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Abstract
Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse 
formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated 
in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change 
and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with 
neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last 
years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering 
all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous 
system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric 
conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of 
neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-
wide screening of novel neuroserpin variants and their possible pathogenicity.

Keywords  Serpins · Synaptic plasticity · Tissue-type plasminogen activator · Neurodegenerative disease · Epilepsy · 
Pathogenic variants

Abbreviations
BBB	� Blood–brain barrier
BDNF	� Brain-derived neurotrophic factor
CCL21	� C–C motif ligand 21

CD	� Circular dichroism
CNS	� Central nervous system
EOR	� Endoplasmic reticulum overload response
ER	� Endoplasmic reticulum
ERAD	� Endoplasmic reticulum associated degradation
FENIB	� Familial encephalopathy with neuroserpin inclu-

sion bodies
LRP	� Low-density lipoprotein receptor-related protein
MCAO	� Middle cerebral artery occlusion
NFκB	� Nuclear factor κ-light-chain-enhancer of acti-

vated B cells
NGF	� Nerve growth factor
RCL	� Reactive centre loop
tPA	� Tissue-type plasminogen activator
uPA	� Urokinase-type plasminogen activator
UPR	� Unfolded protein response

Introduction

The superfamily of serpins (serine protease inhibitors) 
includes multiple proteins that exert varied functions [1]. 
Many of them are extracellular inhibitors of serine proteases 
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and share a high degree of structural homology and a com-
mon mechanism of action. Indeed, these molecules are a 
beautiful example of the relationship between structure 
and function, and how this can be perverted to cause dis-
ease. Serpins fold to a metastable conformation to be able 
to change shape during protease inhibition [2]. The native 
conformation of neuroserpin shows the canonical features 
of inhibitory serpins (Fig. 1a): a five-stranded β-sheet A 
and an exposed, flexible reactive centre loop (RCL) that 
includes the scissile peptide bond (P1–P1’, so called for 
being the residues flanking the point of cleavage). These 
structural elements of serpins are essential for inhibiting 
their target proteases, but the structural flexibility needed to 
perform this function can be easily altered by point muta-
tions to cause misfolding, leading to intermolecular linkage 
and formation of polymeric chains within the endoplasmic 
reticulum (ER) of cells [3]. Such polymers are not easy for 
the cells to deal with, so they accumulate and give rise to 
inclusion bodies that are the hallmark of diverse patholo-
gies caused by this molecular mechanism: the serpinopathies 
[4]. Depending on the specific serpin, polymer deposition 
causes different clinical manifestations, which are due to 

both gain-of-toxic-function and loss-of-function events. 
Neuroserpin (SERPINI1) is an inhibitory serpin mainly 
expressed in the central nervous system (CNS), where it is 
involved in physiological processes including axonogenesis 
and synaptogenesis during embryonic development as well 
as synaptic plasticity and control of emotional behaviour in 
the adult [5]. It is also produced in other tissues across the 
body and new functions are being uncovered. We address 
here all aspects of neuroserpin biology, from its structure 
and inhibitory activity to its roles in physiology and disease, 
including a rare form of neurodegeneration that arises as a 
direct consequence of neuroserpin polymerisation.

Identification and tissue expression 
of neuroserpin

Neuroserpin was first identified as a protein secreted from 
axons of cultured dorsal-root-ganglia neurons from chicken 
embryos [6]. The protein was classified based on the 
deduced amino acid sequence as a member of the serpin 
family of serine protease inhibitors [7]. Human neuroserpin 

Fig. 1   Neuroserpin structures 
and mechanism of inhibition. a 
The structure of native human 
neuroserpin (PDB 3F5N) shows 
the typical serpin fold: β-sheet 
A is shown in green, the RCL in 
red and the P1 and P1′ residues. 
The C-terminal region that gets 
swapped in polymers is shown 
in blue and the breach region, 
involved in β-sheet A opening, 
is highlighted by the dashed rec-
tangle. b In cleaved human neu-
roserpin (PDB 3F02) the RCL 
loop (red) is proteolysed and 
inserted into β-sheet A (green) 
as an additional strand, s4A. 
c Native AAT (PDB 1QLP) 
presents the typical serpin fold 
with β-sheet A (green) and the 
exposed RCL loop (red). During 
inhibition, the target protease 
(trypsin, cyan) binds the RCL 
forming a Michaelis complex 
(PDB 1K9O) and cleaves the 
RCL at the P1–P1′ position. 
The RCL becomes inserted into 
β-sheet A and trypsin is translo-
cated to the opposite side of the 
complex (PDB 1EZX). When 
the acyl-complex dissociates, 
cleaved AAT (PDB 2ACH) and 
trypsin are released
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is encoded by the SERPINI1 gene (serpin_family_I_mem-
ber_1; GeneID: 5274; OMIM 602,445), named according 
to the current classification of the serpin gene superfamily 
into phylogenetic clusters [8]. It is located on the human 
chromosome 3 at 3q26.1 and comprises nine exons, the first 
one being non-coding [9]. The open reading frame (refer-
ence mRNA sequence NM_005025.4) encodes for a 410 
amino acid neuroserpin protein (UniProt: Q99574) that, after 
cleavage of the 18–19 amino acid signal peptide [10], has a 
molecular mass of 45 kDa, which increases after the addition 
of N-linked glycosylation as discussed later.

In the years following the identification of neuroserpin, its 
expression pattern was investigated in different organisms, 
from Xenopus laevis to mouse and human. Neuroserpin was 
mainly observed within the brain and spinal cord [11–14], 
and to a lesser extent in liver, kidney, pancreas and testis [12] 
as well as in cells of the immune system like macrophages, 
dendritic cells, T and B lymphocytes and natural killer cells 
[15, 16]. In the brain neuroserpin was first detected dur-
ing the late stages of embryonic development, when newly 
generated neurons become postmitotic, start to migrate and 
differentiate. At this early stage, neuroserpin was detected 
homogeneously and at low levels in all brain regions. Neuro-
serpin levels increase perinatally and are maintained during 
adulthood, when the distribution of this serpin is enriched in 
the neocortex, hippocampus, amygdala and olfactory bulb, 
regions in which synaptic remodelling is associated with 
learning and memory [11]. At the cellular level, a similar 
trend has been observed: in the hippocampus, during devel-
opment, the expression of neuroserpin is weak and the pro-
tein is ubiquitously found in many neurons of the pyramidal 
cell layer of the CA1 region and of the granule cell layer of 
the dentate gyrus, whereas in adulthood neuroserpin is selec-
tively present, at higher levels, in a lower number of neurons 
[17]. These findings raised the possibility that neuroserpin 
could play a general role in neuronal maturation during 
development, while in the mature brain its function could 
be more restricted to specific processes. However, the analy-
ses of neuroserpin expression conducted so far, which have 
excluded its synthesis by non-neuronal cells of the nerv-
ous system [11, 12, 17], have not detected the presence of 
neuroserpin in a particular neuronal subtype. Instead, it was 
found in several classes of glutamatergic pyramidal neurons 
as well as GABA-ergic interneurons, suggesting a pan-neu-
ronal expression that disagrees with the assignment of a role 
in a specific type of neuron [11, 13, 18]. The physiological 
and pathological functions of neuroserpin have been inves-
tigated in detail in multiple model organisms, summarised 
in Table 1, and are discussed in dedicated sections below.

