Skip to main content

Advertisement

Log in

G-quadruplex DNA: a novel target for drug design

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomestatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48:2013–2018. https://doi.org/10.1073/pnas.48.12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334(6180):364–366. https://doi.org/10.1038/334364a0

    Article  CAS  PubMed  Google Scholar 

  3. Todd AK, Johnston M, Neidle S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33(9):2901–2907. https://doi.org/10.1093/nar/gki553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33(9):2908–2916. https://doi.org/10.1093/nar/gki609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaplan OI, Berber B, Hekim N, Doluca O (2016) G-quadruplex prediction in E. coli genome reveals a conserved putative G-quadruplex-Hairpin-Duplex switch. Nucleic Acids Res 44(19):9083–9095. https://doi.org/10.1093/nar/gkw769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Teng FY, Hou XM, Fan SH, Rety S, Dou SX, Xi XG (2017) Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication. FEBS J 284(23):4051–4065. https://doi.org/10.1111/febs.14290

    Article  CAS  PubMed  Google Scholar 

  7. Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006) Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res 16(5):644–655. https://doi.org/10.1101/gr.4508806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Capra JA, Paeschke K, Singh M, Zakian VA (2010) G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput Biol 6(7):e1000861. https://doi.org/10.1371/journal.pcbi.1000861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P, Wang LS, Johnson FB (2008) Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res 36(1):144–156. https://doi.org/10.1093/nar/gkm986

    Article  CAS  PubMed  Google Scholar 

  10. Varizhuk A, Ischenko D, Tsvetkov V, Novikov R, Kulemin N, Kaluzhny D, Vlasenok M, Naumov V, Smirnov I, Pozmogova G (2017) The expanding repertoire of G4 DNA structures. Biochimie 135:54–62. https://doi.org/10.1016/j.biochi.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  11. Kudlicki AS (2016) G-quadruplexes involving both strands of genomic DNA are highly abundant and colocalize with functional sites in the human genome. PLoS ONE 11(1):e0146174. https://doi.org/10.1371/journal.pone.0146174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bedrat A, Lacroix L, Mergny JL (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 44(4):1746–1759. https://doi.org/10.1093/nar/gkw006

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brazda V, Kolomaznik J, Lysek J, Bartas M, Fojta M, Stastny J, Mergny JL (2019) G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 35(18):3493–3495. https://doi.org/10.1093/bioinformatics/btz087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lacroix L (2019) G4HunterApps. Bioinformatics 35(13):2311–2312. https://doi.org/10.1093/bioinformatics/bty951

    Article  CAS  PubMed  Google Scholar 

  15. Hon J, Martinek T, Zendulka J, Lexa M (2017) pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics 33(21):3373–3379. https://doi.org/10.1093/bioinformatics/btx413

    Article  CAS  PubMed  Google Scholar 

  16. Kikin O, D’Antonio L, Bagga PS (2006) QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 34(Web Server issue):W676-682. https://doi.org/10.1093/nar/gkl253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahakyan AB, Chambers VS, Marsico G, Santner T, Di Antonio M, Balasubramanian S (2017) Machine learning model for sequence-driven DNA G-quadruplex formation. Sci Rep 7(1):14535. https://doi.org/10.1038/s41598-017-14017-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 33(8):877–881. https://doi.org/10.1038/nbt.3295

    Article  PubMed  Google Scholar 

  19. Marsico G, Chambers VS, Sahakyan AB, McCauley P, Boutell JM, Antonio MD, Balasubramanian S (2019) Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res 47(8):3862–3874. https://doi.org/10.1093/nar/gkz179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hansel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, Di Antonio M, Pike J, Kimura H, Narita M, Tannahill D, Balasubramanian S (2016) G-quadruplex structures mark human regulatory chromatin. Nat Genet 48(10):1267–1272. https://doi.org/10.1038/ng.3662

    Article  CAS  PubMed  Google Scholar 

  21. Hansel-Hertsch R, Spiegel J, Marsico G, Tannahill D, Balasubramanian S (2018) Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat Protoc 13(3):551–564. https://doi.org/10.1038/nprot.2017.150

    Article  CAS  PubMed  Google Scholar 

  22. Gray LT, Vallur AC, Eddy J, Maizels N (2014) G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat Chem Biol 10(4):313–318. https://doi.org/10.1038/nchembio.1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Law MJ, Lower KM, Voon HP, Hughes JR, Garrick D, Viprakasit V, Mitson M, De Gobbi M, Marra M, Morris A, Abbott A, Wilder SP, Taylor S, Santos GM, Cross J, Ayyub H, Jones S, Ragoussis J, Rhodes D, Dunham I, Higgs DR, Gibbons RJ (2010) ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143(3):367–378. https://doi.org/10.1016/j.cell.2010.09.023

    Article  CAS  PubMed  Google Scholar 

  24. Kanoh Y, Matsumoto S, Fukatsu R, Kakusho N, Kono N, Renard-Guillet C, Masuda K, Iida K, Nagasawa K, Shirahige K, Masai H (2015) Rif1 binds to G quadruplexes and suppresses replication over long distances. Nat Struct Mol Biol 22(11):889–897. https://doi.org/10.1038/nsmb.3102

    Article  CAS  PubMed  Google Scholar 

  25. Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145(5):678–691. https://doi.org/10.1016/j.cell.2011.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haider S, Parkinson GN, Neidle S (2002) Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J Mol Biol 320(2):189–200. https://doi.org/10.1016/S0022-2836(02)00428-X

    Article  CAS  PubMed  Google Scholar 

  27. Schultze P, Smith FW, Feigon J (1994) Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). Structure 2(3):221–233. https://doi.org/10.1016/s0969-2126(00)00023-x

    Article  CAS  PubMed  Google Scholar 

  28. Yuan WF, Wan LY, Peng H, Zhong YM, Cai WL, Zhang YQ, Ai WB, Wu JF (2020) The influencing factors and functions of DNA G-quadruplexes. Cell Biochem Funct 38(5):524–532. https://doi.org/10.1002/cbf.3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1(4):263–282. https://doi.org/10.1016/0969-2126(93)90015-9

    Article  CAS  PubMed  Google Scholar 

  30. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880. https://doi.org/10.1038/nature755

    Article  CAS  PubMed  Google Scholar 

  31. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34(9):2723–2735. https://doi.org/10.1093/nar/gkl348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li XM, Zheng KW, Zhang JY, Liu HH, He YD, Yuan BF, Hao YH, Tan Z (2015) Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc Natl Acad Sci USA 112(47):14581–14586. https://doi.org/10.1073/pnas.1516925112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang KB, Dickerhoff J, Wu G, Yang D (2020) PDGFR-beta promoter forms a vacancy G-quadruplex that can be filled in by dGMP: solution structure and molecular recognition of guanine metabolites and drugs. J Am Chem Soc 142(11):5204–5211. https://doi.org/10.1021/jacs.9b12770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li XM, Zheng KW, Hao YH, Tan Z (2016) Exceptionally selective and tunable sensing of guanine derivatives and analogues by structural complementation in a G-quadruplex. Angew Chem 55(44):13759–13764. https://doi.org/10.1002/anie.201607195

    Article  CAS  Google Scholar 

  35. Yang L, Li N, Xue Z, Liu LR, Li J, Huang X, Xie X, Zou Y, Tang H, Xie X (2020) Synergistic therapeutic effect of combined PDGFR and SGK1 inhibition in metastasis-initiating cells of breast cancer. Cell Death Differ 27(7):2066–2080. https://doi.org/10.1038/s41418-019-0485-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fuchs MAA, Broeker KAE, Schrankl J, Burzlaff N, Willam C, Wagner C, Kurtz A (2021) Inhibition of transforming growth factor beta1 signaling in resident interstitial cells attenuates profibrotic gene expression and preserves erythropoietin production during experimental kidney fibrosis in mice. Kidney Int 100(1):122–137. https://doi.org/10.1016/j.kint.2021.02.035

    Article  CAS  PubMed  Google Scholar 

  37. Guerit E, Arts F, Dachy G, Boulouadnine B, Demoulin JB (2021) PDGF receptor mutations in human diseases. Cell Mol Life Sci 78(8):3867–3881. https://doi.org/10.1007/s00018-020-03753-y

    Article  CAS  PubMed  Google Scholar 

  38. Onel B, Carver M, Agrawal P, Hurley LH, Yang D (2018) The 3′-end region of the human PDGFR-beta core promoter nuclease hypersensitive element forms a mixture of two unique end-insertion G-quadruplexes. Biochim Biophys Gen Subj 1862(4):846–854. https://doi.org/10.1016/j.bbagen.2017.12.011

    Article  CAS  Google Scholar 

  39. He YD, Zheng KW, Wen CJ, Li XM, Gong JY, Hao YH, Zhao Y, Tan Z (2020) Selective targeting of guanine-vacancy-bearing G-quadruplexes by G-quartet complementation and stabilization with a guanine-peptide conjugate. J Am Chem Soc 142(26):11394–11403. https://doi.org/10.1021/jacs.0c00774

    Article  CAS  PubMed  Google Scholar 

  40. Chan CY, Umar MI, Kwok CK (2019) Spectroscopic analysis reveals the effect of a single nucleotide bulge on G-quadruplex structures. Chem Commun 55(18):2616–2619. https://doi.org/10.1039/c8cc09929d

    Article  CAS  Google Scholar 

  41. Sengar A, Vandana JJ, Chambers VS, Di Antonio M, Winnerdy FR, Balasubramanian S, Phan AT (2019) Structure of a (3+1) hybrid G-quadruplex in the PARP1 promoter. Nucleic Acids Res 47(3):1564–1572. https://doi.org/10.1093/nar/gky1179

    Article  CAS  PubMed  Google Scholar 

  42. Zivkovic ML, Rozman J, Plavec J (2020) Structure of a DNA G-quadruplex related to osteoporosis with a G-A bulge forming a pseudo-loop. Molecules. https://doi.org/10.3390/molecules25204867

    Article  Google Scholar 

  43. Mukundan VT, Phan AT (2013) Bulges in G-quadruplexes: broadening the definition of G-quadruplex-forming sequences. J Am Chem Soc 135(13):5017–5028. https://doi.org/10.1021/ja310251r

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen TQN, Lim KW, Phan AT (2020) Duplex formation in a G-quadruplex bulge. Nucleic Acids Res 48(18):10567–10575. https://doi.org/10.1093/nar/gkaa738

