Lightowlers ZM, Taylor RW, Venables G, Lightowlers RN, Turnbull DM, Bindoff LA (2004) Sporadic mitochondrial myopathy due to a new mutation in the mitochondrial tRNASer(UCN) gene. Neuromuscul Disord 14:417–420

    PubMed  Google Scholar 

  148. Yarham JW, Lamichhane TN, Pyle A, Mattijssen S, Baruffini E, Bruni F, Donnini C, Vassilev A, He L, Blakely EL, Griffin H, Santibanez-Koref M, Bindoff LA, Ferrero I, Chinnery PF, McFarland R, Maraia RJ, Taylor RW (2014) Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet 10:e1004424

    PubMed  PubMed Central  Google Scholar 

  149. Wei FY, Zhou B, Suzuki T, Miyata K, Ujihara Y, Horiguchi H, Takahashi N, Xie P, Michiue H, Fujimura A, Kaitsuka T, Matsui H, Koga Y, Mohri S, Suzuki T, Oike Y, Tomizawa K (2015) Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans. Cell Metab 21:428–442

    CAS  PubMed  Google Scholar 

  150. Miwa T, Wei FY, Tomizawa K (2021) Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Mol Brain 14:82

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Urbonavicius J, Stahl G, Durand JM, Ben Salem SN, Qian Q, Farabaugh PJ, Björk GR (2003) Transfer RNA modifications that alter +1 frameshifting in general fail to affect − 1 frameshifting. RNA 9:760–768

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Pütz J, Florentz C, Benseler F, Giegé R (1994) A single methyl group prevents the mischarging of a tRNA. Nat Struct Biol 1:580–582

    PubMed  Google Scholar 

  153. Hou YM, Masuda I, Gamper H (2018) Codon-specific translation by m(1)G37 methylation of tRNA. Front Genet 9:713

    CAS  PubMed  Google Scholar 

  154. Wang M, Peng Y, Zheng J, Zheng B, Jin X, Liu H, Wang Y, Tang X, Huang T, Jiang P, Guan MX (2016) A deafness-associated tRNAAsp mutation alters the m1G37 modification, aminoacylation and stability of tRNAAsp and mitochondrial function. Nucleic Acids Res 44:10974–10985

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Powell CA, Kopajtich R, D’Souza AR, Rorbach J, Kremer LS, Husain RA, Dallabona C, Donnini C, Alston CL, Griffin H, Pyle A, Chinnery PF, Strom TM, Meitinger T, Rodenburg RJ, Schottmann G, Schuelke M, Romain N, Haller RG, Ferrero I, Haack TB, Taylor RW, Prokisch H, Minczuk M (2015) TRMT5 mutations cause a defect in post-transcriptional modification of mitochondrial trna associated with multiple respiratory-chain deficiencies. Am J Hum Genet 97:319–328

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Droogmans L, Grosjean H (1987) Enzymatic conversion of guanosine 3’ adjacent to the anticodon of yeast tRNAPhe to N1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence. EMBO J 6:477–483

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Tuorto F, Lyko F (2016) Genome recoding by tRNA modifications. Open Biol 6:160287. https://doi.org/10.1098/rsob.160287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yoshihisa T (2014) Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 5:213

    PubMed  PubMed Central  Google Scholar 

  159. Hopper AK (2013) Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 194:43–67

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Noma A, Kirino Y, Ikeuchi Y, Suzuki T (2006) Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J 25:2142–2154

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ohira T, Suzuki T (2011) Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast. Proc Natl Acad Sci U S A 108:10502–10507

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Perche-Letuvée P, Molle T, Forouhar F, Mulliez E, Atta M (2014) Wybutosine biosynthesis: structural and mechanistic overview. RNA Biol 11:1508–1518

    PubMed  Google Scholar 

  163. de Crécy-Lagard V, Brochier-Armanet C, Urbonavicius J, Fernandez B, Phillips G, Lyons B, Noma A, Alvarez S, Droogmans L, Armengaud J, Grosjean H (2010) Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea. Mol Biol Evol 27:2062–2077

    PubMed  PubMed Central  Google Scholar 

  164. Kuchino Y, Borek E, Grunberger D, Mushinski JF, Nishimura S (1982) Changes of post-transcriptional modification of wye base in tumor-specific tRNAPhe. Nucleic Acids Res 10:6421–6432

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Müller M, Hartmann M, Schuster I, Bender S, Thüring KL, Helm M, Katze JR, Nellen W, Lyko F, Ehrenhofer-Murray AE (2015) Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine. Nucleic Acids Res 43:10952–10962

    PubMed  PubMed Central  Google Scholar 

  166. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 24:1590–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Brzezicha B, Schmidt M, Makalowska I, Jarmolowski A, Pienkowska J, Szweykowska-Kulinska Z (2006) Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu(CAA). Nucleic Acids Res 34:6034–6043

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19:900–905

    CAS  PubMed  Google Scholar 

  169. Tuorto F, Herbst F, Alerasool N, Bender S, Popp O, Federico G, Reitter S, Liebers R, Stoecklin G, Gröne HJ, Dittmar G, Glimm H, Lyko F (2015) The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J 34:2350–2362

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, Liebers R, Zhang L, Qu Y, Qian J, Pahima M, Liu Y, Yan M, Cao Z, Lei X, Cao Y, Peng H, Liu S, Wang Y, Zheng H, Woolsey R, Quilici D, Zhai Q, Li L, Zhou T, Yan W, Lyko F, Zhang Y, Zhou Q, Duan E, Chen Q (2018) Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol 20:535–540

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, Lei L, Han C, Ning L, Cao Y, Zhou Q, Chen Q, Duan E (2012) A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 22:1609–1612

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400

    CAS  PubMed  Google Scholar 

  173. Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16:673–695

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, Ankri S, Nellen W, Schaefer M, Helm M (2017) Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol 14:1108–1123

    PubMed  Google Scholar 

  175. Durdevic Z, Hanna K, Gold B, Pollex T, Cherry S, Lyko F, Schaefer M (2013) Efficient RNA virus control in Drosophila requires the RNA methyltransferase Dnmt2. EMBO Rep 14:269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Edelheit S, Schwartz S, Mumbach MR, Wurtzel O, Sorek R (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9:e1003602

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Sokołowski M, Klassen R, Bruch A, Schaffrath R, Glatt S (2018) Cooperativity between different tRNA modifications and their modification pathways. Biochim Biophys Acta Gene Regul Mech 1861:409–418

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the published work of many researchers whose work has relevance for this review, but were not cited because of space and our own limitations.

Funding

National Key Research and Development Program of China [2017YFA0504000], Natural Science Foundation of China [91440204, 31500644, 31570792, 31670801, 31822015, 81870896, 31870811], Strategic Priority Research Program of the Chinese Academy of Sciences [XDB19010203], Shanghai Key Laboratory of Embryo Original Diseases [Shelab201904], Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University [ZDFY2020-RG-0003].

Author information

Authors and Affiliations

Authors

Contributions

ZJB and ZXL wrote the manuscript. All authors approved the manuscript.

Corresponding authors

Correspondence to En-Duo Wang or Xiao-Long Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, JB., Wang, ED. & Zhou, XL. Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cell. Mol. Life Sci. 78, 7087–7105 (2021). https://doi.org/10.1007/s00018-021-03948-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03948-x

Keywords

Navigation