Structure, function and conformational 
flexibility of neuroserpin

Human neuroserpin shares a high sequence and structural 
homology with other members of the serpin superfamily, as 
well as the family’s canonical mechanism for protease inhi-
bition, which renders serpins particularly flexible in terms 
of their tertiary structure. As a consequence of this, single 
serpin molecules (monomers) can adopt three different con-
formations: native, latent and cleaved.

Native neuroserpin

Early biochemical work analysed the secondary structure 
of native neuroserpin by circular dichroism (CD) spectros-
copy applied to wild type human neuroserpin [19–21] and 
its pathological variants Ser49Pro [19, 21] and Ser52Arg 
[20]. Several studies reported the structures of the native and 
cleaved conformations [22–24] (Fig. 1a, b) and confirmed 
that neuroserpin adopts the serpin fold, showing a core of 
three large β-sheets, including a five-stranded β-sheet A, 
nine α-helices and a long, mobile and well-exposed RCL. 
However, compared to other serpins, human neuroserpin 
presents some peculiarities. The omega-loop that connects 
strands 1 and 2 in β-sheet B, conserved in the superfam-
ily, contains several glycine residues (Gly231, Gly236, and 
Gly237) that impose a particular flexible geometry, crucial 
for substrate binding. The region including helix F and 
strand 1 of β-sheet A also presents some aminoacidic sub-
stitutions when compared to the serpin consensus sequence: 
Asn162Gly, Leu162Lys and Val63Ile, which decrease the 
stability of helix F increasing the tendency to adopt the 
latent conformation, as also observed for plasminogen acti-
vator inhibitor 1 (PAI-1) and tengpin [25, 26]. Alterations 
of helix F dynamics can also reduce inhibitory activity and 
increase polymerisation [27]. Finally, the packing of β-sheet 
A is particularly tight thanks to an extra interaction between 
His338 and Ser340, which in other serpins is usually an ala-
nine. Dynamic regions of neuroserpin such as the RCL and 
the omega-loop have been studied in detail by molecular 
dynamics simulations, hydrogen/deuterium exchange and 
optical spectroscopy. A molecular dynamics study [28] has 
evidenced a correlated collective movement of the protein 
related to the opening of the breach region (Fig. 1a) thought 
to be critical for neuroserpin inactivation [29, 30], as well as 
the formation of a persistent salt bridge between Glu289 on 
strand s2C and Arg362 on the RCL analogous to the arche-
typical serpin α1-antitrypsin (SERPINA1) [31].
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Molecular mechanism of inhibitory activity

Neuroserpin shares the inhibitory mechanism with the other 
members of the serpin superfamily, studied in detail for 
AAT (Fig. 1c). The target protease is recognised and loaded 
through the RCL, and a covalent complex between the active 
site of the protease and the P1 residue of the RCL is formed 
[32]. The protease cleaves the RCL through a canonical 
nucleophilic attack on the carbonyl C of the scissile peptide 
bond between P1 and P1’ (Fig. 1a, c), forming an acyl-com-
plex. The cleavage causes a major structural rearrangement 
of the serpin: the RCL is inserted as β-strand 4 into β-sheet 
A, and the protease is translocated to the opposite side of 
the serpin-protease complex (Fig. 1c) [33]. Typically, such 
conformational change causes the disruption of the active 
site in the serine protease and prevents the hydrolysis of the 
acyl-bond, rendering the covalent complex extremely stable 
over time [34]. The complex is degraded intracellularly after 
its cellular internalization, usually mediated by interaction 
with the low-density lipoprotein receptor-related protein 
(LRP) [35, 36].

This inhibitory mechanism is conserved for neuroserpin 
and tPA, which hydrolyses neuroserpin’s RCL at Arg362, 
but the acyl-complex is peculiarly short-lived [19, 23, 37]. 
As a consequence, the inhibition of tPA is only transient 
and in vitro, when the complex dissociates, active tPA 
and cleaved, inactive neuroserpin molecules are released. 
Despite this, some observations suggest that this interac-
tion may be more stable in vivo. An electrophoretic band 
compatible with a neuroserpin-tPA complex was identified 
in murine brain homogenate [12], and the internalization of 
both neuroserpin and the neuroserpin-tPA complex has been 
reported in murine primary cortical cells through interaction 
with LRP [38]. Compared to other serpins, strands sC1 and 
sC2, the loop between helices C and D, and helix E of neu-
roserpin contribute to tPA recruitment and to stabilization 
of the neuroserpin-tPA complex, suggesting that the primary 
sequence has a role in regulating the stability of the acyl-
complex [39]. Altering the RCL conformation by disruption 
of the salt bridge between residues R362 and E289 contrib-
utes to the fragility of the neuroserpin-tPA complex [30]. 
A detailed study has also shown that pH has an important 
role in substrate recognition and deacylation rates during 
neuroserpin’s inhibition of tPA, which is different between 
the single-chain and two-chain forms of tPA [40]. It should 
be noted that many of these studies have been performed 
using recombinant neuroserpin lacking N-glycans, but a 
recent report shows that N-glycosylation slightly improves 
the inhibitory activity of neuroserpin against tPA [41].

Cleaved neuroserpin

The serpin fold is generally maintained in the cleaved con-
formation of neuroserpin, as observed in the crystal structure 
(Fig. 1b) [22, 23], with the cleaved RCL nested as strand 4 
in β-sheet A to form a sixth-stranded β-sheet. This transition 
of the RCL, from solvent-exposed to buried, occurs physi-
ologically and is pivotal for the exertion of the inhibitory 
activity of neuroserpin. The RCL segment after the cleavage 
site remains exposed, as in native neuroserpin. In the crystal 
structure, the C-terminal stretch of the RCL is visible, being 
stabilised by contacts to the distal part of β-sheet A [23].

Latent neuroserpin

A crystal structure of latent neuroserpin has not been 
reported, but it is likely similar to that of PAI-1 [42], with 
RCL insertion into β-sheet A in the absence of cleavage. A 
model has been proposed based on the structures of latent 
α1-antitrypsin and cleaved neuroserpin, and findings from 
in vitro spectroscopic fingerprinting [28] are in agreement 
with the formation of the typical six-stranded β-sheet A. 
The transition to the latent conformation is reported to be 
an auto-regulatory mechanism [24], while in vitro it can be 
induced by heating. Wild type neuroserpin has been found 
to undergo a conformational transition at 56 °C, with con-
comitant formation of the latent and polymeric conformers, 
and a second transition at 85 °C, indicative of the formation 
of hyper-stable monomeric and polymeric conformations, 
further increasing the complexity of neuroserpin’s confor-
mational landscape [43].

Polymerisation of neuroserpin

The metastable nature of their native conformation renders 
serpins prone to establish intermolecular interactions that 
result in non-covalent but highly stable links between two 
or more serpin molecules to form polymers [44]. These can 
be made in vitro by applying heat or chemical denaturants 
to wild type or mutant variants of neuroserpin [45], and are 
formed in vivo as a consequence of point mutations that 
destabilise neuroserpin, leading to a rare neurodegenerative 
dementia called FENIB (familial encephalopathy with neu-
roserpin inclusion bodies, discussed in detail below). Two 
FENIB-causing variants, Ser49Pro and Ser52Arg neuro-
serpin, have been expressed in vitro and purified, but due 
to their instability in solution only a partial biochemical 
characterisation has been achieved. Both variants showed 
a strongly reduced ability to inhibit tPA, together with a 
high tendency to form polymers [19, 21]. Urea gradient 
electrophoresis and emission spectroscopy showed transi-
tion points at 6.4, 6.3 and 5.3 M urea for wild type, Ser52Arg 
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and Ser49Pro neuroserpin, respectively, revealing Ser52Arg 
to be more stable than Ser49Pro neuroserpin even though 
the FENIB phenotype associated to the Ser52Arg mutation 
is more severe [20]. An additional unfolding step was evi-
dent at nearly 1 M urea, suggestive of a polymer-competent 
intermediate conformation [20, 28, 43].