    Article  CAS  Google Scholar 

  45. Ou A, Schmidberger JW, Wilson KA, Evans CW, Hargreaves JA, Grigg M, O’Mara ML, Iyer KS, Bond CS, Smith NM (2020) High resolution crystal structure of a KRAS promoter G-quadruplex reveals a dimer with extensive poly-A pi-stacking interactions for small-molecule recognition. Nucleic Acids Res 48(10):5766–5776. https://doi.org/10.1093/nar/gkaa262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ternet C, Kiel C (2021) Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage. Cell Commun Signal 19(1):31. https://doi.org/10.1186/s12964-021-00712-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karg B, Mohr S, Weisz K (2019) Duplex-guided refolding into novel G-quadruplex (3+1) hybrid conformations. Angew Chem 58(32):11068–11071. https://doi.org/10.1002/anie.201905372

    Article  CAS  Google Scholar 

  48. Nguyen TQN, Lim KW, Phan AT (2020) Folding kinetics of G-quadruplexes: duplex stem loops drive and accelerate G-quadruplex folding. J Phys Chem B 124(25):5122–5130. https://doi.org/10.1021/acs.jpcb.0c02548

    Article  CAS  PubMed  Google Scholar 

  49. Lim KW, Jenjaroenpun P, Low ZJ, Khong ZJ, Ng YS, Kuznetsov VA, Phan AT (2015) Duplex stem-loop-containing quadruplex motifs in the human genome: a combined genomic and structural study. Nucleic Acids Res 43(11):5630–5646. https://doi.org/10.1093/nar/gkv355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guedin A, Gros J, Alberti P, Mergny JL (2010) How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res 38(21):7858–7868. https://doi.org/10.1093/nar/gkq639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim KW, Khong ZJ, Phan AT (2014) Thermal stability of DNA quadruplex-duplex hybrids. Biochemistry 53(1):247–257. https://doi.org/10.1021/bi401161a

    Article  CAS  PubMed  Google Scholar 

  52. Tan DJY, Winnerdy FR, Lim KW, Phan AT (2020) Coexistence of two quadruplex-duplex hybrids in the PIM1 gene. Nucleic Acids Res 48(19):11162–11171. https://doi.org/10.1093/nar/gkaa752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prioleau MN (2017) G-quadruplexes and DNA replication origins. Adv Exp Med Biol 1042:273–286. https://doi.org/10.1007/978-981-10-6955-0_13

    Article  CAS  PubMed  Google Scholar 

  54. Valton AL, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintome C, Riou JF, Prioleau MN (2014) G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 33(7):732–746. https://doi.org/10.1002/embj.201387506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prorok P, Artufel M, Aze A, Coulombe P, Peiffer I, Lacroix L, Guedin A, Mergny JL, Damaschke J, Schepers A, Cayrou C, Teulade-Fichou MP, Ballester B, Mechali M (2019) Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun 10(1):3274. https://doi.org/10.1038/s41467-019-11104-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoshina S, Yura K, Teranishi H, Kiyasu N, Tominaga A, Kadoma H, Nakatsuka A, Kunichika T, Obuse C, Waga S (2013) Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem 288(42):30161–30171. https://doi.org/10.1074/jbc.M113.492504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumagai A, Dunphy WG (2020) Binding of the treslin-MTBP complex to specific regions of the human genome promotes the initiation of DNA replication. Cell Rep 32(12):108178. https://doi.org/10.1016/j.celrep.2020.108178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alavi S, Ghadiri H, Dabirmanesh B, Moriyama K, Khajeh K, Masai H (2021) G-quadruplex binding protein Rif1, a key regulator of replication timing. J Biochem 169(1):1–14. https://doi.org/10.1093/jb/mvaa128

    Article  CAS  PubMed  Google Scholar 

  59. Cheung I, Schertzer M, Rose A, Lansdorp PM (2002) Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat Genet 31(4):405–409. https://doi.org/10.1038/ng928

    Article  CAS  PubMed  Google Scholar 

  60. Bosch PC, Segura-Bayona S, Koole W, van Heteren JT, Dewar JM, Tijsterman M, Knipscheer P (2014) FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J 33(21):2521–2533. https://doi.org/10.15252/embj.201488663

    Article  CAS  Google Scholar 

  61. Drosopoulos WC, Kosiyatrakul ST, Schildkraut CL (2015) BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J Cell Biol 210(2):191–208. https://doi.org/10.1083/jcb.201410061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aggarwal M, Sommers JA, Shoemaker RH, Brosh RM Jr (2011) Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc Natl Acad Sci USA 108(4):1525–1530. https://doi.org/10.1073/pnas.1006423108

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kocak E, Dykstra S, Nemeth A, Coughlin CG, Rodgers K, McVey M (2019) The Drosophila melanogaster PIF1 helicase promotes survival during replication stress and processive DNA synthesis during double-strand gap repair. Genetics 213(3):835–847. https://doi.org/10.1534/genetics.119.302665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van Schie JJM, Faramarz A, Balk JA, Stewart GS, Cantelli E, Oostra AB, Rooimans MA, Parish JL, de Almeida EC, Dumic K, Barisic I, Diderich KEM, van Slegtenhorst MA, Mahtab M, Pisani FM, Te Riele H, Ameziane N, Wolthuis RMF, de Lange J (2020) Warsaw breakage syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nat Commun 11(1):4287. https://doi.org/10.1038/s41467-020-18066-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun D, Hurley LH (2010) Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol Biol 608:65–79. https://doi.org/10.1007/978-1-59745-363-9_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han H, Hurley LH, Salazar M (1999) A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res 27(2):537–542. https://doi.org/10.1093/nar/27.2.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lormand JD, Buncher N, Murphy CT, Kaur P, Lee MY, Burgers P, Wang H, Kunkel TA, Opresko PL (2013) DNA polymerase delta stalls on telomeric lagging strand templates independently from G-quadruplex formation. Nucleic Acids Res 41(22):10323–10333. https://doi.org/10.1093/nar/gkt813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin W, Sampathi S, Dai H, Liu C, Zhou M, Hu J, Huang Q, Campbell J, Shin-Ya K, Zheng L, Chai W, Shen B (2013) Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. EMBO J 32(10):1425–1439. https://doi.org/10.1038/emboj.2013.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stroik S, Kurtz K, Lin K, Karachenets S, Myers CL, Bielinsky AK, Hendrickson EA (2020) EXO1 resection at G-quadruplex structures facilitates resolution and replication. Nucleic Acids Res 48(9):4960–4975. https://doi.org/10.1093/nar/gkaa199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haracska L, Prakash S, Prakash L (2002) Yeast Rev1 protein is a G template-specific DNA polymerase. J Biol Chem 277(18):15546–15551. https://doi.org/10.1074/jbc.M112146200

    Article  CAS  PubMed  Google Scholar 

  71. Lowran K, Campbell L, Popp P, Wu CG (2019) Assembly of a G-quadruplex repair complex by the FANCJ DNA helicase and the REV1 polymerase. Genes (Basel). https://doi.org/10.3390/genes11010005

    Article  Google Scholar 

  72. Eddy S, Ketkar A, Zafar MK, Maddukuri L, Choi JY, Eoff RL (2014) Human Rev1 polymerase disrupts G-quadruplex DNA. Nucleic Acids Res 42(5):3272–3285. https://doi.org/10.1093/nar/gkt1314

    Article  CAS  PubMed  Google Scholar 

  73. Ketkar A, Smith L, Johnson C, Richey A, Berry M, Hartman JH, Maddukuri L, Reed MR, Gunderson JEC, Leung JWC, Eoff RL (2021) Human Rev1 relies on insert-2 to promote selective binding and accurate replication of stabilized G-quadruplex motifs. Nucleic Acids Res 49(4):2065–2084. https://doi.org/10.1093/nar/gkab041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garcia-Exposito L, Bournique E, Bergoglio V, Bose A, Barroso-Gonzalez J, Zhang S, Roncaioli JL, Lee M, Wallace CT, Watkins SC, Opresko PL, Hoffmann JS, O’Sullivan RJ (2016) Proteomic profiling reveals a specific role for translesion DNA polymerase eta in the alternative lengthening of telomeres. Cell Rep 17(7):1858–1871. https://doi.org/10.1016/j.celrep.2016.10.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murphy CT, Gupta A, Armitage BA, Opresko PL (2014) Hybridization of G-quadruplex-forming peptide nucleic acids to guanine-rich DNA templates inhibits DNA polymerase eta extension. Biochemistry 53(32):5315–5322. https://doi.org/10.1021/bi5006859

    Article  CAS  PubMed  Google Scholar 

  76. Pope-Varsalona H, Liu FJ, Guzik L, Opresko PL (2014) Polymerase eta suppresses telomere defects induced by DNA damaging agents. Nucleic Acids Res 42(21):13096–13109. https://doi.org/10.1093/nar/gku1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eddy S, Maddukuri L, Ketkar A, Zafar MK, Henninger EE, Pursell ZF, Eoff RL (2015) Evidence for the kinetic partitioning of polymerase activity on G-quadruplex DNA. Biochemistry 54(20):3218–3230. https://doi.org/10.1021/acs.biochem.5b00060

    Article  CAS  PubMed  Google Scholar 

  78. Eddy S, Tillman M, Maddukuri L, Ketkar A, Zafar MK, Eoff RL (2016) Human translesion polymerase kappa exhibits enhanced activity and reduced fidelity two nucleotides from G-quadruplex DNA. Biochemistry 55(37):5218–5229. https://doi.org/10.1021/acs.biochem.6b00374

    Article  CAS  PubMed  Google Scholar 

  79. Berroyer A, Alvarado G, Larson ED (2019) Response of Sulfolobus solfataricus Dpo4 polymerase in vitro to a DNA G-quadruplex. Mutagenesis 34(3):289–297. https://doi.org/10.1093/mutage/gez010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Quinet A, Tirman S, Jackson J, Svikovic S, Lemacon D, Carvajal-Maldonado D, Gonzalez-Acosta D, Vessoni AT, Cybulla E, Wood M, Tavis S, Batista LFZ, Mendez J, Sale JE, Vindigni A (2020) PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells. Mol Cell 77(3):461-474.e9. https://doi.org/10.1016/j.molcel.2019.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bailey LJ, Bianchi J, Doherty AJ (2019) PrimPol is required for the maintenance of efficient nuclear and mitochondrial DNA replication in human cells. Nucleic Acids Res 47(8):4026–4038. https://doi.org/10.1093/nar/gkz056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tirman S, Cybulla E, Quinet A, Meroni A, Vindigni A (2021) PRIMPOL ready, set, reprime! Crit Rev Biochem Mol Biol 56(1):17–30. https://doi.org/10.1080/10409238.2020.1841089

    Article  CAS  PubMed  Google Scholar 

  83. Schiavone D, Jozwiakowski SK, Romanello M, Guilbaud G, Guilliam TA, Bailey LJ, Sale JE, Doherty AJ (2016) PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol Cell 61(1):161–169. https://doi.org/10.1016/j.molcel.2015.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Svikovic S, Crisp A, Tan-Wong SM, Guilliam TA, Doherty AJ, Proudfoot NJ, Guilbaud G, Sale JE (2019) R-loop formation during S phase is restricted by PrimPol-mediated repriming. EMBO J. https://doi.org/10.15252/embj.201899793

    Article  PubMed  Google Scholar 

  85. Butler TJ, Estep KN, Sommers JA, Maul RW, Moore AZ, Bandinelli S, Cucca F, Tuke MA, Wood AR, Bharti SK, Bogenhagen DF, Yakubovskaya E, Garcia-Diaz M, Guilliam TA, Byrd AK, Raney KD, Doherty AJ, Ferrucci L, Schlessinger D, Ding J, Brosh RM (2020) Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in vitro. Hum Mol Genet 29(8):1292–1309. https://doi.org/10.1093/hmg/ddaa043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Broxson C, Beckett J, Tornaletti S (2011) Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene. Biochemistry 50(19):4162–4172. https://doi.org/10.1021/bi2002136

    Article  CAS  PubMed  Google Scholar 

  87. Smestad JA, Maher LJ 3rd (2015) Relationships between putative G-quadruplex-forming sequences, RecQ helicases, and transcription. BMC Med Genet 16:91. https://doi.org/10.1186/s12881-015-0236-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Belotserkovskii BP, Liu R, Tornaletti S, Krasilnikova MM, Mirkin SM, Hanawalt PC (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci USA 107(29):12816–12821. https://doi.org/10.1073/pnas.1007580107

    Article  PubMed  PubMed Central  Google Scholar 

  89. Belotserkovskii BP, Neil AJ, Saleh SS, Shin JH, Mirkin SM, Hanawalt PC (2013) Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks. Nucleic Acids Res 41(3):1817–1828. https://doi.org/10.1093/nar/gks1333

    Article  CAS  PubMed  Google Scholar 

  90. Belotserkovskii BP, Soo Shin JH, Hanawalt PC (2017) Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter. Nucleic Acids Res 45(11):6589–6599. https://doi.org/10.1093/nar/gkx403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lim G, Hohng S (2020) Single-molecule fluorescence studies on cotranscriptional G-quadruplex formation coupled with R-loop formation. Nucleic Acids Res 48(16):9195–9203. https://doi.org/10.1093/nar/gkaa695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee CY, McNerney C, Ma K, Zhao W, Wang A, Myong S (2020) R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation. Nat Commun 11(1):3392. https://doi.org/10.1038/s41467-020-17176-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. De Magis A, Manzo SG, Russo M, Marinello J, Morigi R, Sordet O, Capranico G (2019) DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc Natl Acad Sci USA 116(3):816–825. https://doi.org/10.1073/pnas.1810409116

    Article  CAS  PubMed  Google Scholar 

  94. Zhang L, Lu Z, Zhao X (2021) Targeting Bcl-2 for cancer therapy. Biochim Biophys Rev Cancer 1876(1):188569. https://doi.org/10.1016/j.bbcan.2021.188569

    Article  CAS  Google Scholar 

  95. Bredow S, Juri DE, Cardon K, Tesfaigzi Y (2007) Identification of a novel Bcl-2 promoter region that counteracts in a p53-dependent manner the inhibitory P2 region. Gene 404(1–2):110–116. https://doi.org/10.1016/j.gene.2007.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cheng Y, Tang Q, Li Y, Zhang Y, Zhao C, Yan J, You H (2019) Folding/unfolding kinetics of G-quadruplexes upstream of the P1 promoter of the human BCL-2 oncogene. J Biol Chem 294(15):5890–5895. https://doi.org/10.1074/jbc.RA119.007516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heckman C, Mochon E, Arcinas M, Boxer LM (1997) The WT1 protein is a negative regulator of the normal bcl-2 allele in t(14;18) lymphomas. J Biol Chem 272(31):19609–19614. https://doi.org/10.1074/jbc.272.31.19609

    Article  CAS  PubMed  Google Scholar 

  98. Seto M, Jaeger U, Hockett RD, Graninger W, Bennett S, Goldman P, Korsmeyer SJ (1988) Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J 7(1):123–131

    Article  CAS  Google Scholar 

  99. Gomez-Manzano C, Mitlianga P, Fueyo J, Lee HY, Hu M, Spurgers KB, Glass TL, Koul D, Liu TJ, McDonnell TJ, Yung WK (2001) Transfer of E2F–1 to human glioma cells results in transcriptional up-regulation of Bcl-2. Cancer Res 61(18):6693–6697

    CAS  PubMed  Google Scholar 

  100. Onyshchenko MI, Gaynutdinov TI, Englund EA, Appella DH, Neumann RD, Panyutin IG (2009) Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs. Nucleic Acids Res 37(22):7570–7580. https://doi.org/10.1093/nar/gkp840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Onel B, Carver M, Wu G, Timonina D, Kalarn S, Larriva M, Yang D (2016) A new G-quadruplex with hairpin loop immediately upstream of the human BCL2 P1 promoter modulates transcription. J Am Chem Soc 138(8):2563–2570. https://doi.org/10.1021/jacs.5b08596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun H, Xiang J, Shi Y, Yang Q, Guan A, Li Q, Yu L, Shang Q, Zhang H, Tang Y, Xu G (2014) A newly identified G-quadruplex as a potential target regulating Bcl-2 expression. Biochim Biophys Acta 1840(10):3052–3057. https://doi.org/10.1016/j.bbagen.2014.07.014

    Article  CAS  PubMed  Google Scholar 

  103. Cogoi S, Paramasivam M, Spolaore B, Xodo LE (2008) Structural polymorphism within a regulatory element of the human KRAS promoter: formation of G4-DNA recognized by nuclear proteins. Nucleic Acids Res 36(11):3765–3780. https://doi.org/10.1093/nar/gkn120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cogoi S, Xodo LE (2006) G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res 34(9):2536–2549. https://doi.org/10.1093/nar/gkl286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chu PC, Yang MC, Kulp SK, Salunke SB, Himmel LE, Fang CS, Jadhav AM, Shan YS, Lee CT, Lai MD, Shirley LA, Bekaii-Saab T, Chen CS (2016) Regulation of oncogenic KRAS signaling via a novel KRAS-integrin-linked kinase-hnRNPA1 regulatory loop in human pancreatic cancer cells. Oncogene 35(30):3897–3908. https://doi.org/10.1038/onc.2015.458

    Article  CAS  PubMed  Google Scholar 

  106. David AP, Pipier A, Pascutti F, Binolfi A, Weiner AMJ, Challier E, Heckel S, Calsou P, Gomez D, Calcaterra NB, Armas P (2019) CNBP controls transcription by unfolding DNA G-quadruplex structures. Nucleic Acids Res 47(15):7901–7913. https://doi.org/10.1093/nar/gkz527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cogoi S, Zorzet S, Rapozzi V, Geci I, Pedersen EB, Xodo LE (2013) MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res 41(7):4049–4064. https://doi.org/10.1093/nar/gkt127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Amato J, Madanayake TW, Iaccarino N, Novellino E, Randazzo A, Hurley LH, Pagano B (2018) HMGB1 binds to the KRAS promoter G-quadruplex: a new player in oncogene transcriptional regulation? Chem Commun 54(68):9442–9445. https://doi.org/10.1039/c8cc03614d

    Article  CAS  Google Scholar 

  109. Morgan RK, Batra H, Gaerig VC, Hockings J, Brooks TA (2016) Identification and characterization of a new G-quadruplex forming region within the kRAS promoter as a transcriptional regulator. Biochim Biophys Acta 1859(2):235–245. https://doi.org/10.1016/j.bbagrm.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  110. Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM (2021) Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 20(1):3. https://doi.org/10.1186/s12943-020-01291-6

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chaudhuri R, Bhattacharya S, Dash J, Bhattacharya S (2021) Recent update on targeting c-MYC G-quadruplexes by small molecules for anticancer therapeutics. J Med Chem 64(1):42–70. https://doi.org/10.1021/acs.jmedchem.0c01145

    Article  CAS  PubMed  Google Scholar 

  112. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 99(18):11593–11598. https://doi.org/10.1073/pnas.182256799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sengupta P, Bhattacharya A, Sa G, Das T, Chatterjee S (2019) Truncated G-quadruplex isomers cross-talk with the transcription factors to maintain homeostatic equilibria in c-MYC transcription. Biochemistry 58(15):1975–1991. https://doi.org/10.1021/acs.biochem.9b00030

    Article  CAS  PubMed  Google Scholar 

  114. Shan C, Yan JW, Wang YQ, Che T, Huang ZL, Chen AC, Yao PF, Tan JH, Li D, Ou TM, Gu LQ, Huang ZS (2017) Design, synthesis, and evaluation of isaindigotone derivatives to downregulate c-myc transcription via disrupting the interaction of NM23-H2 with G-quadruplex. J Med Chem 60(4):1292–1308. https://doi.org/10.1021/acs.jmedchem.6b01218

    Article  CAS  PubMed  Google Scholar 

  115. Wang YQ, Huang ZL, Chen SB, Wang CX, Shan C, Yin QK, Ou TM, Li D, Gu LQ, Tan JH, Huang ZS (2017) Design, synthesis, and evaluation of new selective NM23-H2 binders as c-MYC transcription inhibitors via disruption of the NM23-H2/G-quadruplex interaction. J Med Chem 60(16):6924–6941. https://doi.org/10.1021/acs.jmedchem.7b00421

    Article  CAS  PubMed  Google Scholar 

  116. Chen S, Su L, Qiu J, Xiao N, Lin J, Tan JH, Ou TM, Gu LQ, Huang ZS, Li D (2013) Mechanistic studies for the role of cellular nucleic-acid-binding protein (CNBP) in regulation of c-myc transcription. Biochim Biophys Acta 1830(10):4769–4777. https://doi.org/10.1016/j.bbagen.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  117. Wu R, Li L, Bai Y, Yu B, Xie C, Wu H, Zhang Y, Huang L, Yan Y, Li X, Lin C (2020) The long noncoding RNA LUCAT1 promotes colorectal cancer cell proliferation by antagonizing nucleolin to regulate MYC expression. Cell Death Dis 11(10):908. https://doi.org/10.1038/s41419-020-03095-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rigo R, Palumbo M, Sissi C (2017) G-quadruplexes in human promoters: a challenge for therapeutic applications. Biochim Biophys Acta Gen Subj 186(5 Pt B):1399–1413. https://doi.org/10.1016/j.bbagen.2016.12.024

    Article  CAS  Google Scholar 

  119. Raiber EA, Kranaster R, Lam E, Nikan M, Balasubramanian S (2012) A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res 40(4):1499–1508. https://doi.org/10.1093/nar/gkr882