Polymer structure

The molecular details of neuroserpin polymers are not 
known at high resolution, adding to the debate in the ser-
pin field about the nature and structure of serpin polymers. 
Alpha-1-antitrypsin polymers, usually taken as reference 
for other serpins, were initially thought to be formed by 
the insertion of the RCL of one molecule into β-sheet A of 
another (‘loop-sheet’ model) [46], while later work based on 
crystallisation approaches has proposed two novel mecha-
nisms based on different domain swaps [47, 48]. Of these, 
the most recent one (‘C-terminal’ model) asserts that an 
intermolecular link is formed by insertion of the non-prop-
erly folded C-terminus (Fig. 1a) of a donor protein into an 
acceptor protein. This model is currently accepted for Z α1-
antitrypsin polymers, also based on recent findings obtained 
by electron microscopy imaging of polymers extracted from 
liver [49]. This model provides a straightforward explana-
tion for the remarkable flexibility of α1-antitrypsin polymers 
recently observed [50]. While an analogous flexibility has 
been suggested for neuroserpin polymers [51], there is no 
high-resolution structure currently available for them.

The first image of neuroserpin polymers was obtained 
by electron microscopy of protein aggregates released after 
sonication of intraneuronal inclusion bodies from a patient’s 
brain. They showed as entangled fibrils and short-chain fila-
ments formed by Ser49Pro neuroserpin [52]. More recently, 
neuroserpin polymers made in vitro by heating were imaged 
by electron microscopy [43] and by atomic force microscopy 
[53], closely resembling the ones extracted from patients. 
Most of the molecular research about neuroserpin polymers 
is based on samples prepared in vitro, relying on the obser-
vations that neuroserpin polymers extracted from cultured 
cells and those formed by heating exhibited identical poly-
mer ladders after non-denaturing electrophoresis and similar 
reactivities to monoclonal antibodies [20, 54]. Experiments 
using purified wild type, Ser49Pro and Ser52Arg neuroser-
pin revealed a faster polymerisation for the Ser52Arg mutant 
[20] and the ability of latent Ser49Pro neuroserpin to form 
polymers [21], a behaviour never observed for wild type or 
other variants of neuroserpin, suggesting a partially open 
breach region and partial RCL insertion even in the native 
conformation for this variant. In contrast, CD and photo-
luminescence experiments on neuroserpin refolding have 
shown that folding intermediates are more polymerogenic 
than the folded conformations [55], supporting the formation 

of polymers by domain swapping during protein folding 
within the ER. The panorama has been further enriched by 
the discovery of another type of hyper-stable neuroserpin 
polymeric species formed by heating at a higher tempera-
ture [43]. Neuroserpin polymerisation at both intermediate 
(45 °C) and high temperature (85 °C) occurred as a two-state 
transition from the native to the polymer state with different 
extents of multiple-stranded β-sheet elements [56], compat-
ible with partial or complete opening of the breach region 
[21].

The importance of specific protein regions in neuroserpin 
polymer formation has been studied by introducing selected 
point mutations. Helix F and β-sheet A were found to be 
crucial, since restoring the aminoacidic composition to 
the serpin consensus sequence increased the stability and 
reduced the polymerization tendency of neuroserpin [24]. 
In agreement with this, disrupting the interaction between 
helix F and β-sheet A led to a higher polymerisation rate or 
a tendency to precipitate [27]. Finally, mutations in helix 
B and β-sheet B reduced the propensity to polymerization 
but promoted the transition to the latent conformation [57]. 
Regarding the effects of environmental conditions on pol-
ymer formation, inhibition by low pH has been observed 
and explained by the protonation of His residues 119 and 
138 that normally form stabilising hydrogen bonds while, 
in contrast, the protonation of His338 disrupts a hydrogen 
bond reducing conformational stability [58]. The resistance 
of neuroserpin against polymer formation in acidic condi-
tions, opposed to the behaviour of other serpins, may have 
evolved to avoid polymerisation within the regulated secre-
tory vesicles into which neuroserpin is accumulated before 
secretion. Finally, some sugar and alcohol molecules [59] 
and the β-amyloid peptides Aβ-40 and Aβ-42 [60, 61] are 
able to reduce polymer formation, probably through direct 
interaction with neuroserpin.

Polymerisation mechanisms

Our current understanding about neuroserpin polymer for-
mation is based on two in vitro studies. The first one used a 
single-molecule approach, two colours coincidence detec-
tion (TCCD), together with non-denaturing electrophoresis 
to address the first stages of polymerisation [61]. The second 
one employed several techniques including light scattering, 
photoluminescence and time-lapsed size exclusion chroma-
tography [51]. From these studies, the following processes 
have been deduced for neuroserpin polymerisation (Fig. 2): 
(i) activation: polymer formation requires the initial activa-
tion of an intermediate polymerogenic monomer (activation 
rate in the order of 10–5 s−1); further kinetic experiments 
confirmed that the overall polymerisation rate is in the same 
order as the activation rate, which is, therefore, the rate-
limiting step [56]; (ii) latentisation: the activated monomer 
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may change into a stable latent conformation (rate in the 
order of 10–2 s−1); (iii) dimerisation: the activated monomer 
may associate either with another activated monomer or with 
a native monomer to form a dimer, with a rate in the order 
of 103 M−1 s−1 [61] or one order of magnitude lower [51]; 
(iv) monomer addition: each polymer chain may elongate by 
single monomer addition (estimated rate of 101 M−1 s−1); (v) 
polymer association: already formed polymers may associate 
with other polymers, only at polymer ends, without other 
secondary processes such as lateral association or branch-
ing [51]; the kinetic rate in the late stages of polymerisation 
was still of the same order as the monomer addition rate; 
(vi) fragmentation: although serpin polymers are consid-
erably stable, light scattering kinetics analysis revealed a 
reduction of the average aggregate mass [51], providing the 
first observation of an explicit fragmentation process dur-
ing protein aggregation. Interestingly, while fragmentation 
typically enhances protein aggregation [62], in this case it 
had the opposite effect: tempering polymer formation, likely 
due to the simultaneous occurrence of latentisation. The lat-
ter process seems particularly important to introduce novel 
therapeutic strategies based not only upon the inhibition of 
polymer formation, but also on the disruption of already 
formed polymers and on the clearance of excess neuroser-
pin, both in the monomeric and polymeric forms. Indeed, 
a theoretical study supports this perspective, showing that 
neuroserpin aggregation within the ER may be modulated 
by the ratio between the production and clearance rates, and 
that polymerisation may be triggered by a non-equilibrium 
phase transition [63]. Further experimental support in this 
direction comes from the observation that polymerisation is 
enhanced by reducing the cellular levels of cholesterol, and 
hence the ability to form vesicles needed for neuroserpin 
clearance [64].