    Article  CAS  PubMed  Google Scholar 

  120. Tsukakoshi K, Saito S, Yoshida W, Goto S, Ikebukuro K (2018) CpG methylation changes G-quadruplex structures derived from gene promoters and interaction with VEGF and SP1. Molecules. https://doi.org/10.3390/molecules23040944

    Article  PubMed  PubMed Central  Google Scholar 

  121. Uribe DJ, Guo K, Shin YJ, Sun D (2011) Heterogeneous nuclear ribonucleoprotein K and nucleolin as transcriptional activators of the vascular endothelial growth factor promoter through interaction with secondary DNA structures. Biochemistry 50(18):3796–3806. https://doi.org/10.1021/bi101633b

    Article  CAS  PubMed  Google Scholar 

  122. Dutta A, Maji N, Sengupta P, Banerjee N, Kar S, Mukherjee G, Chatterjee S, Basu M (2021) Promoter G-quadruplex favours epigenetic reprogramming-induced atypical expression of ZEB1 in cancer cells. Biochim Biophys Acta Gen Subj 1865(8):129899. https://doi.org/10.1016/j.bbagen.2021.129899

    Article  CAS  PubMed  Google Scholar 

  123. Sun D, Hurley LH (2009) The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J Med Chem 52(9):2863–2874. https://doi.org/10.1021/jm900055s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dickerhoff J, Dai J, Yang D (2021) Structural recognition of the MYC promoter G-quadruplex by a quinoline derivative: insights into molecular targeting of parallel G-quadruplexes. Nucleic Acids Res 49(10):5905–5915. https://doi.org/10.1093/nar/gkab330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhai Q, Gao C, Ding J, Zhang Y, Islam B, Lan W, Hou H, Deng H, Li J, Hu Z, Mohamed HI, Xu S, Cao C, Haider SM, Wei D (2019) Selective recognition of c-MYC Pu22 G-quadruplex by a fluorescent probe. Nucleic Acids Res 47(5):2190–2204. https://doi.org/10.1093/nar/gkz059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sun R, Guo X, Yang D, Tang Y, Lu J, Sun H (2021) c-Myc G-quadruplex is sensitively and specifically recognized by a fluorescent probe. Talanta 226:122125. https://doi.org/10.1016/j.talanta.2021.122125

    Article  CAS  PubMed  Google Scholar 

  127. Deiana M, Chand K, Jamroskovic J, Das RN, Obi I, Chorell E, Sabouri N (2020) A site-specific self-assembled light-up rotor probe for selective recognition and stabilization of c-MYC G-quadruplex DNA. Nanoscale 12(24):12950–12957. https://doi.org/10.1039/d0nr03404e

    Article  CAS  PubMed  Google Scholar 

  128. Mishra SK, Tawani A, Mishra A, Kumar A (2016) G4IPDB: a database for G-quadruplex structure forming nucleic acid interacting proteins. Sci Rep 6:38144. https://doi.org/10.1038/srep38144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li Q, Xiang JF, Yang QF, Sun HX, Guan AJ, Tang YL (2013) G4LDB: a database for discovering and studying G-quadruplex ligands. Nucleic Acids Res 41(Database issue):D1115-1123. https://doi.org/10.1093/nar/gks1101

    Article  CAS  PubMed  Google Scholar 

  130. D’Aria F, Pagano B, Petraccone L, Giancola C (2021) KRAS promoter G-quadruplexes from sequences of different length: a physicochemical study. Int J Mol Sci. https://doi.org/10.3390/ijms22010448

    Article  PubMed  PubMed Central  Google Scholar 

  131. Del Toro M, Bucek P, Avino A, Jaumot J, Gonzalez C, Eritja R, Gargallo R (2009) Targeting the G-quadruplex-forming region near the P1 promoter in the human BCL-2 gene with the cationic porphyrin TMPyP4 and with the complementary C-rich strand. Biochimie 91(7):894–902. https://doi.org/10.1016/j.biochi.2009.04.012

    Article  CAS  PubMed  Google Scholar 

  132. Brown RV, Danford FL, Gokhale V, Hurley LH, Brooks TA (2011) Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex. J Biol Chem 286(47):41018–41027. https://doi.org/10.1074/jbc.M111.274720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Montoya JJ, Turnidge MA, Wai DH, Patel AR, Lee DW, Gokhale V, Hurley LH, Arceci RJ, Wetmore C, Azorsa DO (2019) In vitro activity of a G-quadruplex-stabilizing small molecule that synergizes with Navitoclax to induce cytotoxicity in acute myeloid leukemia cells. BMC Cancer 19(1):1251. https://doi.org/10.1186/s12885-019-6464-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Weldon C, Dacanay JG, Gokhale V, Boddupally PVL, Behm-Ansmant I, Burley GA, Branlant C, Hurley LH, Dominguez C, Eperon IC (2018) Specific G-quadruplex ligands modulate the alternative splicing of Bcl-X. Nucleic Acids Res 46(2):886–896. https://doi.org/10.1093/nar/gkx1122

    Article  CAS  PubMed  Google Scholar 

  135. Tian E, Landowski TH, Stephens OW, Yaccoby S, Barlogie B, Shaughnessy JD Jr (2008) Ellipticine derivative NSC 338258 represents a potential new antineoplastic agent for the treatment of multiple myeloma. Mol Cancer Ther 7(3):500–509. https://doi.org/10.1158/1535-7163.MCT-07-0524

    Article  CAS  PubMed  Google Scholar 

  136. Kumarasamy VM, Sun D (2017) Demonstration of a potent RET transcriptional inhibitor for the treatment of medullary thyroid carcinoma based on an ellipticine derivative. Int J Oncol 51(1):145–157. https://doi.org/10.3892/ijo.2017.3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hu MH, Wu TY, Huang Q, Jin G (2019) New substituted quinoxalines inhibit triple-negative breast cancer by specifically downregulating the c-MYC transcription. Nucleic Acids Res 47(20):10529–10542. https://doi.org/10.1093/nar/gkz835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kumar R, Chand K, Bhowmik S, Das RN, Bhattacharjee S, Hedenstrom M, Chorell E (2020) Subtle structural alterations in G-quadruplex DNA regulate site specificity of fluorescence light-up probes. Nucleic Acids Res 48(3):1108–1119. https://doi.org/10.1093/nar/gkz1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wu TY, Huang Q, Huang ZS, Hu MH, Tan JH (2020) A drug-like imidazole-benzothiazole conjugate inhibits malignant melanoma by stabilizing the c-MYC G-quadruplex. Bioorg Chem 99:103866. https://doi.org/10.1016/j.bioorg.2020.103866

    Article  CAS  PubMed  Google Scholar 

  140. Calabrese DR, Chen X, Leon EC, Gaikwad SM, Phyo Z, Hewitt WM, Alden S, Hilimire TA, He F, Michalowski AM, Simmons JK, Saunders LB, Zhang S, Connors D, Walters KJ, Mock BA, Schneekloth JS Jr (2018) Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nat Commun 9(1):4229. https://doi.org/10.1038/s41467-018-06315-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ou TM, Lin J, Lu YJ, Hou JQ, Tan JH, Chen SH, Li Z, Li YP, Li D, Gu LQ, Huang ZS (2011) Inhibition of cell proliferation by quindoline derivative (SYUIQ-05) through its preferential interaction with c-myc promoter G-quadruplex. J Med Chem 54(16):5671–5679. https://doi.org/10.1021/jm200062u

    Article  CAS  PubMed  Google Scholar 

  142. Liu HY, Chen AC, Yin QK, Li Z, Huang SM, Du G, He JH, Zan LP, Wang SK, Xu YH, Tan JH, Ou TM, Li D, Gu LQ, Huang ZS (2017) New disubstituted quindoline derivatives inhibiting Burkitt’s lymphoma cell proliferation by impeding c-MYC transcription. J Med Chem 60(13):5438–5454. https://doi.org/10.1021/acs.jmedchem.7b00099

    Article  CAS  PubMed  Google Scholar 

  143. Hu MH, Wang YQ, Yu ZY, Hu LN, Ou TM, Chen SB, Huang ZS, Tan JH (2018) Discovery of a new four-leaf clover-like ligand as a potent c-MYC transcription inhibitor specifically targeting the promoter G-quadruplex. J Med Chem 61(6):2447–2459. https://doi.org/10.1021/acs.jmedchem.7b01697

    Article  CAS  PubMed  Google Scholar 

  144. Drygin D, Siddiqui-Jain A, O’Brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP, Lim JK, Von Hoff D, Anderes K, Rice WG (2009) Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res 69(19):7653–7661. https://doi.org/10.1158/0008-5472.CAN-09-1304

    Article  CAS  PubMed  Google Scholar 

  145. Yao YX, Xu BH, Zhang Y (2018) CX-3543 promotes cell apoptosis through downregulation of CCAT1 in colon cancer cells. Biomed Res Int 2018:9701957. https://doi.org/10.1155/2018/9701957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4):261–275. https://doi.org/10.1038/nrd3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sullivan HJ, Chen B, Wu C (2020) Molecular dynamics study on the binding of an anticancer DNA G-quadruplex stabilizer, CX-5461, to human telomeric, c-KIT1, and c-Myc G-quadruplexes and a DNA duplex. J Chem Inf Model 60(10):5203–5224. https://doi.org/10.1021/acs.jcim.0c00632

    Article  CAS  PubMed  Google Scholar 

  148. Yan S, Xuan J, Brajanovski N, Tancock MRC, Madhamshettiwar PB, Simpson KJ, Ellis S, Kang J, Cullinane C, Sheppard KE, Hannan KM, Hannan RD, Sanij E, Pearson RB, Chan KT (2021) The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. Br J Cancer 124(3):616–627. https://doi.org/10.1038/s41416-020-01158-z

    Article  CAS  PubMed  Google Scholar 

  149. Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O’Neil NJ, Santos ND, Silvester J, Wei V, Garcia J, Kabeer F, Lai D, Soriano P, Banath J, Chiu DS, Yap D, Le DD, Ye FB, Zhang A, Thu K, Soong J, Lin SC, Tsai AH, Osako T, Algara T, Saunders DN, Wong J, Xian J, Bally MB, Brenton JD, Brown GW, Shah SP, Cescon D, Mak TW, Caldas C, Stirling PC, Hieter P, Balasubramanian S, Aparicio S (2017) CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun 8:14432. https://doi.org/10.1038/ncomms14432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bruno PM, Lu M, Dennis KA, Inam H, Moore CJ, Sheehe J, Elledge SJ, Hemann MT, Pritchard JR (2020) The primary mechanism of cytotoxicity of the chemotherapeutic agent CX-5461 is topoisomerase II poisoning. Proc Natl Acad Sci USA 117(8):4053–4060. https://doi.org/10.1073/pnas.1921649117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Masud T, Soong C, Xu H, Biele J, Bjornson S, McKinney S, Aparicio S (2021) Ubiquitin-mediated DNA damage response is synthetic lethal with G-quadruplex stabilizer CX-5461. Sci Rep 11(1):9812. https://doi.org/10.1038/s41598-021-88988-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hein N, Cameron DP, Hannan KM, Nguyen NN, Fong CY, Sornkom J, Wall M, Pavy M, Cullinane C, Diesch J, Devlin JR, George AJ, Sanij E, Quin J, Poortinga G, Verbrugge I, Baker A, Drygin D, Harrison SJ, Rozario JD, Powell JA, Pitson SM, Zuber J, Johnstone RW, Dawson MA, Guthridge MA, Wei A, McArthur GA, Pearson RB, Hannan RD (2017) Inhibition of Pol I transcription treats murine and human AML by targeting the leukemia-initiating cell population. Blood 129(21):2882–2895. https://doi.org/10.1182/blood-2016-05-718171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kusnadi EP, Trigos AS, Cullinane C, Goode DL, Larsson O, Devlin JR, Chan KT, De Souza DP, McConville MJ, McArthur GA, Thomas G, Sanij E, Poortinga G, Hannan RD, Hannan KM, Kang J, Pearson RB (2020) Reprogrammed mRNA translation drives resistance to therapeutic targeting of ribosome biogenesis. EMBO J 39(21):e105111. https://doi.org/10.15252/embj.2020105111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ismael M, Webb R, Ajaz M, Kirkby KJ, Coley HM (2019) The targeting of RNA polymerase I transcription using CX-5461 in combination with radiation enhances tumour cell killing effects in human solid cancers. Cancers. https://doi.org/10.3390/cancers11101429

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sanij E, Hannan KM, Xuan J, Yan S, Ahern JE, Trigos AS, Brajanovski N, Son J, Chan KT, Kondrashova O, Lieschke E, Wakefield MJ, Frank D, Ellis S, Cullinane C, Kang J, Poortinga G, Nag P, Deans AJ, Khanna KK, Mileshkin L, McArthur GA, Soong J, Berns E, Hannan RD, Scott CL, Sheppard KE, Pearson RB (2020) CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nat Commun 11(1):2641. https://doi.org/10.1038/s41467-020-16393-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Makhale A, Nanayakkara D, Raninga P, Khanna KK, Kalimutho M (2021) CX-5461 enhances the efficacy of APR-246 via induction of DNA damage and replication stress in triple-negative breast cancer. Int J Mol Sci. https://doi.org/10.3390/ijms22115782

    Article  PubMed  PubMed Central  Google Scholar 

  157. Xu X, Feng H, Dai C, Lu W, Zhang J, Guo X, Yin Q, Wang J, Cui X, Jiang F (2021) Therapeutic efficacy of the novel selective RNA polymerase I inhibitor CX-5461 on pulmonary arterial hypertension and associated vascular remodelling. Br J Pharmacol 178(7):1605–1619. https://doi.org/10.1111/bph.15385

    Article  CAS  PubMed  Google Scholar 

  158. Khot A, Brajanovski N, Cameron DP, Hein N, Maclachlan KH, Sanij E, Lim J, Soong J, Link E, Blombery P, Thompson ER, Fellowes A, Sheppard KE, McArthur GA, Pearson RB, Hannan RD, Poortinga G, Harrison SJ (2019) First-in-human RNA polymerase I transcription inhibitor CX-5461 in patients with advanced hematologic cancers: results of a phase I dose-escalation study. Cancer Discov 9(8):1036–1049. https://doi.org/10.1158/2159-8290.CD-18-1455

    Article  CAS  PubMed  Google Scholar 

  159. Cheng F, Carroll L, Joglekar MV, Januszewski AS, Wong KK, Hardikar AA, Jenkins AJ, Ma RCW (2021) Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol 9(2):117–126. https://doi.org/10.1016/S2213-8587(20)30365-X

    Article  CAS  PubMed  Google Scholar 

  160. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43(18):8627–8637. https://doi.org/10.1093/nar/gkv862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kosiol N, Juranek S, Brossart P, Heine A, Paeschke K (2021) G-quadruplexes: a promising target for cancer therapy. Mol Cancer 20(1):40. https://doi.org/10.1186/s12943-021-01328-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhai LT, Rety S, Chen WF, Song ZY, Auguin D, Sun B, Dou SX, Xi XG (2021) Crystal structures of N-terminally truncated telomerase reverse transcriptase from fungidouble dagger. Nucleic Acids Res 49(8):4768–4781. https://doi.org/10.1093/nar/gkab261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350(6320):718–720. https://doi.org/10.1038/350718a0

    Article  CAS  PubMed  Google Scholar 

  164. Oganesian L, Moon IK, Bryan TM, Jarstfer MB (2006) Extension of G-quadruplex DNA by ciliate telomerase. EMBO J 25(5):1148–1159. https://doi.org/10.1038/sj.emboj.7601006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Moye AL, Porter KC, Cohen SB, Phan T, Zyner KG, Sasaki N, Lovrecz GO, Beck JL, Bryan TM (2015) Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat Commun 6:7643. https://doi.org/10.1038/ncomms8643

    Article  PubMed  Google Scholar 

  166. Paudel BP, Moye AL, Abou Assi H, El-Khoury R, Cohen SB, Holien JK, Birrento ML, Samosorn S, Intharapichai K, Tomlinson CG, Teulade-Fichou MP, Gonzalez C, Beck JL, Damha MJ, van Oijen AM, Bryan TM (2020) A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. Elife. https://doi.org/10.7554/eLife.56428

    Article  PubMed  PubMed Central  Google Scholar 

  167. Chaires JB, Gray RD, Dean WL, Monsen R, DeLeeuw LW, Stribinskis V, Trent JO (2020) Human POT1 unfolds G-quadruplexes by conformational selection. Nucleic Acids Res 48(9):4976–4991. https://doi.org/10.1093/nar/gkaa202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xu M, Axhemi A, Malgowska M, Chen Y, Leonard D, Srinivasan S, Jankowsky E, Taylor DJ (2021) Active and passive destabilization of G-quadruplex DNA by the telomere POT1-TPP1 complex. J Mol Biol 433(7):166846. https://doi.org/10.1016/j.jmb.2021.166846

    Article  CAS  PubMed  Google Scholar 

  169. Ray S, Qureshi MH, Malcolm DW, Budhathoki JB, Celik U, Balci H (2013) RPA-mediated unfolding of systematically varying G-quadruplex structures. Biophys J 104(10):2235–2245. https://doi.org/10.1016/j.bpj.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fernandes CAH, Morea EGO, Dos Santos GA, da Silva VL, Vieira MR, Viviescas MA, Chatain J, Vadel A, Saintome C, Fontes MRM, Cano MIN (2020) A multi-approach analysis highlights the relevance of RPA-1 as a telomere end-binding protein (TEBP) in Leishmania amazonensis. Biochim Biophys Acta Gen Subj 1864(7):129607. https://doi.org/10.1016/j.bbagen.2020.129607

    Article  CAS  PubMed  Google Scholar 

  171. Guterres AN, Villanueva J (2020) Targeting telomerase for cancer therapy. Oncogene 39(36):5811–5824. https://doi.org/10.1038/s41388-020-01405-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shin-ya K, Wierzba K, Matsuo K, Ohtani T, Yamada Y, Furihata K, Hayakawa Y, Seto H (2001) Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc 123(6):1262–1263. https://doi.org/10.1021/ja005780q

    Article  CAS  PubMed  Google Scholar 

  173. Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K, Hurley LH (2002) Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J Am Chem Soc 124(10):2098–2099. https://doi.org/10.1021/ja017308q

    Article  CAS  PubMed  Google Scholar 

  174. Kim MY, Gleason-Guzman M, Izbicka E, Nishioka D, Hurley LH (2003) The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res 63(12):3247–3256

    CAS  PubMed  Google Scholar 

  175. Nakajima A, Tauchi T, Sashida G, Sumi M, Abe K, Yamamoto K, Ohyashiki JH, Ohyashiki K (2003) Telomerase inhibition enhances apoptosis in human acute leukemia cells: possibility of antitelomerase therapy. Leukemia 17(3):560–567. https://doi.org/10.1038/sj.leu.2402825

    Article  CAS  PubMed  Google Scholar 

  176. Shammas MA, Reis RJS, Li C, Koley H, Hurley LH, Anderson KC, Munshi NC (2004) Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin Cancer Res 10(2):770–776. https://doi.org/10.1158/1078-0432.ccr-0793-03

    Article  CAS  PubMed  Google Scholar 

  177. Hasegawa D, Okabe S, Okamoto K, Nakano I, Shin-ya K, Seimiya H (2016) G-quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells. Biochem Biophys Res Commun 471(1):75–81. https://doi.org/10.1016/j.bbrc.2016.01.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Miyazaki T, Pan Y, Joshi K, Purohit D, Hu B, Demir H, Mazumder S, Okabe S, Yamori T, Viapiano M, Shin-ya K, Seimiya H, Nakano I (2012) Telomestatin impairs glioma stem cell survival and growth through the disruption of telomeric G-quadruplex and inhibition of the proto-oncogene, c-Myb. Clin Cancer Res 18(5):1268–1280. https://doi.org/10.1158/1078-0432.CCR-11-1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nakamura T, Okabe S, Yoshida H, Iida K, Ma Y, Sasaki S, Yamori T, Shin-Ya K, Nakano I, Nagasawa K, Seimiya H (2017) Targeting glioma stem cells in vivo by a G-quadruplex-stabilizing synthetic macrocyclic hexaoxazole. Sci Rep 7(1):3605. https://doi.org/10.1038/s41598-017-03785-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yasuda M, Ma Y, Okabe S, Wakabayashi Y, Su D, Chang YT, Seimiya H, Tera M, Nagasawa K (2020) Target identification of a macrocyclic hexaoxazole G-quadruplex ligand using post-target-binding visualization. Chem Commun 56(85):12905–12908. https://doi.org/10.1039/d0cc04957c

    Article  CAS  Google Scholar 

  181. Ma Y, Iida K, Sasaki S, Hirokawa T, Heddi B, Phan AT, Nagasawa K (2019) Synthesis and telomeric G-quadruplex-stabilizing ability of macrocyclic hexaoxazoles bearing three side chains. Molecules. https://doi.org/10.3390/molecules24020263

    Article  PubMed  PubMed Central  Google Scholar 

  182. Yu-Ru X, Fang-Yuan T, Xiao-Zhen T, Hong-Ting Z, Yong X (2020) Anti-inflammatory activities of berberine in the treatment of metabolic disorders by regulating the gut microbiota. Prog Biochem Biophys 47(08):835–843. https://doi.org/10.16476/j.pibb.2020.0137