Recent studies have investigated the ability of embelin, a 
naturally occurring para-benzoquinone isolated from dried 
berries of Embelia ribes, to interfere with neuroserpin poly-
merisation. Embelin was shown to bind all conformers of 
neuroserpin and to be able to prevent polymer formation 
in vitro, promoting the formation of small, soluble oligom-
ers; moreover, embelin addition to preformed polymers 
caused their disassemble to soluble oligomers (Fig. 2B, 

oligomersNS-EMB) [53]. Unfortunately, several attempts to 
ameliorate the solubility of embelin and its affinity for neu-
roserpin have shown that even minor chemical modifica-
tions result in a marked reduction of its antipolymerisation 
activity [65].

The importance of being earnestly 
glycosylated

In addition to point mutations, both the pathological ones 
and the ones specifically designed to probe the stability of 
neuroserpin, another endogenous factor is extremely impor-
tant in determining molecular stability and hence in pre-
venting polymerisation: glycosylation. Sequence analysis 
of human neuroserpin revealed the presence of three poten-
tial N-glycosylation sites: Asn157, Asn321 and Asn401 [9] 
(Fig. 4a, left panel), and all three appeared to be glycosylated 
in Ser52Arg neuroserpin extracted from Collins’ bodies of 
a FENIB patient [10]. The presence of N-glycans has also 
been demonstrated in several cellular expression systems 
[54, 66–68], but its impact on the stability of neuroserpin has 
been evaluated only recently. The first observation described 
the importance of N-glycans for the quality control of neu-
roserpin, in particular for directing the protein to ER associ-
ated degradation (ERAD) through a direct interaction with 
the lectin OS-9 [69]. A study based on directed mutagenesis 
revealed that wild type neuroserpin is glycosylated at the 
Asn157 and Asn321 sites, while the pathological variant 
Gly392Glu is also partially glycosylated at residue Asn401 
[70]. Moreover, the same study showed that perturbation of 
the glycosylation profile leads to increased polymerisation of 
wild type neuroserpin, likely due to the loss of steric exclu-
sion and conformational fluctuations. Most of the in vitro 
studies about conformational stability and polymerisation 
of neuroserpin have been performed using bacterial recom-
binant protein, thus overlooking the effects of glycosyla-
tion. Recently, a new expression model based on a modified 
Leishmania strain has been set up to produce neuroserpin 
with mammalian-like glycosylation [41]. This in vitro work 
has confirmed a decreased tendency to polymerisation, a 
higher propensity to acquire the latent conformation, and 

Fig. 2   Mechanism of neuroser-
pin polymerisation. A native 
neuroserpin monomer can 
convert to an activated interme-
diate conformation that is able 
to reach the inactive latent form 
or to associate with another 
monomer to form a dimer, and 
initiate polymerisation. Eventu-
ally, polymers may undergo 
fragmentation
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a slight increase in inhibitory activity for the glycosylated 
protein.

Physiological roles of neuroserpin

Physiological roles of neuroserpin in the nervous 
system

The search for neuroserpin’s function started right after its 
identification. Analysis of its RCL revealed a higher degree 
of similarity to inhibitory rather than non-inhibitory serpins 
[7]. With an arginine and a methionine, respectively, at posi-
tions P1 and P1’ of the RCL (Fig. 1a), it was hypothesized 
that neuroserpin would target trypsin-like serine proteases. 
This was indeed demonstrated in different in vitro studies 
showing complex formation and inhibition of the proteolytic 
activity of tissue-type plasminogen activator (tPA), and to 
a lesser extent of urokinase plasminogen activator (uPA), 
trypsin and plasmin [11, 12, 71]. Complex formation with 
tPA, but not with uPA, has been later demonstrated in vivo 
in the brain of rodents overexpressing neuroserpin [72, 73], 
and recent work has shown that neuroserpin can discriminate 
between one- and two-chain tPA [40]. The serine protease 
tPA has a prominent role in the fibrinolytic cascade, where 
it activates plasminogen to plasmin, but it is also highly 
expressed in the CNS, with a pattern overlapping that of neu-
roserpin [18, 74]. tPA participates in different physiological 
processes, such as brain development, neuronal outgrowth 
and synaptic plasticity [75–77]. Furthermore, tPA plays a 
role in pathological conditions of the CNS by contributing to 
excitotoxic neuronal degeneration and neuronal damage fol-
lowing cerebral ischemia, through the regulation of the per-
meability of the neurovascular compartment [78–80]. The 
activity of tPA is reduced in the brains of mice overexpress-
ing neuroserpin [72]. Moreover, administration of neuroser-
pin blocked tPA-dependent visual cortical plasticity in adult 
mice, and tPA-dependent cell proliferation, interaction and 
migration in vitro [81–83]. However, zymographic analysis 
of neuroserpin-deficient brain tissue showed unaltered tPA 
activity [84], and compensation by another serpin has often 
been hypothesized. Neuroserpin protects neurons against 
tPA-mediated injury during pathologic events involving 
cerebral ischemia [85–87], but this neuroprotective role was 
found to be at least partially independent from tPA inhibition 
and rather mediated by inhibition of plasmin-induced excito-
toxin cell death [88, 89], suggesting that alternative targets 
may exist. Furthermore, the unstable, short-lived nature of 
the complex formed in vitro between neuroserpin and tPA 
[38], together with the fact that a mutant form of neuroser-
pin lacking inhibitory activity showed the same ability as 
the wild type protein in regulating N-cadherin-dependent 
cell–cell adhesion [90], point to a possible function for 

neuroserpin beyond its anti-protease role. Alternative, non-
inhibitory mechanisms for neuroserpin are often discussed 
in the field, for instance those mediated through interaction 
with an extracellular receptor. Indeed, neuroserpin has been 
shown to bind to and be internalised by LRP [37], a protein 
known to play a role in neurodevelopment and synaptic func-
tion [91, 92].

Although in some cases the mechanisms by which neu-
roserpin exerts its roles remain to be elucidated, analysis of 
cultured cells and animal model brains with over- or under-
expression or deficient in this serpin have provided impor-
tant information about its function (Fig. 3a and Table 1). A 
high perinatal expression throughout the developing nervous 
system supports a role for neuroserpin in late developmental 
processes involving neuronal differentiation, synaptogen-
esis and refinement of synaptic connections. The absence 
of neuroserpin during brain formation in knock-out mice 
resulted in deficient neurogenesis, with reduced prolifera-
tion of neuronal precursors in the granular cell layer of the 
dentate gyrus [17]. This was accompanied by early neuronal 
differentiation and resulted in decreased cellularity of the 
adult dentate gyrus, demonstrating a key role for neuroserpin 
in regulating the formation of the hippocampus. The organ-
ization of the neural network, encompassing neurite out-
growth and establishment of synaptic connections, requires 
the activity of neuroserpin as well. Experiments with neu-
roendocrine cells revealed that neuroserpin regulates neu-
rite extension. Overexpression of neuroserpin induced the 
expression of neurite-like processes in AtT-20 pituitary 
cells, in the absence of increased levels of the neuroserpin-
tPA complex, suggesting a tPA-independent mechanism 
[93]. In pheochromocytoma (PC12) cells, neuroserpin was 
observed in dense-cored secretory vesicles located at the 
growth cones and its levels correlated to the total length of 
neurite outgrowth [94]. In vivo, ablation of the neuroserpin 
gene in zebrafish larvae resulted in defects in the extension 
of axons in primary motoneurons [95]. Studies in primary 
neurons showed that neuroserpin influences the formation 
of dendritic spines, small protrusions emerging from den-
drites that represent the postsynaptic elements of excitatory 
synapses. In particular, overexpression of neuroserpin in 
primary rat neurons increased spine density and caused a 
reduction in spine head size [96]. These observations are 
in line with the alterations detected in the hippocampus of 
juvenile neuroserpin-deficient mice, where increased size of 
dendritic spine heads has been observed [17]. The same ani-
mals also displayed defects in the perineuronal net, a com-
ponent of the brain extracellular matrix that enwraps certain 
neurons and critically controls synaptic maturation [17].