    Article  CAS  Google Scholar 

  183. Bazzicalupi C, Ferraroni M, Bilia AR, Scheggi F, Gratteri P (2013) The crystal structure of human telomeric DNA complexed with berberine: an interesting case of stacked ligand to G-tetrad ratio higher than 1:1. Nucleic Acids Res 41(1):632–638. https://doi.org/10.1093/nar/gks1001

    Article  CAS  PubMed  Google Scholar 

  184. Kumarasamy VM, Shin YJ, White J, Sun D (2015) Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer 15:599. https://doi.org/10.1186/s12885-015-1610-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ciszewski L, Lu-Nguyen N, Slater A, Brennan A, Williams HEL, Dickson G, Searle MS, Popplewell L (2020) G-quadruplex ligands mediate downregulation of DUX4 expression. Nucleic Acids Res 48(8):4179–4194. https://doi.org/10.1093/nar/gkaa146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Xiong YX, Su HF, Lv P, Ma Y, Wang SK, Miao H, Liu HY, Tan JH, Ou TM, Gu LQ, Huang ZS (2015) A newly identified berberine derivative induces cancer cell senescence by stabilizing endogenous G-quadruplexes and sparking a DNA damage response at the telomere region. Oncotarget 6(34):35625–35635. https://doi.org/10.18632/oncotarget.5521

    Article  PubMed  PubMed Central  Google Scholar 

  187. Liao TC, Ma TZ, Chen SB, Cilibrizzi A, Zhang MJ, Li JH, Zhou CQ (2020) Human telomere double G-quadruplex recognition by berberine-bisquinolinium imaging conjugates in vitro and cells. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.04.171

    Article  PubMed  Google Scholar 

  188. Lin C, Wu G, Wang K, Onel B, Sakai S, Shao Y, Yang D (2018) Molecular recognition of the hybrid-2 human telomeric G-quadruplex by epiberberine: insights into conversion of telomeric G-quadruplex structures. Angew Chem 57(34):10888–10893. https://doi.org/10.1002/anie.201804667

    Article  CAS  Google Scholar 

  189. Asamitsu S, Obata S, Yu Z, Bando T, Sugiyama H (2019) Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy. Molecules. https://doi.org/10.3390/molecules24030429

    Article  PubMed  PubMed Central  Google Scholar 

  190. Burger AM, Dai F, Schultes CM, Reszka AP, Moore MJ, Double JA, Neidle S (2005) The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res 65(4):1489–1496. https://doi.org/10.1158/0008-5472.CAN-04-2910

    Article  CAS  PubMed  Google Scholar 

  191. Gowan SM, Harrison JR, Patterson L, Valenti M, Read MA, Neidle S, Kelland LR (2002) A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol Pharmacol 61(5):1154–1162. https://doi.org/10.1124/mol.61.5.1154

    Article  CAS  PubMed  Google Scholar 

  192. Grand CL, Han H, Munoz RM, Weitman S, Von Hoff DD, Hurley LH, Bearss DJ (2002) The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther 1(8):565–573

    CAS  PubMed  Google Scholar 

  193. Li G, Shen J, Cao J, Zhou G, Lei T, Sun Y, Gao H, Ding Y, Xu W, Zhan Z, Chen Y, Huang H (2018) Alternative splicing of human telomerase reverse transcriptase in gliomas and its modulation mediated by CX-5461. J Exp Clin Cancer Res 37(1):78. https://doi.org/10.1186/s13046-018-0749-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Berardinelli F, Tanori M, Muoio D, Buccarelli M, di Masi A, Leone S, Ricci-Vitiani L, Pallini R, Mancuso M, Antoccia A (2019) G-quadruplex ligand RHPS4 radiosensitizes glioblastoma xenograft in vivo through a differential targeting of bulky differentiated- and stem-cancer cells. J Exp Clin Cancer Res 38(1):311. https://doi.org/10.1186/s13046-019-1293-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fleming AM, Burrows CJ (2020) On the irrelevancy of hydroxyl radical to DNA damage from oxidative stress and implications for epigenetics. Chem Soc Rev 49(18):6524–6528. https://doi.org/10.1039/d0cs00579g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ngoi NY, Liew AQ, Chong SJF, Davids MS, Clement MV, Pervaiz S (2021) The redox-senescence axis and its therapeutic targeting. Redox Biol 45:102032. https://doi.org/10.1016/j.redox.2021.102032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cogoi S, Ferino A, Miglietta G, Pedersen EB, Xodo LE (2018) The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res 46(2):661–676. https://doi.org/10.1093/nar/gkx1142

    Article  CAS  PubMed  Google Scholar 

  198. Fleming AM, Ding Y, Burrows CJ (2017) Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci USA 114(10):2604–2609. https://doi.org/10.1073/pnas.1619809114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Edwards AD, Marecki JC, Byrd AK, Gao J, Raney KD (2021) G-quadruplex loops regulate PARP-1 enzymatic activation. Nucleic Acids Res 49(1):416–431. https://doi.org/10.1093/nar/gkaa1172

    Article  CAS  PubMed  Google Scholar 

  200. Cinque G, Ferino A, Pedersen EB, Xodo LE (2020) Role of poly [ADP-ribose] polymerase 1 in activating the Kirsten ras (KRAS) gene in response to oxidative stress. Int J Mol Sci. https://doi.org/10.3390/ijms21176237

    Article  PubMed  PubMed Central  Google Scholar 

  201. Roychoudhury S, Pramanik S, Harris HL, Tarpley M, Sarkar A, Spagnol G, Sorgen PL, Chowdhury D, Band V, Klinkebiel D, Bhakat KK (2020) Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc Natl Acad Sci USA 117(21):11409–11420. https://doi.org/10.1073/pnas.1912355117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ferino A, Xodo LE (2021) Effect of DNA glycosylases OGG1 and Neil1 on oxidized G-rich motif in the KRAS promoter. Int J Mol Sci. https://doi.org/10.3390/ijms22031137

    Article  PubMed  PubMed Central  Google Scholar 

  203. Jara-Espejo M, Line SR (2020) DNA G-quadruplex stability, position and chromatin accessibility are associated with CpG island methylation. FEBS J 287(3):483–495. https://doi.org/10.1111/febs.15065

    Article  CAS  PubMed  Google Scholar 

  204. Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S (2020) The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 21(8):459–474. https://doi.org/10.1038/s41580-020-0236-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Li J, He G, Mu C, Wang K, Xiang Y (2017) Assay of DNA methyltransferase 1 activity based on uracil-specific excision reagent digestion induced G-quadruplex formation. Anal Chim Acta 986:131–137. https://doi.org/10.1016/j.aca.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  206. Cree SL, Fredericks R, Miller A, Pearce FG, Filichev V, Fee C, Kennedy MA (2016) DNA G-quadruplexes show strong interaction with DNA methyltransferases in vitro. FEBS Lett 590(17):2870–2883. https://doi.org/10.1002/1873-3468.12331

    Article  CAS  PubMed  Google Scholar 

  207. Mao SQ, Ghanbarian AT, Spiegel J, Martinez Cuesta S, Beraldi D, Di Antonio M, Marsico G, Hansel-Hertsch R, Tannahill D, Balasubramanian S (2018) DNA G-quadruplex structures mold the DNA methylome. Nat Struct Mol Biol 25(10):951–957. https://doi.org/10.1038/s41594-018-0131-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Saha D, Singh A, Hussain T, Srivastava V, Sengupta S, Kar A, Dhapola P, Dhople V, Ummanni R, Chowdhury S (2017) Epigenetic suppression of human telomerase (hTERT) is mediated by the metastasis suppressor NME2 in a G-quadruplex-dependent fashion. J Biol Chem 292(37):15205–15215. https://doi.org/10.1074/jbc.M117.792077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Purohit G, Mukherjee AK, Sharma S, Chowdhury S (2018) Extratelomeric binding of the telomere binding protein TRF2 at the PCGF3 promoter is G-quadruplex motif-dependent. Biochemistry 57(16):2317–2324. https://doi.org/10.1021/acs.biochem.8b00019

    Article  CAS  PubMed  Google Scholar 

  210. Hussain T, Saha D, Purohit G, Kar A, Kishore Mukherjee A, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, Horikoshi NT, Horikoshi N, Pandita RK, Bhattacharya S, Bajaj A, Riou JF, Pandita TK, Chowdhury S (2017) Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex. Sci Rep 7(1):11541. https://doi.org/10.1038/s41598-017-11177-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Spiegel J, Adhikari S, Balasubramanian S (2020) The structure and function of DNA G-quadruplexes. Trends Chem 2(2):123–136. https://doi.org/10.1016/j.trechm.2019.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sarkies P, Reams C, Simpson LJ, Sale JE (2010) Epigenetic instability due to defective replication of structured DNA. Mol Cell 40(5):703–713. https://doi.org/10.1016/j.molcel.2010.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Schiavone D, Guilbaud G, Murat P, Papadopoulou C, Sarkies P, Prioleau MN, Balasubramanian S, Sale JE (2014) Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells. EMBO J 33(21):2507–2520. https://doi.org/10.15252/embj.201488398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Guilbaud G, Murat P, Recolin B, Campbell BC, Maiter A, Sale JE, Balasubramanian S (2017) Local epigenetic reprogramming induced by G-quadruplex ligands. Nat Chem 9(11):1110–1117. https://doi.org/10.1038/nchem.2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Sarkies P, Murat P, Phillips LG, Patel KJ, Balasubramanian S, Sale JE (2012) FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res 40(4):1485–1498. https://doi.org/10.1093/nar/gkr868

    Article  CAS  PubMed  Google Scholar 

  216. Papadopoulou C, Guilbaud G, Schiavone D, Sale JE (2015) Nucleotide pool depletion induces G-quadruplex-dependent perturbation of gene expression. Cell Rep 13(11):2491–2503. https://doi.org/10.1016/j.celrep.2015.11.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Dai YX, Chen WF, Liu NN, Teng FY, Guo HL, Hou XM, Dou SX, Rety S, Xi XG (2021) Structural and functional studies of SF1B Pif1 from Thermus oshimai reveal dimerization-induced helicase inhibition. Nucleic Acids Res 49(7):4129–4143. https://doi.org/10.1093/nar/gkab188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Li S, Wang H, Jehi S, Li J, Liu S, Wang Z, Truong L, Chiba T, Wang Z, Wu X (2021) PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J 40(8):e104509. https://doi.org/10.15252/embj.2020104509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Boule JB, Vega LR, Zakian VA (2005) The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438(7064):57–61. https://doi.org/10.1038/nature04091

    Article  PubMed  Google Scholar 

  220. Wang J, Zhu X, Ying P, Zhu Y (2020) PIF1 affects the proliferation and apoptosis of cervical cancer cells by influencing TERT. Cancer Manag Res 12:7827–7835. https://doi.org/10.2147/CMAR.S265336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Li JR, Yu TY, Chien IC, Lu CY, Lin JJ, Li HW (2014) Pif1 regulates telomere length by preferentially removing telomerase from long telomere ends. Nucleic Acids Res 42(13):8527–8536. https://doi.org/10.1093/nar/gku541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Nickens DG, Rogers CM, Bochman ML (2018) The Saccharomyces cerevisiae Hrq1 and Pif1 DNA helicases synergistically modulate telomerase activity in vitro. J Biol Chem 293(37):14481–14496. https://doi.org/10.1074/jbc.RA118.004092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wang YR, Guo TT, Zheng YT, Lai CW, Sun B, Xi XG, Hou XM (2021) Replication protein A plays multifaceted roles complementary to specialized helicases in processing G-quadruplex DNA. iScience 24(5):102493. https://doi.org/10.1016/j.isci.2021.102493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Obi I, Rentoft M, Singh V, Jamroskovic J, Chand K, Chorell E, Westerlund F, Sabouri N (2020) Stabilization of G-quadruplex DNA structures in Schizosaccharomyces pombe causes single-strand DNA lesions and impedes DNA replication. Nucleic Acids Res 48(19):10998–11015. https://doi.org/10.1093/nar/gkaa820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou MP, Foiani M, Nicolas A (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30(19):4033–4046. https://doi.org/10.1038/emboj.2011.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Dahan D, Tsirkas I, Dovrat D, Sparks MA, Singh SP, Galletto R, Aharoni A (2018) Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures. Nucleic Acids Res 46(22):11847–11857. https://doi.org/10.1093/nar/gky1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Sanders CM (2010) Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem J 430(1):119–128. https://doi.org/10.1042/BJ20100612

    Article  CAS  PubMed  Google Scholar 

  228. Zhou R, Zhang J, Bochman ML, Zakian VA, Ha T (2014) Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA. Elife 3:e02190. https://doi.org/10.7554/eLife.02190

    Article  PubMed  PubMed Central  Google Scholar 

  229. Hou XM, Wu WQ, Duan XL, Liu NN, Li HH, Fu J, Dou SX, Li M, Xi XG (2015) Molecular mechanism of G-quadruplex unwinding helicase: sequential and repetitive unfolding of G-quadruplex by Pif1 helicase. Biochem J 466(1):189–199. https://doi.org/10.1042/BJ20140997

    Article  CAS  PubMed  Google Scholar 

  230. Wang L, Wang QM, Wang YR, Xi XG, Hou XM (2018) DNA-unwinding activity of Saccharomyces cerevisiae Pif1 is modulated by thermal stability, folding conformation, and loop lengths of G-quadruplex DNA. J Biol Chem 293(48):18504–18513. https://doi.org/10.1074/jbc.RA118.005071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Byrd AK, Bell MR, Raney KD (2018) Pif1 helicase unfolding of G-quadruplex DNA is highly dependent on sequence and reaction conditions. J Biol Chem 293(46):17792–17802. https://doi.org/10.1074/jbc.RA118.004499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Odermatt DC, Lee WTC, Wild S, Jozwiakowski SK, Rothenberg E, Gari K (2020) Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism. PLoS Genet 16(6):e1008740. https://doi.org/10.1371/journal.pgen.1008740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Calvo JA, Fritchman B, Hernandez D, Persky NS, Johannessen CM, Piccioni F, Kelch BA, Cantor SB (2021) Comprehensive mutational analysis of the BRCA1-associated DNA helicase and tumor-suppressor FANCJ/BACH1/BRIP1. Mol Cancer Res 19(6):1015–1025. https://doi.org/10.1158/1541-7786.MCR-20-0828

    Article  CAS  PubMed  Google Scholar 

  234. Summers PA, Lewis BW, Gonzalez-Garcia J, Porreca RM, Lim AHM, Cadinu P, Martin-Pintado N, Mann DJ, Edel JB, Vannier JB, Kuimova MK, Vilar R (2021) Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy. Nat Commun 12(1):162. https://doi.org/10.1038/s41467-020-20414-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kruisselbrink E, Guryev V, Brouwer K, Pontier DB, Cuppen E, Tijsterman M (2008) Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr Biol 18(12):900–905. https://doi.org/10.1016/j.cub.2008.05.013

    Article  CAS  PubMed  Google Scholar 

  236. Bharti SK, Sommers JA, George F, Kuper J, Hamon F, Shin-ya K, Teulade-Fichou MP, Kisker C, Brosh RM Jr (2013) Specialization among iron-sulfur cluster helicases to resolve G-quadruplex DNA structures that threaten genomic stability. J Biol Chem 288(39):28217–28229. https://doi.org/10.1074/jbc.M113.496463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lu H, Davis AJ (2021) Human RecQ helicases in DNA double-strand break repair. Front Cell Dev Biol 9:640755. https://doi.org/10.3389/fcell.2021.640755

    Article  PubMed  PubMed Central  Google Scholar 

  238. Wu WQ, Hou XM, Li M, Dou SX, Xi XG (2015) BLM unfolds G-quadruplexes in different structural environments through different mechanisms. Nucleic Acids Res 43(9):4614–4626. https://doi.org/10.1093/nar/gkv361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Voter AF, Qiu Y, Tippana R, Myong S, Keck JL (2018) A guanine-flipping and sequestration mechanism for G-quadruplex unwinding by RecQ helicases. Nat Commun 9(1):4201. https://doi.org/10.1038/s41467-018-06751-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Teng FY, Jiang ZZ, Huang LY, Guo M, Chen F, Hou XM, Xi XG, Xu Y (2020) A toolbox for site-specific labeling of RecQ helicase with a single fluorophore used in the single-molecule assay. Front Mol Biosci 7(253):586450. https://doi.org/10.3389/fmolb.2020.586450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Cahoon LA, Manthei KA, Rotman E, Keck JL, Seifert HS (2013) Neisseria gonorrhoeae RecQ helicase HRDC domains are essential for efficient binding and unwinding of the pilE guanine quartet structure required for pilin antigenic variation. J Bacteriol 195(10):2255–2261. https://doi.org/10.1128/JB.02217-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Chatterjee S, Zagelbaum J, Savitsky P, Sturzenegger A, Huttner D, Janscak P, Hickson ID, Gileadi O, Rothenberg E (2014) Mechanistic insight into the interaction of BLM helicase with intra-strand G-quadruplex structures. Nat Commun 5(1):5556. https://doi.org/10.1038/ncomms6556

    Article  CAS  PubMed  Google Scholar 

  243. Teng FY, Wang TT, Guo HL, Xin BG, Sun B, Dou SX, Xi XG, Hou XM (2020) The HRDC domain oppositely modulates the unwinding activity of E. coli RecQ helicase on duplex DNA and G-quadruplex. J Biol Chem 295(51):17646–17658. https://doi.org/10.1074/jbc.RA120.015492

    Article  CAS  PubMed  Google Scholar 

  244. Budhathoki JB, Maleki P, Roy WA, Janscak P, Yodh JG, Balci H (2016) A comparative study of G-quadruplex unfolding and DNA reeling activities of human RECQ5 helicase. Biophys J 110(12):2585–2596. https://doi.org/10.1016/j.bpj.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Heddi B, Cheong VV, Schmitt E, Mechulam Y, Phan AT (2020) Recognition of different base tetrads by RHAU (DHX36): X-ray crystal structure of the G4 recognition motif bound to the 3′-end tetrad of a DNA G-quadruplex. J Struct Biol 209(1):107399. https://doi.org/10.1016/j.jsb.2019.10.001

    Article  CAS  PubMed  Google Scholar 

  246. Schult P, Paeschke K (2021) The DEAH helicase DHX36 and its role in G-quadruplex-dependent processes. Biol Chem 402(5):581–591. https://doi.org/10.1515/hsz-2020-0292

    Article  PubMed  Google Scholar 

  247. Huang W, Smaldino PJ, Zhang Q, Miller LD, Cao P, Stadelman K, Wan M, Giri B, Lei M, Nagamine Y, Vaughn JP, Akman SA, Sui G (2012) Yin Yang 1 contains G-quadruplex structures in its promoter and 5′-UTR and its expression is modulated by G4 resolvase 1. Nucleic Acids Res 40(3):1033–1049. https://doi.org/10.1093/nar/gkr849

    Article  CAS  PubMed  Google Scholar 

  248. Booy EP, Howard R, Marushchak O, Ariyo EO, Meier M, Novakowski SK, Deo SR, Dzananovic E, Stetefeld J, McKenna SA (2014) The RNA helicase RHAU (DHX36) suppresses expression of the transcription factor PITX1. Nucleic Acids Res 42(5):3346–3361. https://doi.org/10.1093/nar/gkt1340

    Article  CAS  PubMed  Google Scholar 

  249. Zeng Y, Qin T, Flamini V, Tan C, Zhang X, Cong Y, Birkin E, Jiang WG, Yao H, Cui Y (2020) Identification of DHX36 as a tumour suppressor through modulating the activities of the stress-associated proteins and cyclin-dependent kinases in breast cancer. Am J Cancer Res 10(12):4211–4233

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Chen WF, Rety S, Guo HL, Dai YX, Wu WQ, Liu NN, Auguin D, Liu QW, Hou XM, Dou SX, Xi XG (2018) Molecular mechanistic insights into drosophila DHX36-mediated G-quadruplex unfolding: a structure-based model. Structure 26(3):403-415.e4. https://doi.org/10.1016/j.str.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  251. Chen MC, Tippana R, Demeshkina NA, Murat P, Balasubramanian S, Myong S, Ferre-D’Amare AR (2018) Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature 558(7710):465–469. https://doi.org/10.1038/s41586-018-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Liu Q, Wang Q, Lv C, Liu Z, Gao H, Chen Y, Zhao G (2021) Brucine inhibits proliferation of glioblastoma cells by targeting the G-quadruplexes in the c-Myb promoter. J Cancer 12(7):1990–1999. https://doi.org/10.7150/jca.53689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Monsen RC, DeLeeuw L, Dean WL, Gray RD, Sabo TM, Chakravarthy S, Chaires JB, Trent JO (2020) The hTERT core promoter forms three parallel G-quadruplexes. Nucleic Acids Res 48(10):5720–5734. https://doi.org/10.1093/nar/gkaa107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ceschi S, Largy E, Gabelica V, Sissi C (2020) A two-quartet G-quadruplex topology of human KIT2 is conformationally selected by a perylene derivative. Biochimie 179:77–84. https://doi.org/10.1016/j.biochi.2020.09.015