During adulthood, higher levels of neuroserpin expres-
sion in brain regions involved in synaptic plasticity 
prompted the investigation of a possible involvement of 
the serpin in this process (Fig. 3). For the hippocampus, 
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this was addressed by analysing rodents either lacking or 
overexpressing neuroserpin. In neuroserpin-knock-out mice, 
alterations were observed at morphological, functional and 
behavioural levels, with decreased spine-synapse density 
resulting in reduced synaptic potentiation and deficits in 
hippocampal-dependent cognitive and social functions [84, 
97]. Overexpression of neuroserpin in rodent brains caused 
different scenarios: whereas transgenic overexpression in 
neurons starting between postnatal days 4–10 translated in 
a neophobic phenotype [84], targeted injection of a viral 
vector expressing neuroserpin resulted in overexpression of 
the serpin in the rat dorsal hippocampus but failed to induce 
behavioural deficits [73]. This discrepancy may result from 

differences in spatial and temporal overexpression of neu-
roserpin, thus highlighting the importance of a regulated 
expression of this serpin.

Physiological roles of neuroserpin 
outside the nervous system

Several studies have uncovered physiological functions 
for neuroserpin outside the nervous system, specifically in 
immune cell function. This serpin was found to be highly 
expressed and secreted by monocyte-derived macrophages 
and dendritic cells following differentiation [15], as well as 
by T and B lymphocytes and natural killer cells [16]. By 

Fig. 3   Physiological roles of neuroserpin. a During brain devel-
opment, neuroserpin plays a role in hippocampal neurogenesis by 
modulating neuronal precursor proliferation (1) and differentiation 
(2). Moreover, whereas in  vitro studies point to a role in dendritic 
arborisation (3), in the murine hippocampus neuroserpin regulates 
maturation of dendritic spines and their surrounding perineuronal 
net (4). In the adult mouse brain, deficits in synaptic plasticity have 
been observed (5), correlating with behavioural abnormalities in 

hippocampal-dependent tasks. b Annexin A2 and CCL21 are both 
plasmin substrates whose cleavage regulates several processes in 
the immune system. Neuroserpin is thought to play a role in these 
pathways by modulating the tPA-dependent proteolytic activation of 
plasmin from plasminogen. c Upon T cell activation by antigen pres-
entation, neuroserpin-positive vesicles are translocated to the immu-
nological synapse and neuroserpin is rapidly released; TCR​ T cell 
receptor; APC antigen presenting cell
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regulating the cleavage of the chemokine CCL21 (C–C motif 
ligand 21), neuroserpin controlled the migratory capacity 
of T cells and dendritic cells [82], and by modulating the 
cleavage of annexin A2, neuroserpin altered T cell-T cell 
interaction, proliferation and cluster formation [83]. Interest-
ingly, both proteins are cleaved by plasmin, and the inhibi-
tory activity of neuroserpin (presumably against tPA) is 
required to modulate both events, since an RCL mutant was 
proven to be ineffective (Fig. 3b). Moreover, upon T cell 
activation, neuroserpin was intracellularly translocated to 
the immunological synapse and rapidly secreted from T cells 
[16] (Fig. 3c). This process was followed by downregula-
tion of neuroserpin expression and concomitant upregula-
tion of its inhibitory target tPA; thus, similarly to neuronal 
synapses, a role for neuroserpin in the regulation of extracel-
lular proteolysis can be hypothesized at the immunological 
synapse as well. Future studies are needed to characterise 
the downstream targets of these proteolytic processes. A 
few candidates have been suggested [16], including FasL 
and L1CAM that modulate metastatic colonisation of the 
brain [98], and MMP9 that regulates extracellular matrix 
degradation as well as the levels of molecules involved in 
inflammatory mechanisms [99].

Finally, a role for neuroserpin has also been described in 
vascular inflammation and atherosclerosis [100]. In a mouse 
aortic allograft transplant model, administration of neuroser-
pin immediately after surgery exerted an anti-inflammatory 
activity by reducing plaque growth, CD3+ T cell invasion 
and T-helper cell activation four weeks after transplantation, 
opening a new avenue of research for neuroserpin function 
and therapeutical use.

Roles of neuroserpin in human disease

Familial encephalopathy with neuroserpin inclusion 
bodies (FENIB)

Point mutations in neuroserpin cause a rare autosomal domi-
nant form of neurodegeneration called FENIB [52, 101], 
with clinical manifestations that include dementia, myo-
clonic seizures and epilepsy [102, 103]. A key pathological 
finding in FENIB is the diffused presence of eosinophilic, 
PAS (periodic acid-Schiff)-positive and diastase-resistant 
neuronal inclusions, named Collins bodies, distributed 
mainly throughout the grey matter of the cerebral cortex 
and the subcortical nuclei, especially the substantia nigra 
[101, 104], but also in the spinal cord and dorsal root gan-
glia [105]. The analysis of Collins bodies showed that they 
are composed of neuroserpin polymers with identical mor-
phology to polymers obtained from hepatocytes of an α1-
antitrypsin deficiency patient, establishing a common molec-
ular mechanism for both pathologies [101]. Biochemical 

analysis of Ser52Arg neuroserpin polymers from a heterozy-
gous FENIB brain also showed that the wild type protein 
was not retained in the inclusions [10], a result later sup-
ported by studies in cell culture [54]. This is in contrast 
with studies showing a mild degree of heteropolymer forma-
tion by wild type and mutant Z (Glu342Lys) α1-antitrypsin 
both in cell cultures [106] and in polymers extracted from 
the liver [107]. Clinical findings in human patients [104] 
and studies in transgenic animals [66, 108] and cell cul-
ture models of FENIB [54, 66] indicate that the degree of 
neuroserpin retention within the ER is directly proportional 
to the propensity to form polymers and the severity of the 
clinical phenotype caused by each mutation, and inversely 
correlated to the age of onset of clinical symptoms. All six 
point mutations identified so far (Fig. 4a, right panel), Ser-
49Pro (Syracuse,[52, 101]), Ser52Arg (Portland, [52, 101, 
109]), His338Arg [104], Gly392Glu [104, 110], Gly392Arg 
[111] and Leu47Pro [105] present in heterozygosis and lead 
to polymerisation of neuroserpin, slowing the trafficking of 
the mutant protein from the ER and causing polymer accu-
mulation in its lumen, as established by electron microscopic 
analyses of post-mortem brains [101, 109] and by studies in 
cell models of disease [54, 66, 68–70, 112]. ER retention of 
mutant neuroserpin causes neuronal damage through a toxic 
gain-of-function mechanism, as demonstrated in mouse 
and fly models of FENIB where overexpression of human 
polymerogenic neuroserpin causes neurological symptoms 
reminiscent of those seen in FENIB patients [66, 108, 113]. 
The concomitant reduction of neuroserpin secretion may 
be responsible for some of the clinical manifestations of 
FENIB, in particular epilepsy due to reduced inhibition 
of tPA [103]. The first cellular response to the presence of 
mutant neuroserpin (Fig. 4b) is to remove it by ERAD [54, 
67, 114], through a mechanism that involves Hrd1 [115] 
and the lectin OS-9 [69] and connects with the pathway for 
cholesterol biosynthesis [112]. Although part of the aber-
rant protein is thus eliminated, an important fraction of the 
polymerogenic protein escapes degradation, forms polymers 
and accumulates within the ER, giving rise to the inclu-
sion bodies typical of the serpinopathies. As seen before 
for polymers of α1-antitrypsin [116, 117], neuroserpin poly-
mer accumulation does not generally trigger the unfolded 
protein response (UPR), the canonical signalling pathway 
that increases the cell’s capacity to deal with misfolded ER 
proteins [67, 112], although a few reports describe a limited 
activation in vivo [69, 118]. In contrast, α1-antitrypsin [116, 
117] and neuroserpin [67] polymers activate an ER stress 
pathway based on calcium-dependent activation of NFκB 
(nuclear factor κ-light-chain-enhancer of activated B cells) 
that can promote inflammation and cell death, the ER over-
load response (EOR, [119]). These evidences highlight the 
peculiarities of FENIB when compared to other neurodegen-
erative diseases like Alzheimer’s and Huntington’s disease 
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and amyotrophic lateral sclerosis, where protein misfold-
ing is associated to activation of UPR and ERAD [112]. A 
recent study in neural progenitor stem cells has also reported 
the upregulation of antioxidant enzymes and increased sen-
sitivity to oxidant insults in response to accumulation of 
polymerogenic neuroserpin, supporting a role for oxidative 
stress in FENIB [68], in agreement with previous studies on 
α1-antitrypsin deficiency in mice [120] and in patients [121].