    Article  CAS  PubMed  Google Scholar 

  255. Bilgen E, Cetinkol OP (2020) Doxorubicin exhibits strong and selective association with VEGF Pu22 G-quadruplex. Biochim Biophys Acta Gen Subj 1864(12):129720. https://doi.org/10.1016/j.bbagen.2020.129720

    Article  CAS  PubMed  Google Scholar 

  256. Moccia F, Riccardi C, Musumeci D, Leone S, Oliva R, Petraccone L, Montesarchio D (2019) Insights into the G-rich VEGF-binding aptamer V7t1: when two G-quadruplexes are better than one! Nucleic Acids Res 47(15):8318–8331. https://doi.org/10.1093/nar/gkz589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW (2005) Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter. Biochemistry 44(49):16341–16350. https://doi.org/10.1021/bi051618u

    Article  CAS  PubMed  Google Scholar 

  258. Dhakal S, Yu Z, Konik R, Cui Y, Koirala D, Mao H (2012) G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys J 102(11):2575–2584. https://doi.org/10.1016/j.bpj.2012.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zamiri B, Mirceta M, Bomsztyk K, Macgregor RB Jr, Pearson CE (2015) Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72 (GGGGCC)8*(GGCCCC)8 repeat: effect of CpG methylation. Nucleic Acids Res 43(20):10055–10064. https://doi.org/10.1093/nar/gkv1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Fumagalli L, Young FL, Boeynaems S, De Decker M, Mehta AR, Swijsen A, Fazal R, Guo W, Moisse M, Beckers J, Dedeene L, Selvaraj BT, Vandoorne T, Madan V, van Blitterswijk M, Raitcheva D, McCampbell A, Poesen K, Gitler AD, Koch P, Berghe PV, Thal DR, Verfaillie C, Chandran S, Van Den Bosch L, Bullock SL, Van Damme P (2021) C9orf72-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility. Sci Adv. https://doi.org/10.1126/sciadv.abg3013

    Article  PubMed  PubMed Central  Google Scholar 

  261. Yan J, Zhao X, Liu B, Yuan Y, Guan Y (2016) An intramolecular G-quadruplex structure formed in the human MET promoter region and its biological relevance. Mol Carcinog 55(5):897–909. https://doi.org/10.1002/mc.22330

    Article  CAS  PubMed  Google Scholar 

  262. Ji N, Shi HQ, Fang XY, Wu ZY (2020) Exploring the interaction of G-quadruplex and porphyrin derivative by single protein nanopore sensing interface. Anal Chim Acta 1106:126–132. https://doi.org/10.1016/j.aca.2020.01.053

    Article  CAS  PubMed  Google Scholar 

  263. Konieczna N, Romaniuk-Drapala A, Lisiak N, Toton E, Paszel-Jaworska A, Kaczmarek M, Rubis B (2019) Telomerase inhibitor TMPyP4 alters adhesion and migration of breast-cancer cells MCF7 and MDA-MB-231. Int J Mol Sci. https://doi.org/10.3390/ijms20112670

    Article  PubMed  PubMed Central  Google Scholar 

  264. Mikami-Terao Y, Akiyama M, Yuza Y, Yanagisawa T, Yamada O, Kawano T, Agawa M, Ida H, Yamada H (2009) Antitumor activity of TMPyP4 interacting G-quadruplex in retinoblastoma cell lines. Exp Eye Res 89(2):200–208. https://doi.org/10.1016/j.exer.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  265. Rapozzi V, Zorzet S, Zacchigna M, Della Pietra E, Cogoi S, Xodo LE (2014) Anticancer activity of cationic porphyrins in melanoma tumour-bearing mice and mechanistic in vitro studies. Mol Cancer 13:75. https://doi.org/10.1186/1476-4598-13-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Moruno-Manchon JF, Koellhoffer EC, Gopakumar J, Hambarde S, Kim N, McCullough LD, Tsvetkov AS (2017) The G-quadruplex DNA stabilizing drug pyridostatin promotes DNA damage and downregulates transcription of Brca1 in neurons. Aging 9(9):1957–1970. https://doi.org/10.18632/aging.101282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Rodriguez R, Miller KM, Forment JV, Bradshaw CR, Nikan M, Britton S, Oelschlaegel T, Xhemalce B, Balasubramanian S, Jackson SP (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8(3):301–310. https://doi.org/10.1038/nchembio.780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497(7450):458–462. https://doi.org/10.1038/nature12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Chai W, Zheng L, Shen B (2013) DNA2, a new player in telomere maintenance and tumor suppression. Cell Cycle 12(13):1985–1986. https://doi.org/10.4161/cc.25306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Saha T, Shukla K, Thakur RS, Desingu A, Nagaraju G (2019) Mycobacterium tuberculosis UvrD1 and UvrD2 helicases unwind G-quadruplex DNA. FEBS J 286(11):2062–2086. https://doi.org/10.1111/febs.14798

    Article  CAS  PubMed  Google Scholar 

  271. Shukla K, Thakur RS, Ganguli D, Rao DN, Nagaraju G (2017) Escherichia coli and Neisseria gonorrhoeae UvrD helicase unwinds G4 DNA structures. Biochem J 474(21):3579–3597. https://doi.org/10.1042/BCJ20170587

    Article  CAS  PubMed  Google Scholar 

  272. Paul T, Voter AF, Cueny RR, Gavrilov M, Ha T, Keck JL, Myong S (2020) E. coli Rep helicase and RecA recombinase unwind G4 DNA and are important for resistance to G4-stabilizing ligands. Nucleic Acids Res 48(12):6640–6653. https://doi.org/10.1093/nar/gkaa442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Xue ZY, Wu WQ, Zhao XC, Kumar A, Ran X, Zhang XH, Zhang Y, Guo LJ (2020) Single-molecule probing the duplex and G4 unwinding patterns of a RecD family helicase. Int J Biol Macromol 164:902–910. https://doi.org/10.1016/j.ijbiomac.2020.07.158

    Article  CAS  PubMed  Google Scholar 

  274. Wu CG, Spies M (2016) G-quadruplex recognition and remodeling by the FANCJ helicase. Nucleic Acids Res 44(18):8742–8753. https://doi.org/10.1093/nar/gkw574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Cali F, Bharti SK, Di Perna R, Brosh RM Jr, Pisani FM (2016) Tim/Timeless, a member of the replication fork protection complex, operates with the Warsaw breakage syndrome DNA helicase DDX11 in the same fork recovery pathway. Nucleic Acids Res 44(2):705–717. https://doi.org/10.1093/nar/gkv1112

    Article  CAS  PubMed  Google Scholar 

  276. Lerner LK, Holzer S, Kilkenny ML, Svikovic S, Murat P, Schiavone D, Eldridge CB, Bittleston A, Maman JD, Branzei D, Stott K, Pellegrini L, Sale JE (2020) Timeless couples G-quadruplex detection with processing by DDX11 helicase during DNA replication. EMBO J 39(18):e104185. https://doi.org/10.15252/embj.2019104185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Kotsantis P, Segura-Bayona S, Margalef P, Marzec P, Ruis P, Hewitt G, Bellelli R, Patel H, Goldstone R, Poetsch AR, Boulton SJ (2020) RTEL1 regulates G4/R-loops to avert replication-transcription collisions. Cell Rep 33(12):108546. https://doi.org/10.1016/j.celrep.2020.108546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Wu W, Bhowmick R, Vogel I, Ozer O, Ghisays F, Thakur RS, Sanchez de Leon E, Richter PH, Ren L, Petrini JH, Hickson ID, Liu Y (2020) RTEL1 suppresses G-quadruplex-associated R-loops at difficult-to-replicate loci in the human genome. Nat Struct Mol Biol 27(5):424–437. https://doi.org/10.1038/s41594-020-0408-6

    Article  CAS  PubMed  Google Scholar 

  279. Zhu M, Wu W, Togashi Y, Liang W, Miyoshi Y, Ohta T (2021) HERC2 inactivation abrogates nucleolar localization of RecQ helicases BLM and WRN. Sci Rep 11(1):360. https://doi.org/10.1038/s41598-020-79715-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Wu WQ, Hou XM, Zhang B, Fosse P, Rene B, Mauffret O, Li M, Dou SX, Xi XG (2017) Single-molecule studies reveal reciprocating of WRN helicase core along ssDNA during DNA unwinding. Sci Rep 7:43954. https://doi.org/10.1038/srep43954

    Article  PubMed  PubMed Central  Google Scholar 

  281. Chakraborty P, Grosse F (2011) Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair 10(6):654–665. https://doi.org/10.1016/j.dnarep.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  282. Tuesuwan B, Kern JT, Thomas PW, Rodriguez M, Li J, David WM, Kerwin SM (2008) Simian virus 40 large T-antigen G-quadruplex DNA helicase inhibition by G-quadruplex DNA-interactive agents. Biochemistry 47(7):1896–1909. https://doi.org/10.1021/bi701747d

    Article  CAS  PubMed  Google Scholar 

  283. Plyler J, Jasheway K, Tuesuwan B, Karr J, Brennan JS, Kerwin SM, David WM (2009) Real-time investigation of SV40 large T-antigen helicase activity using surface plasmon resonance. Cell Biochem Biophys 53(1):43–52. https://doi.org/10.1007/s12013-008-9038-z

    Article  CAS  PubMed  Google Scholar 

  284. Bharti SK, Sommers JA, Zhou J, Kaplan DL, Spelbrink JN, Mergny JL, Brosh RM Jr (2014) DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase. J Biol Chem 289(43):29975–29993. https://doi.org/10.1074/jbc.M114.567073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by the Natural Science Foundation of China (Grant Number: 81970676), the key projects of the Sichuan Science and Technology Department (Grant Number: 2019YFS0537 and 2020YFS0456), the Research Startup Funding of the Affiliated Hospital of Southwest Medical University (Grant Number: 18102), Scientific Research Funding of Luzhou-Southwest Medical University (Grant Number: 2019LZXNYDJ06). The research was conducted within the context of the International Associated Laboratory ‘Helicase-mediated G-quadruplex DNA unwinding and Genome Stability’.

Author information

Authors and Affiliations

Authors

Contributions

XGX and YX conceived and supervised the study and provided resources; FYT and ZZJ wrote the manuscript; FYT, MG, and XZT made the tables and created the figures; XGX, YX, and FC made manuscript revisions.

Corresponding authors

Correspondence to Xu-Guang Xi or Yong Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, FY., Jiang, ZZ., Guo, M. et al. G-quadruplex DNA: a novel target for drug design. Cell. Mol. Life Sci. 78, 6557–6583 (2021). https://doi.org/10.1007/s00018-021-03921-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03921-8

Keywords

Navigation