Role of neuroserpin in ischemic syndromes

One of the earliest connections of neuroserpin with human 
pathology was its marked association with ischemic syn-
dromes, initially studied in animal models reporting that neu-
roserpin expression rapidly decreased within the ischemic 
core following stroke, while it increased in the region sur-
rounding the lesion (penumbra) [85, 122]. Neuroserpin 
exerted a neuroprotective action, since its administration by 

Fig. 4   N-glycosylation of neuroserpin, FENIB related mutations and 
toxicity mechanisms of polymerogenic neuroserpin. a The positions 
of the two physiological N-glycosylation sites Asn157 and Asn321 
(orange spots) and the aberrant site Asn401 (blue spot) are shown on 
the structure of human native neuroserpin (left panel, PDB 3F5N). 
The box on the right focuses on β-sheet A to show the six patho-
logical mutations known to cause FENIB, with the wild type and 
mutated residues colored in green and dark red, respectively. b Cel-

lular responses to the presence of polymerogenic mutant neuroserpin. 
The monomeric forms are in part secreted, in part degraded by the 
proteasome through ERAD and in part incorporated into polymeric 
chains that can be found in tubular ER and ER-derived inclusions. 
The expression of polymerogenic neuroserpin causes NFκB activa-
tion and chronic oxidative stress, leading to neuronal death and neu-
rodegeneration. This is probably more pronounced with aging, due to 
a weakening of the antioxidant defences
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intracerebral injection or by overexpression in a transgenic 
mouse model resulted in increased neuronal survival and 
reduction in stroke volume, blood–brain barrier (BBB) leak-
age and consequent brain oedema [72, 85, 122]. Conversely, 
middle cerebral artery occlusion (MCAO) in neuroserpin-
deficient mice resulted in a more severe phenotype with 
increased infarct size and aggravated neurological outcome 
[123]. The mechanism underlying these effects is still a mat-
ter of debate. Early studies proved that neuroserpin reduced 
the transient, deleterious increase in tPA activity following 
ischemic insult [72, 85], but later work spoke in favour of 
a tPA-dependent but plasminogen-independent effect on 
vascular permeability and suggested an LRP-mediated cell 
signalling mechanism [124]. A few years later, a study with 
tPA-deficient mice demonstrated that neuroserpin inhibition 
of tPA was dispensable for its neuroprotective function, and 
a mechanism involving regulation of plasmin-mediated 
excitotoxin-induced cell death was proposed [88]. Several 
in vitro studies have also provided variegated results. Cell 
culture models subjected to oxygen and glucose deprivation 
support tPA-dependent neuroprotection, most likely by regu-
lating the levels of molecules involved in the inflammatory 
response and in extracellular matrix degradation like MMP9 
[99], as well as increased survival of neurons and astrocytes 
through modulation of inflammatory pathways [125, 126]. In 
contrast, neuroserpin preserves retinal function by attenuat-
ing neuronal loss after retinal ischemic/reperfusion-induced 
injury in both wild type and tPA-deficient mice, suggesting 
a tPA-independent neuroprotective mechanism [89]. Clini-
cal data from ischemic stroke patients also support a neuro-
protective role for neuroserpin: higher serum levels of this 
serpin were associated with a better outcome after stroke, 
while their decrease over time was associated to increased 
excitotoxicity, inflammation and BBB disruption [127, 128]. 
These data, together with the observation that neuroserpin 
treatment increased the therapeutical window for tPA admin-
istration after MCAO in mice [122, 129], support a therapeu-
tic application for neuroserpin in stroke patients.

Role of neuroserpin in neuropsychiatric disorders

Over the years, a role for neuroserpin has been described not 
only in FENIB, but also in other severe neurodegenerative 
and neuropsychiatric disorders. Altered neuroserpin expres-
sion in transgenic mice lacking or overexpressing this serpin 
has been shown to cause increased phobic and anxiety-like 
behaviours [84] and cognitive and sociability deficits in the 
absence of neuroserpin [97]. Similarly, neuroserpin defi-
ciency in zebrafish larvae led to anxiety-like behaviour in the 
absence of locomotor defects [95]. In humans, upregulation 
[130, 131] or downregulation [132] of neuroserpin mRNA 
has been found in brain tissue and iPS-derived neurons of 
patients suffering from schizophrenia, although a recent 

study did not find these alterations in similar conditions [97]. 
Also, a significant reduction of neuroserpin mRNA levels 
was observed in a rat model of stress and depression and in 
peripheral blood mononuclear cells (PBMCs) from patients 
with first-episode depression [133], supporting the involve-
ment of neuroserpin in these neuropsychiatric disorders.

Role of neuroserpin in Alzheimer’s disease

Several studies support a role for neuroserpin in Alzheimer’s 
disease (AD) pathogenesis. It was first described that neu-
roserpin was associated to Aβ plaques in the brain of AD 
patients, and in vitro work showed that neuroserpin formed 
a 1:1 binary complex with the N-terminal or middle part of 
the Aβ(1–42) peptide, leading to the inactivation of neuro-
serpin as an inhibitor of tPA, preventing the heat-induced 
polymerization of neuroserpin, altering Aβ oligomerisation 
to a non-fibrillary species, and rendering Aβ peptides less 
toxic to neuronal cells in culture [60]. The presence of neu-
roserpin in Aβ plaques was later confirmed, and neuroserpin 
was shown to be upregulated in the brain of AD patients, 
leading to the hypothesis that increased inhibition of tPA and 
reduced plasmin activity decreased Aβ amyloid clearance 
and maybe caused synaptic alterations [134]. In a follow-up 
study, neuroserpin-deficient AD transgenic mice showed a 
strong reduction in Aβ peptide and plaques and a concomi-
tant improvement in AD-related cognitive deficits such as 
spatial memory [135], supporting a role for the neuroserpin-
tPA axis in Aβ amyloid deposition and the loss of cognitive 
abilities. It has also been shown that AD patients present 
higher levels of neuroserpin in the cerebrospinal fluid (CSF), 
in association with higher tau protein levels, suggesting its 
use as a potentially useful marker for clinical diagnosis of 
the pathology [136]. In contrast, a conflicting report found 
that neuroserpin was significantly reduced in the frontal and 
temporal cortex in AD compared to control brains [137]. 
A small but significant increase in neuroserpin levels has 
also been found in subjects with mild cognitive impairment 
[138], and in AD brains in correlation with elevated thy-
roid hormone receptor β1 expression, providing evidence 
for a potential relationship between thyroid problems, AD 
and neuroserpin [139]. Other studies have correlated the 
upregulation of neuroserpin that, together with the decreased 
expression of tPA, has been observed at advanced stages of 
amyloid pathology in AD patients and in a transgenic rat 
model of AD, with dysregulation of the nerve growth fac-
tor (NGF) and brain derived neurotrophic factor (BDNF) 
metabolic pathways [140, 141]. Altered NGF maturation, 
characterised by pro-NGF accumulation and reduced pres-
ence of mature NGF, together with increased NGF degra-
dation, caused by enhanced activity of the matrix metallo-
protease MMP9 in AD, have been suggested to impair the 
trophic support of basal forebrain cholinergic neurons, as 
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demonstrated by the reduction of cortical and hippocampal 
cholinergic synapses in transgenic AD rats. This highlights 
the importance of the neuroserpin-tPA protease cascade in 
the regulation of neurotrophins in AD and, together with the 
findings described above, supports a role for neuroserpin at 
different stages in the development of AD.

Role of neuroserpin in cancer

Neuroserpin has also been involved in different types of can-
cer. In prostate cancer, neuroserpin levels were upregulated, 
particularly in high-grade tumours, and was associated with 
shorter survival times [142]. In gastric cancer, a screening 
for targets of the oncogenic microRNA miR-21 identified 
SERPINI1 as a target gene, and neuroserpin overexpression 
induced G1/S arrest and decreased the growth of MKN28 
cells, suggesting a potential tumour suppressive function in 
this type of cancer [143]. A role for neuroserpin in promot-
ing epithelial-mesenchymal transition in colorectal tumour 
cells has also been suggested, based on microarray analysis 
of cell lines and the effects of siRNA knock-down of SER-
PINI1 gene in one of the cell lines [144]. A recent study 
of methylated gene profiles in bladder cancer has revealed 
that the SERPINI1 gene is differentially methylated when 
comparing tumour and normal tissues [145]. In the nerv-
ous system, a study based on the analysis of single nucleo-
tide polymorphisms (SNPs) in gliomas proposed a role for 
the SERPINI1 gene, which appeared to be associated with 
glioblastoma, the most aggressive type of glioma [146]. In 
an elegant study, Valiente and colleagues demonstrated that 
brain metastatic cells from lung and breast cancers expressed 
high levels of anti-plasminogen activator serpins, including 
neuroserpin, which, by preventing the generation of plasmin, 
decreased the cleavage of FasL and L1CAM, thereby favour-
ing brain metastasis in these types of cancer [98]. Also, in a 
whole-exome sequencing study, SERPINI1 has been found 
as the most frequently mutated gene in brain metastasis 
[147], adding further evidence for a role of neuroserpin in 
this process.

Neuroserpin alleles in population databases: 
functional and pathological implications

As described above, six pathogenic missense variants 
of SERPINI1 have been associated to FENIB, and differ-
ent studies support a role for neuroserpin in other types 
of dementia. This has led to the inclusion of SERPINI1 
in several genetic screenings to identify novel pathologi-
cal variants [148, 149]. Next-generation sequencing of an 

early-onset dementia cohort of 246 patients has uncovered 
a missense variation in neuroserpin (Asp157Ser) in a patient 
diagnosed for Alzheimer’s disease [150]. The possibility of 
finding novel pathological variants by expanding the search 
has led us to interrogate public databases. ClinVar, a public 
archive linking human genomic variation to their clinical 
phenotype, presently annotates other 61 missense variations 
of SERPINI1 encoding neuroserpin variants, 14 classified 
as benign or likely-benign, and 47 with uncertain clinical 
significance. The gnomAD database (versions v2.1/v3.1), 
which includes exome and genome sequencing data from 
approximately 200,000 unrelated individuals, collected as 
part of various disease-specific or population genetic studies, 
presently annotates 232 missense variations in SERPINI1, 
among which 220 have an allelic frequency < 5 × 10^5. 
Taken together, the new missense single nucleotide varia-
tions (SNVs) annotated in ClinVar and/or gnomAD encode 
for 220 unique amino acid substitutions in neuroserpin. As 
an initial step to estimate the pathogenic potential of these 
coding variants, we have applied two pathogenicity pre-
dictors: REVEL and Polyphen-2. REVEL is an ensemble 
method based on a combination of previously developed 
tools [151] and has been shown to achieve the best perfor-
mance in discriminating benign versus pathogenic amino 
acid variations of α1-antitrypsin, the archetypal member of 
the serpin superfamily [152].

The amino acid variations with the highest predicted 
pathogenic potential according to REVEL scores (> 0.75) 
are listed in Table 2, along with scores assigned by Poly-
phen-2, a more widely used predictive tool [153]. These var-
iations are widely distributed in neuroserpin’s structure, but 
25% of the potentially pathogenic ones are located in β-sheet 
A, a critical region for serpin conformational changes. A 
second hotspot is located to helix D (16% of the mutations 
reported in Table 2), one of the helices lying in the protein’s 
core, where one of the FENIB mutations (Ser52Arg) was 
found. Many of the mutations in Table 2 introduce charged 
or bulky residues, likely causing significant protein destabi-
lisation. Only one rather conservative mutation (Ala352Val) 
is located in the RCL, a motif that is central for neuroserpin’s 
activity. Experimental studies in vitro and in cell culture 
models will be required to assess the molecular behaviour 
of these neuroserpin variants with regards to intracellular 
polymerisation and anti-protease inhibitory activity. Nota-
bly, several loss-of-function variants of SERPINI1 are also 
annotated in variation databases. Although these are not 
associated with the aggregation mechanisms underlying 
FENIB, their pathogenic potential in altering the extracellu-
lar functions of neuroserpin also deserves further investiga-
tion in vitro and/or in cellular and animal models of disease.
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Table 2   List of SERPINI1 amino acid substitutions annotated in ClinVar and gnomAD (v2.1 and v3.1), achieving REVEL scores > 0.75

ClinVar
Nucleotide change (ref. 
NM_005025.4)

Protein change Clinical significance REVEL score (> 0.750) Polyphen-2 score

c.1175G > A p.Gly392Glu Pathogenic 0.981 1.000
c.1174G > A p.Gly392Arg Pathogenic 0.976 1.000
c.145T > C p.Ser49Pro Pathogenic 0.965 1.000
c.1139T > C p.Ile380Thr Uncertain 0.928 0.999
c.770T > C p.Leu257Pro Uncertain 0.909 1.000
c.526A > G p.Thr176Ala* Uncertain 0.908 1.000
c.1013A > G p.His338Arg Pathogenic 0.899 0.999
c.154A > C p.Ser52Arg Pathogenic 0.858 1.000
c.332C > T p.Ser111Phe* Uncertain 0.789 1.000
c.456T > G p.Asn152Lys Uncertain 0.779 1.000
c.959C > G p.Ala320Gly Uncertain 0.775 0.999
c.203C > A p.Thr68Asn Uncertain 0.761 0.997
c.166G > T p.Ala56Ser* Uncertain 0.752 1.000

gnomAD v2.1/v3.1

Nucleotide change (ref. 
NM_005025.4)

Protein change Allele counts REVEL score (> 0.750) Polyphen-2 score

c.149C > A p.Pro50Gln 1 0.964 1.000
c.326C > A p.Ala109Asp 2 0.960 1.000
c.920T > C p.Leu307Ser 2 0.959 1.000
c.394T > C p.Phe132Leu 1 0.953 1.000
c.647T > C p.Met216Thr 1 0.942 0.999
c.1030G > T p.Val344Phe 5 0.940 1.000
c.554A > G p.Tyr185Cys 2 0.935 1.000
c.188G > T p.Gly63Val 1 0.932 1.000
c.878C > T p.Pro293Leu 1 0.928 0.996
c.595A > T p.Thr199Ser 1 0.926 1.000
c.646A > G p.Met216Val 1 0.920 0.993
c.172G > A p.Gly58Arg 1 0.916 1.000
c.133A > G p.Asn45Asp 1 0.912 1.000
c.526A > G p.Thr176Ala* 3 0.908 1.000
c.187G > A p.Gly63Arg 1 0.905 1.000
c.1177C > G p.Arg393Gly 1 0.905 1.000
c.596C > T p.Thr199Ile 3 0.902 1.000
c.1031T > C p.Val344Ala 1 0.889 0.996
c.1033A > C p.Asn345His 2 0.870 1.000
c.173G > A p.Gly58Glu 2 0.868 1.000
c.551T > A p.Val184Asp 3 0.863 0.999
c.935T > A p.Ile312Lys 1 0.846 0.986
c.317T > A p.Met106Lys 2 0.842 0.349
c.965T > G p.Leu322Trp 2 0.832 0.995
c.882G > T p.Arg294Ser 2 0.828 1.000
c.92T > C p.Val31Ala 1 0.826 0.979
c.1055C > T p.Ala352Val 1 0.809 1.000
c.1178G > A p.Arg393Gln 1 0.809 1.000
c.184C > T p.Leu62Phe 1 0.796 1.000
c.330T > A p.Asn110Lys 1 0.796 1.000
c.866A > G p.Glu289Gly 1 0.794 1.000
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Conclusions and future perspectives

Most of the research dealing with neuroserpin has focused in 
two areas of interest: its roles in the physiology and patholo-
gies of the central nervous system and the structural bases of 
its multiple conformational states. As for other serpins, these 
two aspects are intimately related for neuroserpin, since the 
structural changes described here are at the basis of neu-
roserpin’s anti-protease activity and the molecular mecha-
nism of FENIB. In the context of the serpin superfamily, 
neuroserpin has attained a relevant model role along with 
α1-antitrypsin, due to the striking correlation between the 
destabilising effects of polymerogenic mutations causing 
FENIB and their clinical phenotype, and thanks to a solid 
body of studies dealing with the alternative conformations 
of neuroserpin and its polymerisation mechanism. FENIB, 
like all other serpinopathies, is currently an incurable dis-
ease. Different approaches have been tried for developing 
antipolymerisation molecules to treat α1-antitrypsin defi-
ciency, the most common serpinopathy, including chemical 
chaperones, RCL-derived peptides and small molecules, 
but none of them has progressed to clinical application so 
far [2]. While the most common target for polymerisation 
inhibitors has been β-sheet A, a new promising molecule 
against α1-antitrypsin that binds a cryptic pocket in β-sheet 
B has been reported recently [154]. This region was already 
described as a possible binding site for small molecules 
against PAI-1 [155]. These findings point to stabilisation of 
the region between β-sheets B and C as a novel therapeutic 
option since it correlates with a decreased polymerisation 
rate. These promising results with α1-antitrypsin encour-
age further research on neuroserpin and FENIB, for which 

the only treatments available at this time are those aimed to 
relief the clinical symptoms.

Several aspects of the physiological and pathologi-
cal functions of neuroserpin deserve to be further investi-
gated, including novel functions in the CNS as well as in 
the immune system. It is particularly important to uncover 
new inhibitory and non-inhibitory mechanisms of action of 
neuroserpin and to exploit its possible therapeutical poten-
tial. The neuroprotective effect of neuroserpin administra-
tion into the neocortex and hippocampus following ischemic 
stroke and seizures, respectively [79, 85], encourages the 
development of novel strategies to deliver this serpin at 
the site of pathology. In this respect, adenoviral-mediated 
expression of neuroserpin in the brain has been shown to 
affect synaptic plasticity in both the hippocampus and the 
visual cortex [73, 81], proving the efficacy of this strategy 
and encouraging its optimisation for therapy. Moreover, the 
data on neuroserpin’s function in the immune system and 
in the vasculature published in the last years strongly sup-
port future studies about neuroserpin’s activity outside the 
CNS and promote novel therapies based on neuroserpin, as 
shown by the finding that peptides derived from its RCL 
exert immunomodulatory effects [156].

Finally, the finding in population databases of neuro-
serpin variants predicted to be deleterious, albeit at low 
frequency, together with the fact that late onset FENIB is 
probably diagnosed under the umbrella of ‘senile demen-
tia’, supports the notion that the occurrence of FENIB is 
probably underestimated. In this scenario, the assessment 
of novel neuroserpin variants identified in cohorts of early-
onset dementia or population screenings and the prediction 
of their pathological impact, which we have introduced here, 
will surely foster new perspectives.

Databases were last accessed on 19 December 2020. Clinical significance refers to the pathogenicity prediction reported in ClinVar. Published 
mutations are highlighted in italics. A star (*) indicates substitutions annotated in both databases. Allele counts refer to total number of alleles 
in gnomAD (v2.1 or v3.1) datasets. The last column displays Polyphen-2 (HDIV) scores that classify almost all variants as probably damaging 
(> 0.908). Web resources:
ClinVar: https://​www.​ncbi.​nlm.​nih.​gov/​clinv​ar/
gnomAD (Genome Aggregation Database): https://​gnomad.​broad​insti​tute.​org/
REVEL: https://​sites.​google.​com/​site/​revel​genom​ics/
PolyPhen-2 (Polymorphism Phenotyping v2): http://​genet​ics.​bwh.​harva​rd.​edu/​pph2/

Table 2   (continued)

gnomAD v2.1/v3.1

Nucleotide change (ref. 
NM_005025.4)

Protein change Allele counts REVEL score (> 0.750) Polyphen-2 score

c.332C > T p.Ser111Phe* 7 0.789 1.000
c.167C > G p.Ala56Gly 1 0.781 0.999
c.769C > G p.Leu257Val 1 0.773 0.995
c.623A > T p.Asp208Val 1 0.762 1.000
c.344A > G p.Gln115Arg 1 0.761 0.998
c.166G > T p.Ala56Ser* 1 0.752 1.000

https://www.ncbi.nlm.nih.gov/clinvar/
https://gnomad.broadinstitute.org/
https://sites.google.com/site/revelgenomics/
http://genetics.bwh.harvard.edu/pph2/
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